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Abstract

The invention of a large-scale quantum computer would pose a serious challenge for the
cryptographic algorithms that are widely deployed today. The Cryptographic Message Syntax
(CMS) supports key transport and key agreement algorithms that could be broken by the
invention of such a quantum computer. By storing communications that are protected with the
CMS today, someone could decrypt them in the future when a large-scale quantum computer
becomes available. Once quantum-secure key management algorithms are available, the CMS
will be extended to support the new algorithms if the existing syntax does not accommodate
them. This document describes a mechanism to protect today's communication from the future
invention of a large-scale quantum computer by mixing the output of key transport and key
agreement algorithms with a pre-shared key.
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1. Introduction

The invention of a large-scale quantum computer would pose a serious challenge for the
cryptographic algorithms that are widely deployed today [S1994]. It is an open question whether
or not it is feasible to build a large-scale quantum computer and, if so, when that might happen
[NAS2019]. However, if such a quantum computer is invented, many of the cryptographic
algorithms and the security protocols that use them would become vulnerable.

The Cryptographic Message Syntax (CMS) [RFC5652][RFC5083] supports key transport and key
agreement algorithms that could be broken by the invention of a large-scale quantum computer
[C2PQ]. These algorithms include RSA [RFC8017], Diffie-Hellman [RFC2631], and Elliptic Curve
Diffie-Hellman (ECDH) [RFC5753]. As a result, an adversary that stores CMS-protected
communications today could decrypt those communications in the future when a large-scale
quantum computer becomes available.

Once quantum-secure key management algorithms are available, the CMS will be extended to
support them if the existing syntax does not already accommodate the new algorithms.

In the near term, this document describes a mechanism to protect today's communication from
the future invention of a large-scale quantum computer by mixing the output of existing key
transport and key agreement algorithms with a pre-shared key (PSK). Secure communication can
be achieved today by mixing a strong PSK with the output of an existing key transport algorithm,
like RSA [RFC8017], or an existing key agreement algorithm, like Diffie-Hellman [RFC2631] or
Elliptic Curve Diffie-Hellman (ECDH) [RFC5753]. A security solution that is believed to be
quantum resistant can be achieved by using a PSK with sufficient entropy along with a quantum-
resistant key derivation function (KDF), like an HMAC-based key derivation function (HKDF)
[RFC5869], and a quantum-resistant encryption algorithm, like 256-bit AES [AES]. In this way,
today's CMS-protected communication can be resistant to an attacker with a large-scale quantum
computer.

In addition, there may be other reasons for including a strong PSK besides protection against the
future invention of a large-scale quantum computer. For example, there is always the possibility
of a cryptoanalytic breakthrough on one or more classic public key algorithms, and there are
longstanding concerns about undisclosed trapdoors in Diffie-Hellman parameters [FGHT2016].
Inclusion of a strong PSK as part of the overall key management offers additional protection
against these concerns.

Note that the CMS also supports key management techniques based on symmetric key-encryption
keys and passwords, but they are not discussed in this document because they are already
quantum resistant. The symmetric key-encryption key technique is quantum resistant when used
with an adequate key size. The password technique is quantum resistant when used with a
quantum-resistant key derivation function and a sufficiently large password.
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1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

1.2. ASN.1

CMS values are generated using ASN.1 [X680], which uses the Basic Encoding Rules (BER) and the
Distinguished Encoding Rules (DER) [X690].

1.3. Version Numbers

The major data structures include a version number as the first item in the data structure. The
version number is intended to avoid ASN.1 decode errors. Some implementations do not check
the version number prior to attempting a decode; then, if a decode error occurs, the version
number is checked as part of the error-handling routine. This is a reasonable approach; it places
error processing outside of the fast path. This approach is also forgiving when an incorrect
version number is used by the sender.

Whenever the structure is updated, a higher version number will be assigned. However, to
ensure maximum interoperability, the higher version number is only used when the new syntax
feature is employed. That is, the lowest version number that supports the generated syntax is
used.

