Net wor k Wor ki ng Group R Braden, Ed.
Request for Comments: 2205]
Cat egory: Standards Track L. Zhang
UCLA

S. Berson

I SI

S. Herzog

| BM Resear ch

S. Jamn

Uni v. of M chigan

Sept enber 1997

Resource ReSerVation Protocol (RSVP) --
Version 1 Functional Specification
Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet comunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Abstract

This meno describes version 1 of RSVP, a resource reservation setup
protocol designed for an integrated services Internet. RSVP provides
receiver-initiated setup of resource reservations for nulticast or

uni cast data flows, with good scaling and robustness properties.

Braden, Ed., et. al. St andards Track [Page 1]

RFC 2205 RSVP Sept ember 1997

Tabl e of Contents

1. IntroduCtion 4
1.1 Data Flows ... 7
1.2 Reservation NModel 8
1.3 Reservation Styles e 11
1.4 Exanples of Styles i e 14

2. RSVP Protocol Mechanisnms i 19
2.1 RSVP MBSSAQES . . ittt ittt 19
2.2 Merging FlOWSPECS . ..ot 21
2.3 Soft State 22
2.4 TeardOWN ... 24
2.8 BrroOrs 25
2.6 Confirmati On 27
2.7 Policy Control 27
2.8 SBCUII LY o 28
2.9 NON-RSVP C 0UdS ... vt e 29
2.10 Host Model 30

3. RSVP Functional Specification i, 32
3.1 RSVP Message Formats i 32
3.2 Port Usage 47
3.3 Sending RSVP MESSAQeS .. .ottt e 48
3.4 Avoiding RSVP Message LOOPS . .. v vttt e 50
3.5 Blockade State 54
3.6 Local Repair e 56
3.7 Time Paramet €rs 57
3.8 Traffic Policing and Non-Integrated Service Hops 58
3.9 Multihomed HOStS 59
3.10 Future Conpatibility 61
3.11 RSVP Interfaces e 63

4, Acknow edgment S e 76

APPENDI X A. Qbject Definitions i, 77

APPENDI X B. Error Codes and Values 92

APPENDI X C. UDP Encapsulation 98

APPENDI X D. G 0SSaAlY ..ttt e e e e 102

REFERENCES e e 111

SECURI TY CONSI DERATI ONSo e e e 111

AUTHORS' ADDRESSESot 112

Braden, Ed., et. al. St andards Track [Page 2]

RFC 2205 RSVP Sept ember 1997

What ' s Changed

This revision contains the followi ng very ninor changes fromthe |D14

ver si on.
o} For clarity, each nessage type is now defined separately in
Section 3. 1.
0 We added nore precise and conplete rules for accepting Path
messages for unicast and nulticast destinations (Section
3.1.3).
o] We added nore precise and conplete rules for processing and

forwardi ng Pat hTear nmessages (Section 3.1.5).

o] A note was added that a SCOPE object will be ignored if it
appears in a ResvTear nessage (Section 3.1.6).

o] A note was added that a SENDER TSPEC or ADSPEC object will be
ignored if it appears in a PathTear nessage (Section 3.1.5).

o] The obsol ete error code Anmbi guous Filter Spec (09) was
renoved, and a new (and nore consistent) name was given to
error code 08 (Appendi x B)

o] In the generic interface to traffic control, the Adspec was
added as a paranmeter to the AddFl ow and MbdFl ow calls
(3.11.2). This is needed to acconmpdate a node that updates
the slack term (S) of Guaranteed service.

o] An error subtype was added for an Adspec error (Appendix B)

0 Addi tional explanation was added for handling a CONFI RM
object (Section 3.1.4).

o} The rules for forwardi ng objects with unknown cl ass type were
clarified.
o] Addi tional discussion was added to the Introduction and to

Section 3.11.2 about the relationship of RSVP to the |ink
| ayer. (Section 3.10).

o] Section 2.7 on Policy and Security was split into two
sections, and sonme additional discussion of security was
i ncl uded.

o} There were sone minor editorial inprovenents.

Braden, Ed., et. al. St andards Track [Page 3]

RFC 2205 RSVP Sept ember 1997

1

I ntroduction

Thi s docunent defines RSVP, a resource reservation setup protoco
designed for an integrated services Internet [RSVP93, RFC 1633]. The
RSVP protocol is used by a host to request specific qualities of
service fromthe network for particular application data streans or
flows. RSVP is also used by routers to deliver quality-of-service
(QS) requests to all nodes along the path(s) of the flows and to
establish and nmaintain state to provide the requested service. RSVP
requests will generally result in resources being reserved in each
node al ong the data path.

RSVP requests resources for sinplex flows, i.e., it requests
resources in only one direction. Therefore, RSVP treats a sender as
logically distinct froma receiver, although the same application
process may act as both a sender and a receiver at the sane tine.
RSVP operates on top of I1Pv4 or |IPv6, occupying the place of a
transport protocol in the protocol stack. However, RSVP does not
transport application data but is rather an Internet contro

protocol, like ICVWP, I GW, or routing protocols. Like the
i mpl enent ati ons of routing and nmanagenent protocols, an
i npl ementation of RSVP will typically execute in the background, not

in the data forwarding path, as shown in Figure 1

RSVP is not itself a routing protocol; RSVP is designed to operate
with current and future unicast and nulticast routing protocols. An
RSVP process consults the |ocal routing database(s) to obtain routes.
In the multicast case, for exanple, a host sends | GW nessages to
join a nulticast group and then sends RSVP nessages to reserve
resources along the delivery path(s) of that group. Routing
protocol s determ ne where packets get forwarded; RSVP is only
concerned with the QS of those packets that are forwarded in
accordance with routing.

In order to efficiently accommobdate | arge groups, dynam c group
menber shi p, and het erogeneous recei ver requirenents, RSVP nakes

recei vers responsi ble for requesting a specific QS [RSVP93]. A QS
request froma receiver host application is passed to the |ocal RSVP
process. The RSVP protocol then carries the request to all the nodes
(routers and hosts) along the reverse data path(s) to the data
source(s), but only as far as the router where the receiver’s data
path joins the nulticast distribution tree. As a result, RSVP s
reservation overhead is in general logarithmc rather than linear in
t he nunber of receivers

Braden, Ed., et. al. St andards Track [Page 4]

RFC 2205 RSVP Sept ember 1997

data | | |] | | dat a
I

HOST ROUTER
| I I I
e | - |
| [Appli- | | | RSVP | I I I
| | cation] | RSVP <----mmmmmm e oo > RSVP <------m--- >
| | <--> I I | I I I
| | | | process| | | | Routi ng| | process|
I I -->Pol cy| | | | <--> -->Pol cy|
| | | . _ | |Cntrl|] | | process| |__.__._| |Cntrl]
I | data I [| | [I [I
| === | == | | === | == |
I | - || | | - || |
I | | | ---->Admis|| I | | | ---->Admis||
_V_V vV	Cntrl]	_V_V_ v [Cntrl							
			[[
	Cass-		Packet				Cass-		Packet	
	ifier	==>Schedulr	> jfier	==>Schedul r	===========>					
	(. I									
I
I

Figure 1: RSVP in Hosts and Routers

Quality of service is inplenented for a particular data fl ow by
mechani sns col lectively called "traffic control". These nechani sns

i nclude (1) a packet classifier, (2) admi ssion control, and (3) a
"packet schedul er" or some other |ink-Ilayer-dependent nechanismto
det ermi ne when particul ar packets are forwarded. The "packet
classifier" deternmi nes the QoS class (and perhaps the route) for each
packet. For each outgoing interface, the "packet schedul er” or other
i nk-1ayer-dependent mechani sm achi eves the prom sed QS. Traffic
control inplenents QoS service nodels defined by the Integrated

Servi ces Wrking G oup.

During reservation setup, an RSVP QoS request is passed to two |oca
deci si on nodul es, "admi ssion control™ and "policy control ™.

Adni ssion control deterni nes whether the node has sufficient
avai |l abl e resources to supply the requested QS. Policy contro

Braden, Ed., et. al. St andards Track [Page 5]

RFC 2205 RSVP Sept ember 1997

det ermi nes whether the user has administrative perm ssion to nake the
reservation. |f both checks succeed, paraneters are set in the
packet classifier and in the link layer interface (e.g., in the
packet scheduler) to obtain the desired Q©S. |If either check fails,
the RSVP programreturns an error notification to the application
process that originated the request.

RSVP protocol mechani snms provide a general facility for creating and
mai ntai ni ng distributed reservation state across a nesh of nulticast
or unicast delivery paths. RSVP itself transfers and mani pul ates QoS
and policy control parameters as opaque data, passing themto the
appropriate traffic control and policy control nodul es for
interpretation. The structure and contents of the QoS paraneters are
docunented in specifications devel oped by the Integrated Services
Wor ki ng Group; see [RFC 2210]. The structure and contents of the
policy paraneters are under devel oprment.

Since the nmenbership of a large nulticast group and the resulting

mul ticast tree topology are likely to change with tine, the RSVP
design assunes that state for RSVP and traffic control state is to be
built and destroyed increnentally in routers and hosts. For this

pur pose, RSVP establishes "soft" state; that is, RSVP sends periodic
refresh messages to naintain the state along the reserved path(s).

In the absence of refresh nessages, the state autonmatically tinmes out
and is del eted.

In sunmary, RSVP has the follow ng attributes:

o] RSVP nakes resource reservations for both unicast and many-to-
many nul ticast applications, adapting dynanmically to changing
group nenbership as well as to changi ng routes.

o] RSVP is sinplex, i.e., it nakes reservations for unidirectiona
data fl ows.

o] RSVP is receiver-oriented, i.e., the receiver of a data fl ow
initiates and maintains the resource reservation used for that
flow

0 RSVP maintains "soft" state in routers and hosts, providing

graceful support for dynanm c nenbershi p changes and automatic
adaptation to routing changes.

o] RSVP is not a routing protocol but depends upon present and
future routing protocols.

o] RSVP transports and maintains traffic control and policy contro
paraneters that are opaque to RSVP

Braden, Ed., et. al. St andards Track [Page 6]

RFC 2205 RSVP Sept ember 1997

o} RSVP provi des several reservation nodels or "styles" (defined
below) to fit a variety of applications.

0 RSVP provi des transparent operation through routers that do not
support it.

o} RSVP supports both I Pv4 and | Pv6.

Furt her discussion on the objectives and general justification for
RSVP design are presented in [RSVP93] and [RFC 1633].

The remai nder of this section describes the RSVP reservation
services. Section 2 presents an overvi ew of the RSVP protoco

nmechani sms. Section 3 contains the functional specification of RSVP
while Section 4 presents explicit nessage processing rules. Appendix
A defines the variable-length typed data objects used in the RSVP
protocol. Appendix B defines error codes and values. Appendix C
defines a UDP encapsul ati on of RSVP nessages, for hosts whose
operating systens provide i nadequate raw network |/ O support.