2. Overview

The CMS enveloped-data content type [RFC5652] and the CMS authenticated-enveloped-data
content type [RFC5083] support both key transport and key agreement public key algorithms to
establish the key used to encrypt the content. No restrictions are imposed on the key transport or
key agreement public key algorithms, which means that any key transport or key agreement
algorithm can be used, including algorithms that are specified in the future. In both cases, the
sender randomly generates the content-encryption key, and then all recipients obtain that key.
All recipients use the sender-generated symmetric content-encryption key for decryption.

This specification defines two quantum-resistant ways to establish a symmetric key-encryption
key, which is used to encrypt the sender-generated content-encryption key. In both cases, the PSK
is used as one of the inputs to a key-derivation function to create a quantum-resistant key-
encryption key. The PSK MUST be distributed to the sender and all of the recipients by some out-
of-band means that does not make it vulnerable to the future invention of a large-scale quantum
computer, and an identifier MUST be assigned to the PSK. It is best if each PSK has a unique
identifier; however, if a recipient has more than one PSK with the same identifier, the recipient
can try each of them in turn. A PSK is expected to be used with many messages, with a lifetime of
weeks or months.
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The content-encryption key or content-authenticated-encryption key is quantum resistant, and
the sender establishes it using these steps:

When using a key transport algorithm:

1. The content-encryption key or the content-authenticated-encryption key, called "CEK", is
generated at random.

2. The key-derivation key, called "KDK", is generated at random.

3. For each recipient, the KDK is encrypted in the recipient's public key, then the KDF is used to
mix the PSK and the KDK to produce the key-encryption key, called "KEK".

4. The KEK is used to encrypt the CEK.
When using a key agreement algorithm:

1. The content-encryption key or the content-authenticated-encryption key, called "CEK", is
generated at random.

2. For each recipient, a pairwise key-encryption key, called "KEK1", is established using the
recipient's public key and the sender's private key. Note that KEK1 will be used as a key-
derivation key.

3. For each recipient, the KDF is used to mix the PSK and the pairwise KEK1, and the result is
called "KEK2".

4. For each recipient, the pairwise KEK2 is used to encrypt the CEK.

As specified in Section 6.2.5 of [RFC5652], recipient information for additional key management
techniques is represented in the OtherRecipientInfo type. Two key management techniques are
specified in this document, and they are each identified by a unique ASN.1 object identifier.

The first key management technique, called "keyTransPSK" (see Section 3), uses a key transport
algorithm to transfer the key-derivation key from the sender to the recipient, and then the key-
derivation key is mixed with the PSK using a KDF. The output of the KDF is the key-encryption
key, which is used for the encryption of the content-encryption key or content-authenticated-
encryption key.

The second key management technique, called "keyAgreePSK" (see Section 4), uses a key
agreement algorithm to establish a pairwise key-encryption key. This pairwise key-encryption
key is then mixed with the PSK using a KDF to produce a second pairwise key-encryption key,
which is then used to encrypt the content-encryption key or content-authenticated-encryption
key.

3. keyTransPSK

Per-recipient information using keyTransPSK is represented in the KeyTransPSKRecipientInfo
type, which is indicated by the id-ori-keyTransPSK object identifier. Each instance of
KeyTransPSKRecipientInfo establishes the content-encryption key or content-authenticated-
encryption key for one or more recipients that have access to the same PSK.
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The id-ori-keyTransPSK object identifier is:

id-ori OBJECT IDENTIFIER ::= { diso(l) member-body(2) us(840)
rsadsi(113549) pkcs(1l) pkcs-9(9) smime(1l6) 13 }

id-ori-keyTransPSK OBJECT IDENTIFIER ::= { id-ori 1 }

The KeyTransPSKRecipientInfo type is:

KeyTransPSKRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to 0
pskid PreSharedKeyIdentifier,
kdfAlgorithm KeyDerivationAlgorithmIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
ktris KeyTransRecipientInfos,
encryptedKey EncryptedKey }

PreSharedKeyIdentifier ::= OCTET STRING

KeyTransRecipientInfos ::= SEQUENCE OF KeyTransRecipientInfo

The fields of the KeyTransPSKRecipientInfo type have the following meanings:

Housley

version is the syntax version number. The version MUST be 0. The CMSVersion type is
described in Section 10.2.5 of [RFC5652].

pskid is the identifier of the PSK used by the sender. The identifier is an OCTET STRING, and
it need not be human readable.

kdfAlgorithm identifies the key-derivation algorithm and any associated parameters used by
the sender to mix the key-derivation key and the PSK to generate the key-encryption key. The
KeyDerivationAlgorithmIdentifier is described in Section 10.1.6 of [RFC5652].

keyEncryptionAlgorithm identifies a key-encryption algorithm used to encrypt the content-
encryption key. The KeyEncryptionAlgorithmIdentifier is described in Section 10.1.3 of
[RFC5652].

ktris contains one KeyTransRecipientInfo type for each recipient; it uses a key transport
algorithm to establish the key-derivation key. That is, the encryptedKey field of
KeyTransRecipientInfo contains the key-derivation key instead of the content-encryption key.
KeyTransRecipientInfo is described in Section 6.2.1 of [RFC5652].

encryptedKey is the result of encrypting the content-encryption key or the content-
authenticated-encryption key with the key-encryption key. EncryptedKey is an OCTET
STRING.
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4. KkeyAgreePSK

Per-recipient information using keyAgreePSK is represented in the KeyAgreePSKRecipientInfo
type, which is indicated by the id-ori-keyAgreePSK object identifier. Each instance of
KeyAgreePSKRecipientInfo establishes the content-encryption key or content-authenticated-
encryption key for one or more recipients that have access to the same PSK.

The id-ori-keyAgreePSK object identifier is:

id-ori-keyAgreePSK OBJECT IDENTIFIER ::= { id-ori 2 }
The KeyAgreePSKRecipientInfo type is:
KeyAgreePSKRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to O

pskid PreSharedKeyIdentifier,

originator [0] EXPLICIT OriginatorIdentifierOrKey,

ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
kdfAlgorithm KeyDerivationAlgorithmIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
recipientEncryptedKeys RecipientEncryptedKeys }

The fields of the KeyAgreePSKRecipientInfo type have the following meanings:

 version is the syntax version number. The version MUST be 0. The CMSVersion type is
described in Section 10.2.5 of [RFC5652].

pskid is the identifier of the PSK used by the sender. The identifier is an OCTET STRING, and
it need not be human readable.

originator is a CHOICE with three alternatives specifying the sender's key agreement public
key. Implementations MUST support all three alternatives for specifying the sender's public
key. The sender uses their own private key and the recipient's public key to generate a
pairwise key-encryption key. A KDF is used to mix the PSK and the pairwise key-encryption
key to produce a second key-encryption key. The OriginatorIdentifierOrKey type is described
in Section 6.2.2 of [RFC5652].

« ukm is optional. With some key agreement algorithms, the sender provides a User Keying
Material (UKM) to ensure that a different key is generated each time the same two parties
generate a pairwise key. Implementations MUST accept a KeyAgreePSKRecipientInfo
SEQUENCE that includes a ukm field. Implementations that do not support key agreement
algorithms that make use of UKMs MUST gracefully handle the presence of UKMs. The
UserKeyingMaterial type is described in Section 10.2.6 of [RFC5652].

o kdfAlgorithm identifies the key-derivation algorithm and any associated parameters used by
the sender to mix the pairwise key-encryption key and the PSK to produce a second key-
encryption key of the same length as the first one. The KeyDerivationAlgorithmIdentifier is
described in Section 10.1.6 of [RFC5652].