1.1 Data Fl ows

RSVP defines a "session” to be a data floww th a particul ar
destination and transport-layer protocol. RSVP treats each
session independently, and this docunment often onmts the inplied
qualification "for the sane session"

An RSVP session is defined by the triple: (DestAddress, Protocolld
[, DstPort]). Here DestAddress, the IP destination address of the
data packets, may be a unicast or nulticast address. Protocolld
is the P protocol ID. The optional DstPort paraneter is a
"generalized destination port", i.e., some further demnultiplexing
point in the transport or application protocol l|ayer. DstPort
could be defined by a UDP/ TCP destination port field, by an

equi valent field in another transport protocol, or by sone
application-specific information.

Al t hough the RSVP protocol is designed to be easily extensible for
greater generality, the basic protocol docunented here supports
only UDP/ TCP ports as generalized ports. Note that it is not
strictly necessary to include DstPort in the session definition
when Dest Address is multicast, since different sessions can al ways
have different nulticast addresses. However, DstPort is necessary
to allow nore than one unicast session addressed to the sane

recei ver host.

Braden, Ed., et. al. St andards Track [Page 7]

RFC 2205 RSVP Sept ember 1997

Figure 2 illustrates the flow of data packets in a single RSVP
session, assunming nmulticast data distribution. The arrows
indicate data flowing fromsenders S1 and S2 to receivers Rl, R2,
and R3, and the cloud represents the distribution nmesh created by
mul ticast routing. Milticast distribution forwards a copy of each
data packet froma sender Si to every receiver R ; a unicast

di stribution session has a single receiver R Each sender Si nmay
be running in a unique Internet host, or a single host may contain
mul ti pl e senders distinguished by "generalized source ports"

Sender s Recei vers

() ===> R1

S1 ===> (Mul ti cast)
() ===> R2
(di stribution)

S2 ===> ()
(by | nternet) ===> R3
()

Figure 2: Milticast Distribution Session

For uni cast transmi ssion, there will be a single destination host
but there nay be multiple senders; RSVP can set up reservations
for multipoint-to-single-point transm ssion

1.2 Reservation Mde

An el enentary RSVP reservation request consists of a "fl owspec"
together with a "filter spec"; this pair is called a "fl ow

descriptor". The flowspec specifies a desired Q©S. The filter
spec, together with a session specification, defines the set of
data packets -- the "flow' -- to receive the QoS defined by the

flowspec. The flowspec is used to set paraneters in the node’'s
packet schedul er or other link layer nechanism while the filter
spec is used to set paraneters in the packet classifier. Data
packets that are addressed to a particular session but do not
mat ch any of the filter specs for that session are handl ed as
best-effort traffic.

The flowspec in a reservation request will generally include a
service class and two sets of nuneric paraneters: (1) an "Rspec"
(R for ‘reserve’) that defines the desired QoS, and (2) a "Tspec"
(T for “traffic’) that describes the data flow. The formats and
contents of Tspecs and Rspecs are determined by the integrated
service nodels [RFC 2210] and are generally opaque to RSVP

Braden, Ed., et. al. St andards Track [Page 8]

RFC 2205 RSVP Sept ember 1997

The exact format of a filter spec depends upon whether |Pv4 or
IPv6 is in use; see Appendix A |In the nost general approach

[RSVPO3], filter specs nay select arbitrary subsets of the packets
in a given session. Such subsets mght be defined in terns of
senders (i.e., sender |IP address and generalized source port), in
terns of a higher-level protocol, or generally in terns of any
fields in any protocol headers in the packet. For exanple, filter
specs mght be used to select different subflows of a

hi erarchi cal | y-encoded vi deo stream by selecting on fields in an
application-layer header. |In the interest of sinplicity (and to
mnimze layer violation), the basic filter spec format defined in
the present RSVP specification has a very restricted form sender

| P address and optionally the UDP/ TCP port numnber SrcPort.

Because the UDP/ TCP port nunbers are used for packet
classification, each router nust be able to exam ne these fields.
This raises three potential problens.

1. It is necessary to avoid |IP fragnmentation of a data flow for
whi ch a resource reservation is desired

Docurent [RFC 2210] specifies a procedure for applications
using RSVP facilities to conpute the m ni num MIU over a
nulticast tree and return the result to the senders.

2. | Pv6 inserts a variable nunber of variable-length Internet-
| ayer headers before the transport header, increasing the
difficulty and cost of packet classification for QoS.

Efficient classification of |Pv6 data packets could be
obt ai ned using the Flow Label field of the I Pv6 header. The
details will be provided in the future

3. | P-l evel Security, under either 1Pv4 or |1 Pv6, may encrypt the
entire transport header, hiding the port nunbers of data
packets frominternediate routers

A small extension to RSVP for | P Security under |1Pv4 and | Pv6
i s described separately in [RFC 2207].

RSVP nessages carrying reservation requests originate at receivers
and are passed upstreamtowards the sender(s). Note: in this
docunent, we define the directional terns "upstream' vs.
"downstreant, "previous hop" vs. "next hop", and "inconing
interface" vs "outgoing interface" with respect to the direction
of data flow

Braden, Ed., et. al. St andards Track [Page 9]

RFC 2205 RSVP Sept ember 1997

At each internediate node, a reservation request triggers two
general actions, as foll ows:

1. Make a reservation on a |ink

The RSVP process passes the request to adnission control and
policy control. |If either test fails, the reservation is
rejected and the RSVP process returns an error nessage to the
appropriate receiver(s). |If both succeed, the node sets the
packet classifier to select the data packets defined by the
filter spec, and it interacts with the appropriate Iink |ayer
to obtain the desired QoS defined by the fl owspec.

The detailed rules for satisfying an RSVP QoS request depend
upon the particular link layer technology in use on each
interface. Specifications are under devel opnent in the | SSLL
Working Group for mapping reservation requests into popul ar
link Iayer technologies. For a sinple |eased |line, the
desired QS will be obtained fromthe packet scheduler in the
link layer driver, for exanple. |If the link-layer technol ogy
i mpl enents its own Q0S nanagenent capability, then RSVP nust
negotiate with the link layer to obtain the requested QoS.
Note that the action to control QoS occurs at the place where
the data enters the link-layer nedium i.e., at the upstream
end of the logical or physical |ink, although an RSVP
reservation request originates fromreceiver(s) downstream

2. Forward the request upstream

A reservation request is propagated upstreamtowards the
appropriate senders. The set of sender hosts to which a
given reservation request is propagated is called the "scope"
of that request.

The reservation request that a node forwards upstream nmay
differ fromthe request that it received from downstream for
two reasons. The traffic control nechanism may nodify the

fl owspec hop-by-hop. Mre inportantly, reservations from

di fferent downstream branches of the nmulticast tree(s) from
the sane sender (or set of senders) nust be " nmerged" as
reservations travel upstream

Wien a receiver originates a reservation request, it can also
request a confirmati on nessage to indicate that its request was
(probably) installed in the network. A successful reservation
request propagates upstreamalong the nulticast tree until it
reaches a point where an existing reservation is equal or greater

Braden, Ed., et. al. St andards Track [Page 10]

RFC 2205 RSVP Sept ember 1997

than that being requested. At that point, the arriving request is
nerged with the reservation in place and need not be forwarded
further; the node may then send a reservation confirnmati on nmessage
back to the receiver. Note that the receipt of a confirmation is
only a high-probability indication, not a guarantee, that the
requested service is in place all the way to the sender(s), as
expl ai ned in Section 2.6.

The basic RSVP reservation nodel is "one pass": a receiver sends a
reservation request upstream and each node in the path either
accepts or rejects the request. This schene provides no easy way
for a receiver to find out the resulting end-to-end service.
Ther ef ore, RSVP supports an enhancenent to one-pass service known
as "One Pass Wth Advertising" (OPWA) [OPWA95]. Wth OPWA, RSVP
control packets are sent downstream followi ng the data paths, to
gather information that may be used to predict the end-to-end QoS.
The results ("advertisenents"”) are delivered by RSVP to the

recei ver hosts and perhaps to the receiver applications. The
adverti senents may then be used by the receiver to construct, or
to dynamically adjust, an appropriate reservation request.

1.3 Reservation Styles

A reservation request includes a set of options that are
collectively called the reservation "style"

One reservation option concerns the treatnment of reservations for
different senders within the same session: establish a "distinct"
reservation for each upstream sender, or else nmake a single
reservation that is "shared" anong all packets of selected
senders

Anot her reservation option controls the selection of senders; it
may be an "explicit" list of all selected senders, or a "wldcard"
that inplicitly selects all the senders to the session. In an
explicit sender-selection reservation, each filter spec nust match
exactly one sender, while in a wildcard sender-selection no filter
spec i s needed.

Braden, Ed., et. al. St andards Track [Page 11]

RFC 2205

RSVP Sept enber 1997

(W) Style

Sender | Reser vati ons:
Selection || Di stinct | Shar ed
| | |
| | | |
Explicit || Fixed-Filter | Shared-Explicit |
|| (FF) style | (SE) Style |
:: : :
Wl dcard || (None defined) | WIdcard-Filter
| | | |
| | |

Figure 3: Reservation Attributes and Styles

The following styles are currently defined (see Figure 3):

(o]

Br aden,

Wl dcard-Filter (W) Style

The WF style inplies the options: "shared" reservation and
"wi | dcard" sender selection. Thus, a W--style reservation
creates a single reservation shared by flows from al
upstream senders. This reservation nay be thought of as a
shared "pipe", whose "size" is the largest of the resource
requests fromall receivers, independent of the number of
senders using it. A W-style reservation is propagated
upstreamtowards all sender hosts, and it automatically
extends to new senders as they appear

Synmbolically, we can represent a Wr-style reservation request
by:

W * {Q)

where the asterisk represents w ldcard sender selection and Q
represents the fl owspec.

Fixed-Filter (FF) Style

The FF style inplies the options: "distinct" reservations and
"explicit" sender selection. Thus, an elenmentary FF-style
reservation request creates a distinct reservation for data
packets froma particul ar sender, not sharing themwth other
senders’ packets for the sane session.

Ed., et. al. St andards Track [Page 12]

RFC 2205 RSVP Sept ember 1997

Synbolically, we can represent an el enentary FF reservation
request by:

FF(S{Q)

where S is the selected sender and Qis the correspondi ng
flowspec; the pair forms a flow descriptor. RSVP allows

mul tiple elementary FF-style reservations to be requested at
the sane tine, using a list of flow descriptors:

FFR(S1{Q1}, S2{ @}, ...)

The total reservation on a link for a given session is the
‘sumi of QlL, @, ... for all requested senders.

o} Shared Explicit (SE) Style

The SE style inplies the options: "shared" reservation and
"explicit" sender selection. Thus, an SE-style reservation
creates a single reservation shared by sel ected upstream
senders. Unlike the WF style, the SE style allows a receiver
to explicitly specify the set of senders to be included.

W can represent an SE reservation request containing a
flowspec Q and a list of senders S1, S2, ... by:

SE((S1,S2,...){Q)

Shared reservations, created by WF and SE styles, are appropriate
for those nulticast applications in which nultiple data sources
are unlikely to transmt sinultaneously. Packetized audio is an
exanpl e of an application suitable for shared reservations; since
a limted nunber of people talk at once, each receiver mght issue
a WF or SE reservation request for twice the bandwi dth required
for one sender (to allow some over-speaking). On the other hand,
the FF style, which creates distinct reservations for the flows
fromdifferent senders, is appropriate for video signals.

The RSVP rul es disallow nerging of shared reservations with

di stinct reservations, since these nodes are fundanentally

i nconpatible. They also disallow nmerging explicit sender
selection with wildcard sender selection, since this m ght produce
an unexpected service for a receiver that specified explicit
selection. As a result of these prohibitions, W, SE, and FF
styles are all nutually inconpatible.

Braden, Ed., et. al. St andards Track [Page 13]

RFC 2205 RSVP Sept ember 1997

It woul d seem possible to sinulate the effect of a WF reservation
using the SE style. Wen an application asked for W, the RSVP
process on the receiver host could use local state to create an
equi val ent SE reservation that explicitly listed all senders.
However, an SE reservation forces the packet classifier in each
node to explicitly select each sender in the list, while a W
all ows the packet classifier to sinply "wild card" the sender
address and port. \When there is a large list of senders, a W
style reservation can therefore result in considerably |ess
overhead than an equival ent SE style reservation. For this
reason, both SE and WF are included in the protocol

O her reservation options and styles nmay be defined in the future.
1.4 Exanples of Styles

This section presents exanples of each of the reservation styles
and shows the effects of nerging.

Figure 4 illustrates a router with two incoming interfaces,

| abel ed (a) and (b), through which flows will arrive, and two
outgoi ng interfaces, labeled (c) and (d), through which data will
be forwarded. This topology will be assuned in the exanples that
follow. There are three upstream senders; packets from sender Sl
(S2 and S3) arrive through previous hop (a) ((b), respectively).
There are also three downstreamreceivers; packets bound for Rl
(R2 and R3) are routed via outgoing interface (c) ((d),
respectively). W furthernore assume that outgoing interface (d)
is connected to a broadcast LAN, i.e., that replication occurs in
the network; R2 and R3 are reached via different next hop routers
(not shown).

We nust al so specify the multicast routes within the node of
Figure 4. Assune first that data packets fromeach Si shown in
Figure 4 are routed to both outgoing interfaces. Under this
assunption, Figures 5 6, and 7 illustrate Wldcard-Filter

Fi xed-Filter, and Shared-Explicit reservations, respectively.

Braden, Ed., et. al. St andards Track [Page 14]

RFC 2205 RSVP Sept ember 1997

(a) | (c)
(SL) --remeose > EEREPTERTE > (RL)
| Rout er |
(b)| | (d) [--->(R)
(1 S2,S3) ------- >| |------

Fi gure 4: Router Configuration

For simplicity, these exanpl es show fl owspecs as one-di nensi ona
mul ti pl es of sone base resource quantity B. The "Receives" colum
shows the RSVP reservation requests received over outgoing
interfaces (c) and (d), and the "Reserves" columm shows the

resulting reservation state for each interface. The " Sends"
col unm shows the reservation requests that are sent upstreamto
previous hops (a) and (b). In the "Reserves" colum, each box

represents one reserved "pipe" on the outgoing link, with the
correspondi ng fl ow descri ptor.

Figure 5, showing the WF style, illustrates two distinct
situations in which nerging is required. (1) Each of the two next
hops on interface (d) results in a separate RSVP reservation
request, as shown; these two requests nust be nerged into the
effective fl owspec, 3B, that is used to nake the reservation on
interface (d). (2) The reservations on the interfaces (c) and (d)
nmust be nmerged in order to forward the reservation requests
upstream as a result, the larger flowspec 4B is forwarded
upstreamto each previous hop

Braden, Ed., et. al. St andards Track [Page 15]

RFC 2205 RSVP Sept ember 1997

|
Sends | Reserves Recei ves
|
|
WF(*{4B}) <- (a) I (c) I * {4B}| (c) <- WF(*{4B})
e
....................... I--
WF(*{4B}) <- (D) I (d) I‘T{‘ﬁﬁ}‘I (d) <- WF(*{3B})

<- WF(*{2B})

Figure 5: Wldcard-Filter (W) Reservation Exanple

Figure 6 shows Fixed-Filter (FF) style reservations. For each
outgoing interface, there is a separate reservation for each
source that has been requested, but this reservation will be
shared anong all the receivers that made the request. The fl ow
descriptors for senders S2 and S3, received through outgoing
interfaces (c) and (d), are packed (not nerged) into the request
forwarded to previous hop (b). On the other hand, the three
different flow descriptors specifying sender S1 are nerged into
the single request FF(S1{4B}) that is sent to previous hop (a).

Sends Reser ves Recei ves

FF(S1{4B}) <- (a) FF(S1{4B}, S2{5B})

~—

(]
N—r
wn
=
—_~
N
R
~—

(]
N—r

N

1

(d) | S1{3B} | (d) <- FF(S1{3B}, S3{B})
| FF(S1{B})

< (b)
FF(s2{5B}, S3{B})

A

Figure 6: Fixed-Filter (FF) Reservation Exanple

Braden, Ed., et. al. St andards Track [Page 16]

RFC 2205 RSVP Sept ember 1997

Fi gure 7 shows an exanpl e of Shared-Explicit (SE) style
reservations. Wen SE-style reservations are nerged, the
resulting filter spec is the union of the original filter specs,
and the resulting flowspec is the |largest flowspec.

|
Sends | Reserves Recei ves
|
|l
SE(S1{3B}) <- (a) | (c) |(S1,Ss2) | (c) <- SE((S1,S2){B})
| | {B |
| |l |
_____________________ I___
<- (b) | (d) |(S1,S2,S3)| (d) <- SE((S1,S3){3B})
SE((S2,S3){3B}) | | {3B} | <- SE(S2{2B})
|

Figure 7: Shared-Explicit (SE) Reservation Exanple

The three exanples just shown assune that data packets from Sl

S2, and S3 are routed to both outgoing interfaces. The top part
of Figure 8 shows another routing assunption: data packets from S2
and S3 are not forwarded to interface (c), e.g., because the

net wor k t opol ogy provides a shorter path for these senders towards
R1, not traversing this node. The bottom part of Figure 8 shows
WF style reservations under this assunption. Since there is no
route from(b) to (c), the reservation forwarded out interface (b)
considers only the reservation on interface (d).

Braden, Ed., et. al. St andards Track [Page 17]

RFC 2205

Sends

WE(*{4B})

WE(*{3B})

Fi gure 8: W Reservation Exanple --

Braden, Ed., et. al.

RSVP
(a)l | (c)
D I L > |------
| > |
| >
(b)| > | (d)
R I >--> | ------

Rout er Confi guration

Sept enber 1997

Recei ves

WE(*{4B})

|

| Reserves

|

[l
<- (d) I (c) | * {4B}|

T

[l
<- (b) I (d) | * {3B}]

St andards Track

(d) <-

WE(* {3B})

<- WF(* {2B})

Parti al

Rout i ng

[Page 18]

RFC 2205 RSVP Sept ember 1997

2. RSVP Protocol Mechanisns

2.1 RSVP Messages

Pr evi ous I nconi ng Qut goi ng Next
Hops I nterfaces I nterfaces Hops
| | data --> | | data --> | |
N R a C|------mmm-m--- | C |
| | Path --> | | Path --> | |
<-- Resv | | <-- Resv
_____ | ROUTER | | |
				--1 D		
B	--	data-->		data -->		___
l -	b d	-----------				
Path-->		Path -->	___			
_____	<--Resv		<-- Resv			
		--1 D				
B	--] I D					

Figure 9: Router Using RSVP

Figure 9 illustrates RSVP' s nodel of a router node. Each data
flow arrives froma "previous hop" through a correspondi ng
"incom ng interface" and departs through one or nore "outgoing
interface"(s). The sane interface may act in both the incom ng
and outgoing roles for different data flows in the same session.
Mul ti pl e previous hops and/or next hops may be reached through a
gi ven physical interface; for exanple, the figure inplies that D
and D are connected to (d) with a broadcast LAN.

There are two fundanental RSVP nessage types: Resv and Path.

Each receiver host sends RSVP reservation request (Resv) nessages
upstream towards the senders. These nmessages nust follow exactly
the reverse of the path(s) the data packets will use, upstreamto
all the sender hosts included in the sender selection. They
create and maintain "reservation state" in each node al ong the
path(s). Resv nessages nust finally be delivered to the sender
hosts thensel ves, so that the hosts can set up appropriate traffic
control paraneters for the first hop. The processing of Resv
messages was di scussed previously in Section 1.2.

Braden, Ed., et. al. St andards Track [Page 19]

RFC 2205 RSVP Sept ember 1997

Each RSVP sender host transnits RSVP "Path" nessages downstream
along the uni-/nulticast routes provided by the routing

protocol (s), following the paths of the data. These Path nessages
store "path state" in each node along the way. This path state

i ncludes at |east the unicast |IP address of the previous hop node,
which is used to route the Resv nessages hop-by-hop in the reverse
direction. (In the future, sone routing protocols nmay supply
reverse path forwarding information directly, replacing the
reverse-routing function of path state).

A Path nmessage contains the following information in addition to
t he previ ous hop address:

o] Sender Tenpl ate

A Path nmessage is required to carry a Sender Tenplate, which
describes the format of data packets that the sender will
originate. This tenplate is in the formof a filter spec
that could be used to select this sender’s packets from
others in the same session on the sane |ink

Sender Tenpl ates have exactly the sanme expressive power and
format as filter specs that appear in Resv nessages.
Therefore a Sender Tenplate nmay specify only the sender IP
address and optionally the UDP/ TCP sender port, and it
assunes the protocol |Id specified for the session

0 Sender Tspec

A Path nessage is required to carry a Sender Tspec, which
defines the traffic characteristics of the data flow that the
sender will generate. This Tspec is used by traffic contro
to prevent over-reservation, and perhaps unnecessary

Adm ssion Control failures.

o} Adspec

A Path nessage nmay carry a package of OPWA adverti sing

i nformati on, known as an "Adspec". An Adspec received in a
Pat h nessage is passed to the local traffic control, which
returns an updated Adspec; the updated version is then
forwarded in Path nessages sent downstream

Braden, Ed., et. al. St andards Track [Page 20]

RFC 2205 RSVP Sept ember 1997

Pat h nessages are sent with the sane source and destination
addresses as the data, so that they will be routed correctly

t hrough non- RSVP cl ouds (see Section 2.9). On the other hand,
Resv nessages are sent hop-by-hop; each RSVP-speaki ng node
forwards a Resv nessage to the unicast address of a previous RSVP
hop.