» keyEncryptionAlgorithm identifies a key-encryption algorithm used to encrypt the content-
encryption key or the content-authenticated-encryption key. The
KeyEncryptionAlgorithmIdentifier type is described in Section 10.1.3 of [RFC5652].
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* recipientEncryptedKeys includes a recipient identifier and encrypted key for one or more
recipients. The KeyAgreeRecipientldentifier is a CHOICE with two alternatives specifying the
recipient's certificate, and thereby the recipient's public key, that was used by the sender to
generate a pairwise key-encryption key. The encryptedKey is the result of encrypting the
content-encryption key or the content-authenticated-encryption key with the second
pairwise key-encryption key. EncryptedKey is an OCTET STRING. The
RecipientEncryptedKeys type is defined in Section 6.2.2 of [REC5652].

5. Key Derivation

Many KDFs internally employ a one-way hash function. When this is the case, the hash function
that is used is indirectly indicated by the KeyDerivationAlgorithmIdentifier. HKDF [RFC5869] is
one example of a KDF that makes use of a hash function.

Other KDFs internally employ an encryption algorithm. When this is the case, the encryption that
is used is indirectly indicated by the KeyDerivationAlgorithmIdentifier. For example, AES-128-
CMAC can be used for randomness extraction in a KDF as described in [NIST2018].

A KDF has several input values. This section describes the conventions for using the KDF to
compute the key-encryption key for KeyTransPSKRecipientInfo and KeyAgreePSKRecipientInfo.
For simplicity, the terminology used in the HKDF specification [RFC5869] is used here.

The KDF inputs are:

* JKM is the input keying material; it is the symmetric secret input to the KDF. For
KeyTransPSKRecipientInfo, it is the key-derivation key. For KeyAgreePSKRecipientInfo, it is
the pairwise key-encryption key produced by the key agreement algorithm.

* salt is an optional non-secret random value. Many KDFs do not require a salt, and the
KeyDerivationAlgorithmIdentifier assignments for HKDF [RFC8619] do not offer a parameter
for a salt. If a particular KDF requires a salt, then the salt value is provided as a parameter of
the KeyDerivationAlgorithmIdentifier.

¢ L is the length of output keying material in octets; the value depends on the key-encryption
algorithm that will be used. The algorithm is identified by the
KeyEncryptionAlgorithmIdentifier. In addition, the OBJECT IDENTIFIER portion of the
KeyEncryptionAlgorithmIdentifier is included in the next input value, called "info".

¢ info is optional context and application specific information. The DER encoding of
CMSORIforPSKOtherInfo is used as the info value, and the PSK is included in this structure.
Note that EXPLICIT tagging is used in the ASN.1 module that defines this structure. For
KeyTransPSKRecipientInfo, the ENUMERATED value of 5 is used. For
KeyAgreePSKRecipientInfo, the ENUMERATED value of 10 is used. CMSORIforPSKOtherInfo is
defined by the following ASN.1 structure:
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CMSORIforPSKOtherInfo ::= SEQUENCE {
psk OCTET STRING,
keyMgmtAlgType ENUMERATED {
keyTrans (5),
keyAgree (10) 13,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
pskLength INTEGER (1..MAX),
kdkLength INTEGER (1..MAX) }

The fields of type CMSORIforPSKOtherInfo have the following meanings:

* pskis an OCTET STRING; it contains the PSK.

» keyMgmtAlgType is either set to 5 or 10. For KeyTransPSKRecipientInfo, the ENUMERATED
value of 5 is used. For KeyAgreePSKRecipientInfo, the ENUMERATED value of 10 is used.

» keyEncryptionAlgorithm is the KeyEncryptionAlgorithmIdentifier, which identifies the
algorithm and provides algorithm parameters, if any.

* pskLength is a positive integer; it contains the length of the PSK in octets.

» kdkLength is a positive integer; it contains the length of the key-derivation key in octets. For
KeyTransPSKRecipientInfo, the key-derivation key is generated by the sender. For
KeyAgreePSKRecipientInfo, the key-derivation key is the pairwise key-encryption key
produced by the key agreement algorithm.