2.2 Merging Flowspecs

A Resv nessage forwarded to a previous hop carries a fl owspec that
is the "largest” of the flowspecs requested by the next hops to
which the data flowwill be sent (however, see Section 3.5 for a
different nmerging rule used in certain cases). W say the

fl owspecs have been "nerged". The exanples shown in Section 1.4
illustrated another case of nerging, when there are nultiple
reservation requests fromdifferent next hops for the sane session
and with the same filter spec, but RSVP should install only one
reservation on that interface. Here again, the installed
reservati on shoul d have an effective flowspec that is the
"largest" of the flowspecs requested by the different next hops.

Since fl owspecs are opaque to RSVP, the actual rules for conparing
fl owspecs nust be defined and inpl enented outsi de RSVP proper

The conparison rules are defined in the appropriate integrated
service specification docunent. An RSVP inplenentation will need
to call service-specific routines to perform flowspec nerging.

Note that flowspecs are generally nulti-di nmensional vectors; they
may contain both Tspec and Rspec conponents, each of which may
itself be nulti-dinensional. Therefore, it nay not be possible to
strictly order two flowspecs. For exanple, if one request calls
for a higher bandwi dth and another calls for a tighter delay
bound, one is not "larger" than the other. 1In such a case,

i nstead of taking the larger, the service-specific merging
routines nmust be able to return a third flowspec that is at |east
as large as each; mathematically, this is the "l east upper bound"

(LUB). In sonme cases, a flowspec at |east as snmall is needed;
this is the "greatest |ower bound" (G.B) G.B (Greatest Lower
Bound) .

The following steps are used to calculate the effective fl owspec
(Re, Te) to be installed on an interface [RFC 2210]. Here Te is
the effective Tspec and Re is the effective Rspec.

Braden, Ed., et. al. St andards Track [Page 21]

RFC 2205 RSVP Sept ember 1997

1. An effective flowspec is determ ned for the outgoing
interface. Depending upon the link-Ilayer technology, this
may require nerging flowspecs fromdifferent next hops; this
means conputing the effective flowspec as the LUB of the
flowspecs. Note that what flowspecs to nerge is determ ned
by the link layer nedium (see Section 3.11.2), while howto
merge themis deternined by the service nodel in use [RFC
2210].

The result is a flowspec that is opaque to RSVP but actually
consists of the pair (Re, Resv_Te), where is Re is the
ef fective Rspec and Resv_Te is the effective Tspec.

2. A service-specific calculation of Path_Te, the sum of all
Tspecs that were supplied in Path nessages fromdifferent
previ ous hops (e.g., sone or all of A, B, and B in Figure
9), is perforned.

3. (Re, Resv_Te) and Path_Te are passed to traffic control
Traffic control will conmpute the effective flowspec as the
"m ni mun of Path_Te and Resv_Te, in a service-dependent
nmanner .

Section 3.11.6 defines a generic set of service-specific calls to
conmpare flowspecs, to conpute the LUB and GLB of flowspecs, and to
conpare and sum Tspecs

2.3 Soft State

RSVP takes a "soft state" approach to nanagi ng the reservation
state in routers and hosts. RSVP soft state is created and
periodically refreshed by Path and Resv nessages. The state is
deleted if no matching refresh nmessages arrive before the
expiration of a "cleanup tineout” interval. State may also be
deleted by an explicit "teardown" nessage, described in the next
section. At the expiration of each "refresh tineout" period and
after a state change, RSVP scans its state to build and forward
Path and Resv refresh nessages to succeedi ng hops.

Path and Resv nmessages are idenpotent. Wen a route changes, the
next Path nessage will initialize the path state on the new route,
and future Resv nessages will establish reservation state there;
the state on the now unused segnment of the route will tinme out.
Thus, whether a nmessage is "new' or a "refresh" is determ ned
separately at each node, dependi ng upon the existence of state at
t hat node.

Braden, Ed., et. al. St andards Track [Page 22]

RFC 2205 RSVP Sept ember 1997

RSVP sends its nessages as |P datagrans with no reliability
enhancenent. Periodic transnission of refresh nessages by hosts
and routers is expected to handl e the occasional |oss of an RSVP
message. |If the effective cleanup timeout is set to Ktines the
refresh tineout period, then RSVP can tolerate K-1 successive RSVP
packet | osses without falsely deleting state. The network traffic
control mnechani smshould be statically configured to grant sone

nm ni mal bandwi dth for RSVP nessages to protect themfrom
congestion | osses.

The state naintained by RSVP is dynam c; to change the set of
senders Si or to change any QoS request, a host sinply starts
sendi ng revi sed Path and/ or Resv nessages. The result will be an
appropriate adjustnment in the RSVP state in all nodes along the
path; unused state will time out if it is not explicitly torn
down.

In steady state, state is refreshed hop-by-hop to allow nerging.
Wien the received state differs fromthe stored state, the stored
state is updated. |If this update results in nodification of state
to be forwarded in refresh nessages, these refresh nmessages nust
be generated and forwarded i medi ately, so that state changes can
be propagated end-to-end w thout delay. However, propagation of a
change stops when and if it reaches a point where nerging causes
no resulting state change. This minimnmzes RSVP control traffic
due to changes and is essential for scaling to large nulticast

gr oups.

State that is received through a particular interface I* should
never be forwarded out the sane interface. Conversely, state that
is forwarded out interface |* nust be conputed using only state
that arrived on interfaces different froml*. A trivial exanple
of this rule is illustrated in Figure 10, which shows a transit
router with one sender and one receiver on each interface (and
assunes one next/previous hop per interface). Interfaces (a) and
(c) serve as both outgoing and incoming interfaces for this
session. Both receivers are nmaking w | dcard-style reservations,
in which the Resv nessages are forwarded to all previous hops for
senders in the group, with the exception of the next hop from

whi ch they cane. The result is independent reservations in the
two directions.

There is an additional rule governing the forwardi ng of Resv
nessages: state from Resv nmessages received from outgoi ng
interface 1o should be forwarded to incoming interface li only if
Pat h nessages fromli are forwarded to |o.

Braden, Ed., et. al. St andards Track [Page 23]

RFC 2205 RSVP Sept ember 1997

a | I
(RL, S1) <----- >| Rout er | <----- > (R, S2)
I I

Send Recei ve

WE(*{3B}) <-- (a) (c) <-- W(*{3B})

Recei ve Send

Reserve on (a) Reserve on (c)

I
I
I
I
I
WE(*{4B}) --> (a) I (c) --> W(*{4B})
I
I
I
I
|

Fi gure 10: |ndependent Reservations

2.4 Teardown

RSVP "t eardown" nessages renpve path or reservation state

i mediately. Although it is not necessary to explicitly tear down
an old reservation, we reconmend that all end hosts send a
teardown request as soon as an application finishes.

There are two types of RSVP teardown nessage, PathTear and
ResvTear. A PathTear nessage travels towards all receivers
downstream fromits point of initiation and deletes path state, as
well as all dependent reservation state, along the way. An
ResvTear message del etes reservation state and travel s towards al
senders upstreamfromits point of initiation. A PathTear
(ResvTear) nessage nay be conceptualized as a reversed-sense Path
message (Resv nessage, respectively).

A teardown request may be initiated either by an application in an
end system (sender or receiver), or by a router as the result of
Sstate timeout or service preenption. Once initiated, a teardown
request nust be forwarded hop-by-hop w thout delay. A teardown
nmessage del etes the specified state in the node where it is
received. As always, this state change will be propagated

i medi ately to the next node, but only if there will be a net
change after nmerging. As a result, a ResvTear nessage will prune
the reservation state back (only) as far as possible.

Braden, Ed., et. al. St andards Track [Page 24]

RFC 2205 RSVP Sept ember 1997

Li ke all other RSVP nessages, teardown requests are not delivered
reliably. The |oss of a teardown request nessage will not cause a
protocol failure because the unused state will eventually time out
even though it is not explicitly deleted. |If a teardown nmessage
is lost, the router that failed to receive that nessage will time
out its state and initiate a new teardown nessage beyond the | oss
point. Assunming that RSVP nessage | oss probability is small, the
longest tine to delete state will sel dom exceed one refresh

ti meout period.

It should be possible to tear down any subset of the established
state. For path state, the granularity for teardown is a single
sender. For reservation state, the granularity is an individua
filter spec. For exanple, refer to Figure 7. Receiver Rl could
send a ResvTear nessage for sender S2 only (or for any subset of
the filter spec list), leaving S1 in place.

A ResvTear nessage specifies the style and filters; any fl owspec
is ignored. Watever flowspec is in place will be renoved if al
its filter specs are torn down.

2.5 Errors

There are two RSVP error nessages, ResvErr and PathErr. PathErr
messages are very sinple; they are sinply sent upstreamto the
sender that created the error, and they do not change path state
in the nodes though which they pass. There are only a few
possi bl e causes of path errors.

However, there are a nunber of ways for a syntactically valid
reservation request to fail at sone node along the path. A node
may al so decide to preenpt an established reservation. The
handl i ng of ResvErr nessages is sonewhat conplex (Section 3.5).
Since a request that fails may be the result of nerging a nunber
of requests, a reservation error nust be reported to all of the
responsi ble receivers. |n addition, nerging heterogeneous
requests creates a potential difficulty known as the "killer
reservation" problem in which one request could deny service to
another. There are actually two killer-reservation probl ens.

1. The first killer reservation problem (KR-1) arises when there
is already a reservation Q in place. |f another receiver
now nakes a |larger reservation QL > Q0, the result of nerging
Q@ and QL may be rejected by adm ssion control in some
upstream node. This must not deny service to Q.

Braden, Ed., et. al. St andards Track [Page 25]

RFC 2205 RSVP Sept ember 1997

The solution to this problemis sinple: when adm ssion
control fails for a reservation request, any existing
reservation is left in place.

2. The second killer reservation problem (KR-I1) is the
converse: the receiver nmaking a reservation QL is persistent
even though Adm ssion Control is failing for QL in sone node.
This nust not prevent a different receiver from now
establishing a smaller reservation Q that would succeed if
not nerged with QL.

To solve this problem a ResvErr nessage establishes
additional state, called "bl ockade state", in each node

t hrough which it passes. Blockade state in a node nodifies
the merging procedure to omit the offending flowspec (QL in
the exanple) fromthe nerge, allowing a smaller request to be
forwarded and established. The QL reservation state is said
to be "blockaded". Detailed rules are presented in Section
3.5.

A reservation request that fails Admi ssion Control creates

bl ockade state but is left in place in nodes downstream of the
failure point. It has been suggested that these reservations
downstream fromthe failure represent "wasted" reservations and
should be tined out if not actively deleted. However, the
downstreamreservations are left in place, for the follow ng
reasons:

o] There are two possible reasons for a receiver persisting in a
failed reservation: (1) it is polling for resource
availability along the entire path, or (2) it wants to obtain
the desired QS along as much of the path as possible.
Certainly in the second case, and perhaps in the first case,
the receiver will want to hold onto the reservations it has
made downstream fromthe failure.

o] I f these downstream reservations were not retained, the
responsi veness of RSVP to certain transient failures would be
i mpaired. For exanple, suppose a route "flaps" to an
alternate route that is congested, so an existing reservation
suddenly fails, then quickly recovers to the original route.
The bl ockade state in each downstreamrouter nust not renove
the state or prevent its immediate refresh

o] If we did not refresh the downstreamreservations, they m ght
time out, to be restored every Tb seconds (where Tb is the
bl ockade state timeout interval). Such intermttent behavior
m ght be very distressing for users.

Braden, Ed., et. al. St andards Track [Page 26]

RFC 2205 RSVP Sept ember 1997

2.6 Confirmation

To request a confirmation for its reservation request, a receiver
R includes in the Resv nessage a confirmation-request object
containing Rj's | P address. At each nerge point, only the | argest
fl owspec and any acconpanying confirnation-request object is
forwarded upstream |If the reservation request fromR is equal
to or smaller than the reservation in place on a node, its Resv is
not forwarded further, and if the Resv included a confirnmation-
request object, a ResvConf nessage is sent back to Rj. |If the
confirmation request is forwarded, it is forwarded i mediately,
and no nore than once for each request.

This confirmation mechani sm has the foll owi ng consequences:

0 A new reservation request with a fl owspec |larger than any in
pl ace for a session will normally result in either a ResvErr
or a ResvConf nessage back to the receiver fromeach sender
In this case, the ResvConf nessage will be an end-to-end
confirmation.

0 The recei pt of a ResvConf gives no guarantees. Assune the
first two reservation requests fromreceivers Rl and R2
arrive at the node where they are nerged. R2, whose
reservati on was the second to arrive at that node, may
receive a ResvConf fromthat node while Rl's request has not
yet propagated all the way to a matching sender and may stil
fail. Thus, R2 may receive a ResvConf although there is no
end-to-end reservation in place; furthernore, R2 may receive
a ResvConf followed by a ResvErr.

2.7 Policy Control

RSVP- nedi at ed QoS requests allow particul ar user(s) to obtain
preferential access to network resources. To prevent abuse, sone
form of back pressure will generally be required on users who neke
reservations. For exanple, such back pressure may be acconpli shed
by adninistrative access policies, or it nay depend upon sone form

of user feedback such as real or virtual billing for the "cost" of
a reservation. In any case, reliable user identification and

sel ective adnission will generally be needed when a reservation is
request ed.

The term"policy control" is used for the mechanisns required to

support access policies and back pressure for RSVP reservations.
When a new reservation is requested, each node nmust answer two
qguestions: "Are enough resources available to neet this request?"

Braden, Ed., et. al. St andards Track [Page 27]

RFC 2205 RSVP Sept ember 1997

and "Is this user allowed to nake this reservation?" These two
deci sions are terned the "adni ssion control" decision and the
"policy control™" decision, respectively, and both nust be
favorable in order for RSVP to nake a reservation. Different
adm nistrative domains in the Internet may have different
reservation policies.

The input to policy control is referred to as "policy data", which
RSVP carries in POLI CY_DATA objects. Policy data may incl ude
credentials identifying users or user classes, account nunbers,
limts, quotas, etc. Like flowspecs, policy data is opaque to
RSVP, which sinply passes it to policy control when required.
Simlarly, merging of policy data nust be done by the policy
control nmechanismrather than by RSVP itself. Note that the nerge
points for policy data are likely to be at the boundaries of

adm nistrative domains. 1t may therefore be necessary to carry
accunul ated and unnerged policy data upstreamthrough nmultiple
nodes before reaching one of these nmerge points.

Carrying user-provided policy data in Resv nessages presents a
potential scaling problem Wen a nulticast group has a | arge
nunber of receivers, it will be inpossible or undesirable to carry
all receivers’ policy data upstream The policy data will have to
be adnm nistratively nerged at places near the receivers, to avoid
excessive policy data. Further discussion of these issues and an
exanpl e of a policy control scheme will be found in [Pol Arch96].
Specifications for the format of policy data objects and RSVP
processing rules for them are under devel opnent.

2.8 Security
RSVP rai ses the followi ng security issues.
0 Message integrity and node authentication

Corrupted or spoofed reservation requests could |ead to theft
of service by unauthorized parties or to denial of service
caused by | ocking up network resources. RSVP protects

agai nst such attacks with a hop-by-hop authentication
mechani sm usi ng an encrypted hash function. The nechanismis
supported by I NTEGRITY objects that may appear in any RSVP
message. These objects use a keyed cryptographi c di gest
techni que, which assunes that RSVP nei ghbors share a secret.
Al t hough this nmechanismis part of the base RSVP
specification, it is described in a conpanion docunent

[Baker 96] .

Braden, Ed., et. al. St andards Track [Page 28]

RFC 2205 RSVP Sept ember 1997

W despread use of the RSVP integrity nechanismwll require
the availability of the |ong-sought key nanagenment and
distribution infrastructure for routers. Until that

i nfrastructure becones avail able, manual key managenent will
be required to secure RSVP nessage integrity.

o] User aut hentication

Policy control will depend upon positive authentication of
the user responsible for each reservation request. Policy
data may therefore include cryptographically protected user
certificates. Specification of such certificates is a future
i ssue.

Even wi thout gl obally-verifiable user certificates, it may be
possi ble to provide practical user authentication in many
cases by establishing a chain of trust, using the hop-by-hop
| NTEGRI TY nechani sm descri bed earlier.

(0] Secure data streans

The first two security issues concerned RSVP' s operation. A
third security issue concerns resource reservations for
secure data streans. In particular, the use of IPSEC (IP
Security) in the data stream poses a problemfor RSVP:. if
the transport and hi gher |evel headers are encrypted, RSVP' s
general i zed port nunbers cannot be used to define a session
or a sender.

To solve this problem an RSVP extension has been defined in
whi ch the security association identifier (IPSEC SPI) plays a
rol e roughly equivalent to the generalized ports [RFC 2207].

2.9 Non-RSVP d ouds

It is inmpossible to deploy RSVP (or any new protocol) at the sane
nmonent throughout the entire Internet. Furthernore, RSVP nay
never be depl oyed everywhere. RSVP nust therefore provide correct
protocol operation even when two RSVP-capable routers are joined
by an arbitrary "cloud" of non-RSVP routers. O course, an

i nternmedi ate cloud that does not support RSVP is unable to perform
resource reservation. However, if such a cloud has sufficient
capacity, it may still provide useful realtinme service

RSVP i s designed to operate correctly through such a non- RSVP
cloud. Both RSVP and non-RSVP routers forward Path nessages
towards the destination address using their local uni-/nulticast
routing table. Therefore, the routing of Path nmessages will be

Braden, Ed., et. al. St andards Track [Page 29]

RFC 2205 RSVP Sept ember 1997

unaffected by non-RSVP routers in the path. Wen a Path nessage
traverses a non-RSVP cloud, it carries to the next RSVP-capabl e
node the | P address of the |ast RSVP-capabl e router before
entering the cloud. An Resv nessage is then forwarded directly to
t he next RSVP-capable router on the path(s) back towards the

sour ce.

Even t hough RSVP operates correctly through a non-RSVP cloud, the
non- RSVP- capabl e nodes will in general perturb the QoS provided to
a receiver. Therefore, RSVP passes a ‘NonRSVP flag bit to the

I ocal traffic control mechani smwhen there are non- RSVP-capabl e
hops in the path to a given sender. Traffic control conbines this
flag bit with its own sources of information, and forwards the
conposed information on integrated service capability along the
path to receivers using Adspecs [RFC 2210].

Some t opol ogi es of RSVP routers and non- RSVP routers can cause
Resv nessages to arrive at the wong RSVP-capabl e node, or to
arrive at the wong interface of the correct node. An RSVP
process must be prepared to handle either situation. |If the
destination address does not match any local interface and the
message is not a Path or PathTear, the nessage nust be forwarded
wi t hout further processing by this node. To handle the wong
interface case, a "Logical Interface Handle" (LIH) is used. The
previous hop information included in a Path nessage includes not
only the I P address of the previous node but also an LIH defining
the | ogical outgoing interface; both values are stored in the path
state. A Resv nessage arriving at the addressed node carries both
the I P address and the LIH of the correct outgoing interface, i.e,
the interface that should receive the requested reservation
regardl ess of which interface it arrives on.

The LIH may al so be useful when RSVP reservations are nade over a
complex link layer, to map between I P layer and |ink |ayer flow
entities.

2.10 Host Model

Before a session can be created, the session identification

(Dest Address, Protocolld [, DstPort]) must be assigned and
communi cated to all the senders and receivers by sone out-of - band
mechani sm When an RSVP session is being set up, the follow ng
events happen at the end systens.

Braden, Ed., et. al. St andards Track [Page 30]

RFC 2205 RSVP Sept ember 1997

H1 A receiver joins the nulticast group specified by
Dest Addr ess, using | GW

H2 A potential sender starts sending RSVP Path nmessages to the
Dest Addr ess.

H3 A receiver application receives a Path nessage.

H4 A receiver starts sending appropri ate Resv nessages,
specifying the desired fl ow descriptors.

H5 A sender application receives a Resv nessage.
H6 A sender starts sending data packets.
There are several synchronization considerations.
o} H1 and H2 may happen in either order

o] Suppose that a new sender starts sending data (H6) but there
are no nulticast routes because no receivers have joined the
group (H1). Then the data will be dropped at sone router
node (whi ch node depends upon the routing protocol) unti
recei vers(s) appear

o] Suppose that a new sender starts sending Path nessages (H2)
and data (H6) sinmultaneously, and there are receivers but no
Resv nessages have reached the sender yet (e.g., because its
Pat h nessages have not yet propagated to the receiver(s)).
Then the initial data may arrive at receivers w thout the
desired Q©S. The sender could nitigate this probl em by
awai ting arrival of the first Resv message (H5); however,
receivers that are farther away may not have reservations in
pl ace yet.

o} If a receiver starts sending Resv nessages (H4) before
recei ving any Path nessages (H3), RSVP will return error
nmessages to the receiver.

The receiver may sinply choose to ignore such error nessages,
or it may avoid themby waiting for Path nmessages before
sendi ng Resv nessages.

A specific application programinterface (API) for RSVP is not
defined in this protocol spec, as it may be host system dependent.
However, Section 3.11.1 discusses the general requirenents and
outlines a generic interface.