The KDF output is:

* OKM is the output keying material, which is exactly L octets. The OKM is the key-encryption
key that is used to encrypt the content-encryption key or the content-authenticated-
encryption key.

An acceptable KDF MUST accept IKM, L, and info inputs; an acceptable KDF MAY also accept salt
and other inputs. All of these inputs MUST influence the output of the KDF. If the KDF requires a
salt or other inputs, then those inputs MUST be provided as parameters of the
KeyDerivationAlgorithmIdentifier.

6. ASN.1 Module

This section contains the ASN.1 module for the two key management techniques defined in this
document. This module imports types from other ASN.1 modules that are defined in [RFC5912]
and [RFC6268].
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<CODE BEGINS>

CMSORIforPSK-2019
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(l) pkcs-9(9)
smime(16) modules(0) id-mod-cms-ori-psk-2019(69) }

DEFINITIONS EXPLICIT TAGS ::=
BEGIN

—-- EXPORTS All
IMPORTS

AlgorithmIdentifier{}, KEY-DERIVATION
FROM AlgorithmInformation-2009 -- [RFC5912]
{ iso(1l) didentified-organization(3) dod(6) internet(1l)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-algorithmInformation-02(58) }

OTHER-RECIPIENT, OtherRecipientInfo, CMSVersion,
KeyTransRecipientInfo, OriginatorIdentifierOrKey,
UserKeyingMaterial, RecipientEncryptedKeys, EncryptedKey,
KeyDerivationAlgorithmIdentifier, KeyEncryptionAlgorithmIdentifier
FROM CryptographicMessageSyntax-2010 -- [RFC6268]
{ iso(1l) member-body(2) us(840) rsadsi(113549)
pkcs(1l) pkcs-9(9) smime(16) modules(0)
id-mod-cms-2009(58) } ;

-- OtherRecipientInfo Types (ori-)

SupportedOtherRecipInfo OTHER-RECIPIENT ::= {
ori-keyTransPSK |
ori-keyAgreePSK,

-- Key Transport with Pre-Shared Key

ori-keyTransPSK OTHER-RECIPIENT ::= {
KeyTransPSKRecipientInfo IDENTIFIED BY id-ori-keyTransPSK }
id-ori OBJECT IDENTIFIER ::= { diso(l) member-body(2) us(840)
rsadsi(113549) pkcs(l) pkcs-9(9) smime(1l6) 13 }
id-ori-keyTransPSK OBJECT IDENTIFIER ::= { did-ori 1 }
KeyTransPSKRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to O

pskid PreSharedKeyIdentifier,

kdfAlgorithm KeyDerivationAlgorithmIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
ktris KeyTransRecipientInfos,

encryptedKey EncryptedKey }

PreSharedKeyIdentifier ::= OCTET STRING
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KeyTransRecipientInfos ::= SEQUENCE OF KeyTransRecipientInfo

-- Key Agreement with Pre-Shared Key

ori-keyAgreePSK OTHER-RECIPIENT ::= {
KeyAgreePSKRecipientInfo IDENTIFIED BY -id-ori-keyAgreePSK }
id-ori-keyAgreePSK OBJECT IDENTIFIER ::= { did-ori 2 }
KeyAgreePSKRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to 0

pskid PreSharedKeyIdentifier,

originator [0] EXPLICIT OriginatorIdentifierOrKey,

ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
kdfAlgorithm KeyDerivationAlgorithmIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
recipientEncryptedKeys RecipientEncryptedKeys }

-- Structure to provide 'info' dinput to the KDF,
—-- 1dncluding the Pre-Shared Key

CMSORIforPSKOtherInfo ::= SEQUENCE {
psk OCTET STRING,
keyMgmtAlgType ENUMERATED {
keyTrans (5),
keyAgree (10) 13,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
pskLength INTEGER (1..MAX),
kdkLength INTEGER (1..MAX) }
END

<CODE ENDS>

7. Security Considerations

The security considerations related to the CMS enveloped-data content type in [RFC5652] and the
security considerations related to the CMS authenticated-enveloped-data content type in
[RFC5083] continue to apply.