Braden, Ed., et. al. St andards Track [Page 31]

RFC 2205 RSVP Sept ember 1997

3. RSVP Functional Specification
3.1 RSVP Message Formats

An RSVP nessage consists of a conmon header, followed by a body
consisting of a variable nunber of variable-length, typed
"objects". The follow ng subsections define the formats of the
common header, the standard object header, and each of the RSVP
nmessage types

For each RSVP nmessage type, there is a set of rules for the
perm ssi bl e choice of object types. These rules are specified
usi ng Backus- Naur Form (BNF) augnented with square brackets
surroundi ng optional sub-sequences. The BNF inplies an order for
the objects in a nmessage. However, in many (but not all) cases,
obj ect order makes no logical difference. An inplenentation
shoul d create nessages with the objects in the order shown here,
but accept the objects in any perm ssible order

3.1.1 Commpn Header

0 1 2 3
B S B S B S B S +
| Vers | Flags| Msg Type | RSVP Checksum |
S S S S +
| Send TTL | (Reserved) | RSVP Length |
S o S S +

The fields in the conmmon header are as foll ows:
Vers: 4 bits

Protocol version nunmber. This is version 1.
Flags: 4 bits

0x01- 0x08: Reserved

No flag bits are defined yet.

Msg Type: 8 bits

1 = Path

2

Resv

Braden, Ed., et. al. St andards Track [Page 32]

RFC 2205

RSVP

RSVP Sept enber 1997

3 = PathErr
4 = ResvErr
5 = Pat hTear
6 = ResvTear
7 = ResvConf

Checksum 16 bits

The one's conpl enent of the one’'s conpl enent sum of the
nessage, with the checksumfield replaced by zero for the
pur pose of conputing the checksum An all-zero val ue
means that no checksumwas transmitted

Send_TTL: 8 bits

RSVP

The I P TTL val ue with which the nessage was sent. See
Section 3.8.

Length: 16 bits
The total length of this RSVP nessage in bytes, including

t he conmon header and the variabl e-1ength objects that
fol |l ow.

3.1.2 (bject Formats

Br aden,

Every object consists of one or nore 32-bit words with a one-

Ed.,

word header, with the follow ng fornmat:

0 1 2 3
---------- T
Length (bytes) | dass-Num | C Type
---------- T

|
(Qbj ect contents) /1
|
---------- T

et. al. St andards Track [Page 33]

RFC 2205 RSVP Sept ember 1997

An obj ect header has the follow ng fields:
Length

A 16-bit field containing the total object length in
bytes. Must always be a nultiple of 4, and at |east 4.

Cl ass- Num

Identifies the object class; values of this field are
defined in Appendix A Each object class has a nane,
which is always capitalized in this docunent. An RSVP
i mpl enment ati on nust recogni ze the foll ow ng cl asses:

NULL

A NULL object has a O ass-Num of zero, and its G Type
is ignored. Its length nust be at least 4, but can
be any nultiple of 4. A NULL object may appear
anywhere in a sequence of objects, and its contents
wi Il be ignored by the receiver.

SESSI ON

Contains the | P destination address (DestAddress),
the I P protocol id, and sone form of generalized
destination port, to define a specific session for
the other objects that follow Required in every
RSVP nessage

RSVP_HOP

Carries the | P address of the RSVP-capabl e node that
sent this nmessage and a | ogi cal outgoing interface
handl e (LIH, see Section 3.3). This docunent refers
to a RSVP_HOP object as a PHOP ("previous hop")
obj ect for downstream nessages or as a NHOP ("
hop") object for upstream nessages.

next

TI ME_VALUES
Contains the value for the refresh period R used by

the creator of the nessage; see Section 3.7.
Required in every Path and Resv nessage.

Braden, Ed., et. al. St andards Track [Page 34]

RFC 2205

Br aden,

RSVP Sept enber 1997

STYLE

Defines the reservation style plus style-specific
information that is not in FLOASPEC or FILTER SPEC
objects. Required in every Resv nessage.

FLOWSPEC
Defines a desired @S, in a Resv nessage.

FI LTER_SPEC
Defines a subset of session data packets that should
receive the desired QS (specified by a FLOAMSPEC
object), in a Resv nessage.

SENDER_TEMPLATE
Contai ns a sender | P address and perhaps sone
addi tional demultiplexing information to identify a
sender. Required in a Path nessage.

SENDER_TSPEC

Defines the traffic characteristics of a sender’s
data flow. Required in a Path nessage.

ADSPEC
Carries OPWA data, in a Path nessage.
ERROR _SPEC

Specifies an error in a PathErr, ResvErr, or a
confirmation in a ResvConf nessage.

POLI CY_DATA
Carries information that will allow a local policy
nodul e to deci de whether an associated reservation is
adm nistratively permtted. My appear in Path,
Resv, PathErr, or ResvErr nessage.

The use of PCLI CY_DATA objects is not fully specified
at this tine; a future docunent will fill this gap.

et. al. St andards Track [Page 35]

RFC 2205 RSVP Sept ember 1997

| NTEGRI TY

Carries cryptographic data to authenticate the
originating node and to verify the contents of this
RSVP nessage. The use of the INTEGRITY object is
descri bed i n [Baker96].

SCOPE

Carries an explicit list of sender hosts towards
which the information in the nmessage is to be
forwarded. May appear in a Resv, ResvErr, or
ResvTear nessage. See Section 3.4.

RESV_CONFI RM

Carries the I P address of a receiver that requested a
confirmation. May appear in a Resv or ResvConf
nessage.

C Type

hj ect type, unique within dass-Num Val ues are defined
i n Appendi x A

The maxi mum obj ect content length is 65528 bytes. The O ass-
Num and C- Type fields nmay be used together as a 16-bit nunber
to define a unique type for each object.

The high-order two bits of the dass-Numis used to deternine
what action a node should take if it does not recognize the
O ass- Num of an object; see Section 3.10.

3.1.3 Path Messages

Each sender host periodically sends a Path nessage for each
data flow it originates. It contains a SENDER TEMPLATE obj ect
defining the format of the data packets and a SENDER TSPEC
obj ect specifying the traffic characteristics of the flow
Optionally, it may contain may be an ADSPEC object carrying
advertising (OPWA) data for the flow

A Path nessage travels froma sender to receiver(s) along the
same path(s) used by the data packets. The |IP source address
of a Path nmessage nust be an address of the sender it
describes, while the destination address nust be the

Dest Address for the session. These addresses assure that the
message will be correctly routed through a non-RSVP cl oud.

Braden, Ed., et. al. St andards Track [Page 36]

RFC 2205

Br aden,

RSVP Sept enber 1997

The format of a Path nessage is as follows:
<Pat h Message> ::= <Conmon Header> [<INTEGRITY>]
<SESSI ON> <RSVP_HOP>
<TI ME_VALUES>
[<POLICY_DATA> ... |
[<sender descriptor>]
<sender descriptor> ::= <SENDER TEMPLATE> <SENDER TSPEC>

[<ADSPEC>]

If the INTEGRITY object is present, it nust inmmediately follow
the conmon header. There are no other requirenments on

transm ssion order, although the above order is recomended.
Any nunber of POLI CY_DATA objects may appear

The PHOP (i.e., RSVP_HOP) object of each Path nessage contains
the previous hop address, i.e., the I P address of the interface
t hrough which the Path nessage was nost recently sent. It also
carries a logical interface handle (LIH).

Each RSVP-capabl e node al ong the path(s) captures a Path
message and processes it to create path state for the sender
defined by the SENDER TEMPLATE and SESSI ON obj ects. Any

POLI CY_DATA, SENDER TSPEC, and ADSPEC objects are also saved in
the path state. If an error is encountered while processing a
Pat h message, a PathErr nessage is sent to the originating
sender of the Path nessage. Path nessages nust satisfy the
rules on SrcPort and DstPort in Section 3.2.

Periodically, the RSVP process at a node scans the path state
to create new Path nmessages to forward towards the receiver(s).
Each nessage contains a sender descriptor defining one sender,
and carries the original sender’s |IP address as its |IP source
address. Path nmessages eventually reach the applications on
all receivers; however, they are not |ooped back to a receiver
running in the sanme application process as the sender

The RSVP process forwards Path nessages and replicates them as
required by nulticast sessions, using routing information it
obtains fromthe appropriate uni-/nulticast routing process.
The route depends upon the session Dest Address, and for sone

Ed., et. al. St andards Track [Page 37]

RFC 2205

RSVP Sept enber 1997

routing protocols also upon the source (sender’s |IP) address.
The routing information generally includes the list of zero or
nore outgoing interfaces to which the Path nessage is to be
forwarded. Because each outgoing interface has a different IP
address, the Path messages sent out different interfaces
contain different PHOP addresses. In addition, ADSPEC objects
carried in Path nessages will also generally differ for

di fferent outgoing interfaces.

Path state for a given session and sender nmay not necessarily
have a uni que PHOP or unique incomng interface. There are two
cases, corresponding to nulticast and uni cast sessions.

0] Mul ti cast Sessions

Multicast routing allows a stable distribution tree in
whi ch Pat h nmessages fromthe sane sender arrive fromnore
than one PHOP, and RSVP nust be prepared to maintain al
such path state. The RSVP rules for handling this
situation are contained in Section 3.9. RSVP nust not
forward (according to the rules of Section 3.9) Path
nmessages that arrive on an inconing interface different
fromthat provided by routing.

o] Uni cast Sessi ons

For a short period follow ng a unicast route change
upstream a node may receive Path nmessages frommultiple
PHOPs for a given (session, sender) pair. The node cannot
reliably determine which is the right PHOP, although the
node will receive data fromonly one of the PHOPs at a
time. One inplementation choice for RSVP is to ignore
PHOP i n matchi ng uni cast past state, and allow the PHOP to
flip anong the candidates. Another inplenentation choice
is to maintain path state for each PHOP and to send Resv
messages upstreamtowards all such PHOPs. In either case
the situation is a transient; the unused path state will
time out or be torn down (because upstream path state

ti med out).

3.1.4 Resv Messages

Br aden,

Resv nessages carry reservation requests hop-by-hop from
receivers to senders, along the reverse paths of data flows for
the session. The IP destination address of a Resv nessage is

t he uni cast address of a previous-hop node, obtained fromthe
path state. The IP source address is an address of the node
that sent the nessage

Ed., et. al. St andards Track [Page 38]

RFC 2205

Br aden,

RSVP Sept enber 1997

The Resv nessage format is as foll ows:

<Resv Message> ::= <Conmon Header> [<INTEGRITY>]
<SESSI ON> <RSVP_HOP>
<TI ME_VALUES>
[<RESV_CONFIRW> | [<SCOPE>]
[<POLI CY_DATA> ...]
<STYLE> <fl ow descriptor |ist>

<fl ow descriptor list> ::= <enpty>

<fl ow descriptor |ist> <flow descriptor>

If the INTEGRITY object is present, it nust imrediately follow
the common header. The STYLE object followed by the flow
descriptor list nmust occur at the end of the nmessage, and
objects within the flow descriptor list nust follow the BNF
given below. There are no other requirenents on transm ssion
order, although the above order is recomended.

The NHOP (i.e., the RSVP_HOP) object contains the |IP address of
the interface through which the Resv nessage was sent and the
LIH for the logical interface on which the reservation is
required.

The appearance of a RESV_CONFI RM obj ect signals a request for a
reservation confirmation and carries the | P address of the
receiver to which the ResvConf should be sent. Any nunber of
POLI CY_DATA obj ects may appear

The BNF above defines a flow descriptor list as sinply a |ist
of flow descriptors. The follow ng styl e-dependent rul es
specify in nore detail the conposition of a valid fl ow
descriptor list for each of the reservation styles.
o} WF Styl e:

<fl ow descriptor list> ::= <W flow descriptor>

<WF fl ow descriptor> ::= <FLONSPEC>

Ed., et. al. St andards Track [Page 39]

RFC 2205

Br aden,

RSVP Sept enber 1997

FF style:
<fl ow descriptor list> ::=
<FLOWSPEC> <FI LTER_SPEC> |
<fl ow descriptor |ist> <FF flow descriptor>
<FF flow descriptor> ::=

[<FLOAMSPEC> | <FI LTER _SPEC>

Each el enentary FF style request is defined by a single
(FLOWSPEC, FILTER SPEC) pair, and nultiple such requests
may be packed into the flow descriptor list of a single
Resv nessage. A FLOWNSPEC object can be omitted if it is
identical to the nost recent such object that appeared in
the list; the first FF fl ow descriptor nust contain a
FLOWSPEC.

SE styl e:
<fl ow descriptor list> ::= <SE fl ow descri ptor>
<SE fl ow descriptor> ::=
<FLONSPEC> <filter spec list>
<filter spec list> ::= <FILTER SPEC

| <filter spec list> <FILTER SPEC>

The reservation scope, i.e., the set of senders towards which a
particular reservation is to be forwarded (after nerging), is
determi ned as foll ows:

(0]

Ed.,

Explicit sender selection

The reservation is forwarded to all senders whose

SENDER _TEMPLATE obj ects recorded in the path state match a
FI LTER _SPEC object in the reservation. This match nust
follow the rules of Section 3.2.

et. al. St andards Track [Page 40]

RFC 2205 RSVP Sept ember 1997

o] W | dcard sender sel ection

A request with wildcard sender selection will match all
senders that route to the given outgoing interface.

Whenever a Resv nessage with wildcard sender selection is
forwarded to nore than one previous hop, a SCOPE obj ect
must be included in the nessage (see Section 3.4 bel ow);
in this case, the scope for forwarding the reservation is
constrained to just the sender | P addresses explicitly
listed in the SCOPE object.

A Resv nessage that is forwarded by a node is generally
the result of nerging a set of incom ng Resv nessages
(that are not bl ockaded; see Section 3.5). |If one of

t hese nerged nessages contai ns a RESV_CONFI RM obj ect and
has a FLOASPEC | arger than the FLOABPECs of the other
nmerged reservation requests, then this RESV_CONFI RM obj ect
is forwarded in the outgoing Resv nmessage. A RESV_CONFI RM
object in one of the other nerged requests (whose

fl owspecs are equal to, snaller than, or inconparable to,
the nmerged fl owspec, and which is not bl ockaded) wll
trigger the generation of an ResvConf message contai ning
the RESV_CONFIRM A RESV_CONFI RM object in a request that
is blockaded will be neither forwarded nor returned; it
will be dropped in the current node.

3.1.5 Path Teardown Messages

Recei pt of a PathTear (path teardown) nessage del etes matching
path state. Matching state nust have match the SESSI ON
SENDER_TEMPLATE, and PHOP objects. |In addition, a PathTear
nmessage for a multicast session can only match path state for
the incomng interface on which the PathTear arrived. |If there
is no matching path state, a PathTear nessage should be

di scarded and not forwarded.

Pat hTear nessages are initiated explicitly by senders or by
path state tinmeout in any node, and they travel downstream
towards all receivers. A unicast PathTear nust not be
forwarded if there is path state for the same (session, sender)
pair but a different PHOP. Forwarding of nulticast PathTear
messages is governed by the rules of Section 3.9.

Braden, Ed., et. al. St andards Track [Page 41]

RFC 2205

3.

Br aden,

RSVP Sept enber 1997

A Pat hTear nessage nust be routed exactly |ike the
correspondi ng Path nessage. Therefore, its |IP destination
address nust be the session DestAddress, and its |P source
address nmust be the sender address fromthe path state being
torn down.

<Pat hTear Message> ::= <Common Header> [<INTEGRITY>]
<SESSI ON> <RSVP_HOP>
[<sender descriptor>]

<sender descriptor> ::= (see earlier definition)

A Pat hTear nessage may include a SENDER TSPEC or ADSPEC obj ect
in its sender descriptor, but these nust be ignored. The order
requirenents are as given earlier for a Path nessage, but the
above order is reconmended.

Del etion of path state as the result of a PathTear nessage or a
ti meout nust also adjust related reservation state as required
to maintain consistency in the local node. The adjustnment
depends upon the reservation style. For exanple, suppose a

Pat hTear deletes the path state for a sender S. If the style
specifies explicit sender selection (FF or SE), any reservation
with a filter spec matching S should be deleted; if the style
has wildcard sender selection (W), the reservation should be
deleted if Sis the last sender to the session. These
reservati on changes should not trigger an i medi ate Resv
refresh message, since the PathTear nessage has al ready nade
the required changes upstream They should not trigger a
ResvErr nessage, since the result could be to generate a shower
of such nessages.

1.6 Resv Teardown Messages

Recei pt of a ResvTear (reservation teardown) nessage del etes
mat chi ng reservation state. Matching reservation state nust
mat ch the SESSI ON, STYLE, and FILTER SPEC objects as well as
the LIHin the RSVP_HOP object. |If there is no matching
reservation state, a ResvTear nessage shoul d be discarded. A
ResvTear nessage nay tear down any subset of the filter specs
in FF-style or SE-style reservation state.

ResvTear nmessages are initiated explicitly by receivers or by

any node in which reservation state has tinmed out, and they
travel upstreamtowards all nmatching senders.

Ed., et. al. St andards Track [Page 42]

RFC 2205 RSVP Sept ember 1997

A ResvTear nessage nust be routed |like the correspondi ng Resv
message, and its | P destination address will be the unicast
address of a previous hop.

<ResvTear Message> ::= <Common Header > [<I NTEGRI TY>]
<SESSI ON> <RSVP_HOP>
[<SCOPE>] <STYLE>
<fl ow descriptor |ist>

<fl ow descriptor list> ::= (see earlier definition)

FLOWSPEC objects in the flow descriptor Iist of a ResvTear
message will be ignored and may be omitted. The order
requirenents for | NTEGRI TY object, sender descriptor, STYLE
object, and flow descriptor list are as given earlier for a
Resv nessage, but the above order is recomended. A ResvTear
nmessage may i nclude a SCOPE object, but it nust be ignored.

A ResvTear nessage will cease to be forwarded at the node where
mer gi ng woul d have suppressed forwardi ng of the correspondi ng
Resv nessage. Depending upon the resulting state change in a
node, receipt of a ResvTear nessage nay cause a ResvTear
nmessage to be forwarded, a nodified Resv nessage to be
forwarded, or no nessage to be forwarded. These three cases
can be illustrated in the case of the FF-style reservations
shown in Figure 6.

o] If receiver R2 sends a ResvTear nessage for its
reservation S3{B}, the corresponding reservation is
renoved frominterface (d) and a ResvTear for S3{B} is
forwarded out (b).

o] If receiver RL sends a ResvTear for its reservation
S1{4B}, the corresponding reservation is renoved from
interface (c¢) and a nodified Resv nessage FF(S1{3B}) is
i medi ately forwarded out (a).

o} If receiver R3 sends a ResvTear nessage for S1{B}, there

is no change in the effective reservation S1{3B} on (d)
and no nessage is forwarded.

Braden, Ed., et. al. St andards Track [Page 43]

RFC 2205 RSVP Sept ember 1997

3.1.7 Path Error Messages

Pat hErr (path error) nessages report errors in processing Path
messages. They are travel upstreamtowards senders and are
rout ed hop-by-hop using the path state. At each hop, the IP
destination address is the unicast address of a previous hop
Pat hErr nessages do not nodify the state of any node through
whi ch they pass; they are only reported to the sender
application.

<Pat hErr nessage> ::= <Conmon Header> [<INTEGRITY>]
<SESSI ON> <ERROR_SPEC>
[<POLI CY_DATA> ...]
[<sender descriptor>]
<sender descriptor> ::= (see earlier definition)

The ERROR _SPEC object specifies the error and includes the IP
address of the node that detected the error (Error Node
Address). One or nore POLI CY_DATA objects may be incl uded
message to provide relevant information. The sender descriptor
is copied fromthe nessage in error. The object order

requi renents are as given earlier for a Path nmessage, but the
above order is reconmended.

3.1.8 Resv Error Messages

ResvErr (reservation error) nessages report errors in
processi ng Resv nessages, or they may report the spontaneous
di sruption of a reservation, e.g., by admnistrative
preenpti on.

ResvErr nessages travel downstreamtowards the appropriate
recei vers, routed hop-by-hop using the reservation state. At
each hop, the IP destination address is the unicast address of
a next-hop node.

Braden, Ed., et. al. St andards Track [Page 44]

RFC 2205 RSVP Sept ember 1997

<ResvErr Message> ::= <Conmon Header> [<INTEGRITY>]
<SESSI ON> <RSVP_HOP>
<ERROR SPEC> [<SCOPE> |
[<POLI CY_DATA> ...]

<STYLE> [<error flow descriptor>]

The ERROR _SPEC obj ect specifies the error and includes the IP
address of the node that detected the error (Error Node
Address). One or nore POLI CY_DATA objects nmay be included in
an error nmessage to provide relevant information (e.g.,, when a
policy control error is being reported). The RSVP_HOP object
contains the previous hop address, and the STYLE object is
copied fromthe Resv nessage in error. The use of the SCOPE
object in a ResvErr nessage is defined belowin Section 3.4.
The object order requirenments are as given for Resv nessages,
but the above order is recomended.

The follow ng styl e-dependent rules define the conposition of a
valid error flow descriptor; the object order requirenents are
as given earlier for flow descriptor

o] W Style:

<error flow descriptor> ::= <WF flow descri ptor>

o] FF style:
<error flow descriptor> ::= <FF flow descri ptor>
Each fl ow descriptor in a FF-style Resv nessage nust be
processed i ndependently, and a separate ResvErr nessage
nmust be generated for each one that is in error
o] SE styl e:
<error flow descriptor> ::= <SE flow descriptor>
An SE-style ResvErr nmessage may |ist the subset of the

filter specs in the correspondi ng Resv nessage to which
the error applies.

Braden, Ed., et. al. St andards Track [Page 45]

RFC 2205

RSVP Sept enber 1997

Note that a ResvErr nessage contains only one flow descriptor
Therefore, a Resv nessage that contains N> 1 flow descriptors
(FF style) may create up to N separate ResvErr nessages

Ceneral |y speaking, a ResvErr nessage should be forwarded
towards all receivers that nay have caused the error being
reported. More specifically:

(o]

The node that detects an error in a reservation request
sends a ResvErr nmessage to the next hop node from which
the erroneous reservation cane.

This ResvErr nessage nust contain the information required
to define the error and to route the error nmessage in
later hops. It therefore includes an ERROR SPEC object, a
copy of the STYLE object, and the appropriate error flow
descriptor. If the error is an admi ssion control failure
while attenpting to increase an existing reservation, then
the existing reservation nust be left in place and the
InPlace flag bit nust be on in the ERROR_SPEC of the
ResvErr nessage.

Succeedi ng nodes forward the ResvErr nessage to next hops
that have local reservation state. For reservations with
wi | dcard scope, there is an additional linitation on
forwardi ng ResvErr nessages, to avoid | oops; see Section
3.4. There is also a rule restricting the forwarding of a
Resv nessage after an Admi ssion Control failure; see
Section 3.5.

A ResvErr nessage that is forwarded should carry the
FILTER _SPEC(s) from the correspondi ng reservation state.

When a ResvErr nessage reaches a receiver, the STYLE
object, flow descriptor list, and ERROR _SPEC obj ect
(including its flags) should be delivered to the receiver
application.

3.1.9 Confirmati on Messages

Br aden,

ResvConf nessages are sent to (probabilistically) acknow edge
reservation requests. A ResvConf nessage is sent as the result
of the appearance of a RESV_CONFI RM object in a Resv nessage.

Ed.,

et. al. St andards Track [Page 46]

RFC 2205 RSVP Sept ember 1997

A ResvConf nessage is sent to the unicast address of a receiver
host; the address is obtained fromthe RESV_CONFI RM obj ect.
However, a ResvConf nessage is forwarded to the receiver hop-
by-hop, to acconmodate the hop-by-hop integrity check

mechani sm
<ResvConf message> ::= <Common Header> [<INTEGRITY>]
<SESSI ON> <ERROR_SPEC>
<RESV_CONFI RV~
<STYLE> <fl ow descriptor |ist>
<fl ow descriptor list> ::= (see earlier definition)

The object order requirenents are the sane as those given
earlier for a Resv nessage, but the above order is recomended.

The RESV_CONFI RM object is a copy of that object in the Resv
message that triggered the confirmation. The ERROR _SPEC is
used only to carry the I P address of the originating node, in
the Error Node Address; the Error Code and Value are zero to
indicate a confirmation. The flow descriptor |ist specifies
the particular reservations that are being confirnmed; it may be
a subset of flow descriptor list of the Resv that requested the
confirmation.

3.2 Port Usage

An RSVP session is nornmally defined by the triple: (DestAddress,
Protocol Id, DstPort). Here DstPort is a UDP/TCP destination port
field (i.e., a 16-bit quantity carried at octet offset +2 in the
transport header). DstPort may be omtted (set to zero) if the
Protocol 1d specifies a protocol that does not have a destination
port field in the format used by UDP and TCP

RSVP al |l ows any value for Protocolld. However, end-system

i npl enent ati ons of RSVP may know about certain values for this
field, and in particular the values for UDP and TCP (17 and 6,
respectively). An end systemmay give an error to an application
that either:

o] specifies a non-zero DstPort for a protocol that does not
have UDP/ TCP-1ike ports, or

Braden, Ed., et. al. St andards Track [Page 47]

RFC 2205 RSVP Sept ember 1997

o} specifies a zero DstPort for a protocol that does have
UDP/ TCP-1i ke ports.

Filter specs and sender tenplates specify the pair: (SrcAddress,
SrcPort), where SrcPort is a UDP/ TCP source port field (i.e., a
16-bit quantity carried at octet offset +0 in the transport

header) . SrcPort nmay be omitted (set to zero) in certain cases

The following rules hold for the use of zero DstPort and/or
SrcPort fields in RSVP

1. Destination ports nust be consistent.

Path state and reservation state for the sanme Dest Address and
Protocol I d nust each have DstPort values that are all zero or
all non-zero. Violation of this condition in a node is a
"Conflicting Dest Ports" error

2. Destination ports rule.

If DstPort in a session definition is zero, all SrcPort
fields used for that session nust also be zero. The
assunption here is that the protocol does not have UDP/ TCP-
like ports. Violation of this condition in a node is a "Bad
Src Ports" error

3. Source Ports nust be consistent.

A sender host nust not send path state both with and w t hout
a zero SrcPort. Violation of this conditionis a
"Conflicting Sender Port" error

Note that RSVP has no "wi ldcard" ports, i.e., a zero port cannot
match a non-zero port.

3.3 Sendi ng RSVP Messages

RSVP nessages are sent hop-by-hop between RSVP-capabl e routers as
"raw' | P datagrams with protocol nunber 46. Raw |IP datagrans are
al so intended to be used between an end system and the first/| ast
hop router, although it is also possible to encapsul ate RSVP
nmessages as UDP datagrans for end-system conmuni cation, as
described in Appendix C. UDP encapsul ation is needed for systens
t hat cannot do raw network 1/Q

Braden, Ed., et. al. St andards Track [Page 48]

RFC 2205 RSVP Sept ember 1997

Pat h, Pat hTear, and ResvConf nessages nust be sent with the Router
Alert 1P option [RFC 2113] in their |IP headers. This option nay
be used in the fast forwarding path of a high-speed router to
detect datagrans that require special processing.

Upon the arrival of an RSVP nessage Mthat changes the state, a
node nust forward the state nodification i mediately. However,
this must not trigger sending a nessage out the interface through
which Marrived (which could happen if the inplenmentation sinply
triggered an inmedi ate refresh of all state for the session).

This rule is necessary to prevent packet storns on broadcast LANSs.

In this version of the spec, each RSVP nessage nust occupy exactly
one | P datagram If it exceeds the MIU, such a datagramw |l be
fragmented by I P and reassenbl ed at the recipient node. This has
several consequences:

o} A single RSVP nessage nay not exceed the nmaxi num | P dat agram
si ze, approxinmately 64K bytes.

o] A congested non-RSVP cloud coul d | ose individual nessage
fragments, and any lost fragnment will |ose the entire
nessage.

Future versions of the protocol will provide solutions for these
problens if they prove burdensone. The nost likely direction will
be to perform"semantic fragnentation", i.e., break the path or
reservation state being transmtted into nultiple self-contained
messages, each of an acceptabl e size.

RSVP uses its periodic refresh nechanisns to recover from

occasi onal packet | osses. Under network overload, however,
substantial |osses of RSVP nessages could cause a failure of
resource reservations. To control the queuing delay and dropping
of RSVP packets, routers should be configured to offer thema
preferred class of service. |f RSVP packets experience noticeable
| osses when crossing a congested non-RSVP cl oud, a |arger val ue
can be used for the tineout factor K (see section 3.7).

Some mul ticast routing protocols provide for "nulticast tunnels"
whi ch do I P encapsul ati on of nulticast packets for transm ssion
through routers that do not have nulticast capability. A

mul ticast tunnel |ooks like a |logical outgoing interface that is
mapped i nto sonme physical interface. A multicast routing protoco
that supports tunnels will describe a route using a list of

| ogi cal rather than physical interfaces. RSVP can operate across
such multicast tunnels in the follow ng manner

Braden, Ed., et. al. St andards Track [Page 49]

RFC 2205 RSVP Sept ember 1997

1. When a node N forwards a Path nmessage out a | ogical outgoing
interface L, it includes in the nessage sone encodi ng of the
identity of L, called the "logical interface handle" or LIH
The LIH value is carried in the RSVP_HOP object.

2. The next hop node N stores the LIHvalue inits path state.

3. When N sends a Resv nessage to N, it includes the LIH val ue
fromthe path state (again, in the RSVP_HOP object).

4. When the Resv nessage arrives at N, its LIH val ue provides
the informati on necessary to attach the reservation to the
appropriate logical interface. Note that N creates and
interprets the LIH, it is an opaque value to N

Note that this only solves the routing problem posed by tunnels.
The tunnel appears to RSVP as a non-RSVP cloud. To establish RSVP
reservations within the tunnel, additional machinery will be
required, to be defined in the future

3.4 Avoi di ng RSVP Message Loops

Forwar di ng of RSVP nmessages nust avoid |ooping. In steady state,
Pat h and Resv nessages are forwarded on each hop only once per
refresh period. This avoids | ooping packets, but there is stil
the possibility of an "auto-refresh" |oop, clocked by the refresh
period. Such auto-refresh |oops keep state active "forever", even
if the end nodes have ceased refreshing it, until the receivers

| eave the nulticast group and/or the senders stop sending Path
messages. On the other hand, error and teardown nessages are
forwarded i medi ately and are therefore subject to direct |ooping.

Consi der each nessage type

o] Pat h Messages
Pat h nessages are forwarded in exactly the sane way as | P
data packets. Therefore there should be no | oops of Path
nmessages (except perhaps for transient routing |oops, which
we ignore here), even in a topology with cycles.

o} Pat hTear Messages

Pat hTear nessages use the sane routing as Path nessages and
t heref ore cannot | oop

Braden, Ed., et. al. St andards Track [Page 50]

RFC 2205 RSVP Sept ember 1997

o} Pat hErr Messages

Since Path messages do not |oop, they create path state
defining a | oop-free reverse path to each sender. PathErr
messages are always directed to particul ar senders and

t her ef ore cannot | oop.

o] Resv Messages

Resv nessages directed to particular senders (i.e., with
explicit sender selection) cannot |oop. However, Resv
messages with wildcard sender selection (W style) have a
potential for auto-refresh | ooping.

o] ResvTear Messages

Al t hough ResvTear nessages are routed the sanme as Resv
nmessages, during the second pass around a |oop there will be
no state so any ResvTear nessage will be dropped. Hence
there is no | ooping probl em here.

o] ResvErr Messages

ResvErr nessages for WF style reservations nmay |oop for
essentially the sanme reasons that Resv nessages | oop.

o] ResvConf Messages

ResvConf messages are forwarded towards a fixed unicast
recei ver address and cannot | oop.

If the topol ogy has no | oops, then | ooping of Resv and ResvErr
nmessages with wildcard sender selection can be avoided by sinmply
enforcing the rule given earlier: state that is received through a
particul ar interface nmust never be forwarded out the same
interface. However, when the topol ogy does have cycles, further
effort is needed to prevent auto-refresh | oops of wildcard Resv
messages and fast | oops of wildcard ResvErr nessages. The
solution to this problem adopted by this protocol specification is
for such nmessages to carry an explicit sender address list in a
SCOPE obj ect .

Braden, Ed., et. al. St andards Track [Page 51]

RFC 2205 RSVP Sept ember 1997

When a Resv nessage with WF style is to be forwarded to a
particul ar previous hop, a new SCOPE object is conputed fromthe
SCOPE obj ects that were received in matching Resv nessages. |f

t he conputed SCOPE object is enpty, the nessage is not forwarded
to the previous hop; otherw se, the nessage is sent containing the
new SCOPE object. The rules for conputing a new SCOPE