Implementations of the key derivation function must compute the entire result, which, in this
specification, is a key-encryption key, before outputting any portion of the result. The resulting
key-encryption key must be protected. Compromise of the key-encryption key may result in the
disclosure of all content-encryption keys or content-authenticated-encryption keys that were
protected with that keying material; this, in turn, may result in the disclosure of the content. Note
that there are two key-encryption keys when a PSK with a key agreement algorithm is used, with
similar consequences for the compromise of either one of these keys.
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Implementations must protect the PSK, key transport private key, agreement private key, and
key-derivation key. Compromise of the PSK will make the encrypted content vulnerable to the
future invention of a large-scale quantum computer. Compromise of the PSK and either the key
transport private key or the agreement private key may result in the disclosure of all contents
protected with that combination of keying material. Compromise of the PSK and the key-
derivation key may result in the disclosure of all contents protected with that combination of
keying material.

A large-scale quantum computer will essentially negate the security provided by the key
transport algorithm or the key agreement algorithm, which means that the attacker with a large-
scale quantum computer can discover the key-derivation key. In addition, a large-scale quantum
computer effectively cuts the security provided by a symmetric key algorithm in half. Therefore,
the PSK needs at least 256 bits of entropy to provide 128 bits of security. To match that same level
of security, the key derivation function needs to be quantum resistant and produce a key-
encryption key that is at least 256 bits in length. Similarly, the content-encryption key or content-
authenticated-encryption key needs to be at least 256 bits in length.

When using a PSK with a key transport or a key agreement algorithm, a key-encryption key is
produced to encrypt the content-encryption key or content-authenticated-encryption key. If the
key-encryption algorithm is different than the algorithm used to protect the content, then the
effective security is determined by the weaker of the two algorithms. If, for example, content is
encrypted with 256-bit AES and the key is wrapped with 128-bit AES, then, at most, 128 bits of
protection are provided. Implementers must ensure that the key-encryption algorithm is as
strong or stronger than the content-encryption algorithm or content-authenticated-encryption
algorithm.

The selection of the key-derivation function imposes an upper bound on the strength of the
resulting key-encryption key. The strength of the selected key-derivation function should be at
least as strong as the key-encryption algorithm that is selected. NIST SP 800-56C Revision 1
[NIST2018] offers advice on the security strength of several popular key-derivation functions.

Implementers should not mix quantum-resistant key management algorithms with their non-
quantum-resistant counterparts. For example, the same content should not be protected with
KeyTransRecipientInfo and KeyTransPSKRecipientInfo. Likewise, the same content should not be
protected with KeyAgreeRecipientInfo and KeyAgreePSKRecipientInfo. Doing so would make the
content vulnerable to the future invention of a large-scale quantum computer.

Implementers should not send the same content in different messages, one using a quantum-
resistant key management algorithm and the other using a non-quantum-resistant key
management algorithm, even if the content-encryption key is generated independently. Doing so
may allow an eavesdropper to correlate the messages, making the content vulnerable to the
future invention of a large-scale quantum computer.

This specification does not require that PSK be known only by the sender and recipients. The PSK
may be known to a group. Since confidentiality depends on the key transport or key agreement
algorithm, knowledge of the PSK by other parties does not inherently enable eavesdropping.
However, group members can record the traffic of other members and then decrypt it if they
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ever gain access to a large-scale quantum computer. Also, when many parties know the PSK,
there are many opportunities for theft of the PSK by an attacker. Once an attacker has the PSK,
they can decrypt stored traffic if they ever gain access to a large-scale quantum computer in the
same manner as a legitimate group member.

Sound cryptographic key hygiene is to use a key for one and only one purpose. Use of the
recipient's public key for both the traditional CMS and the PSK-mixing variation specified in this
document would be a violation of this principle; however, there is no known way for an attacker
to take advantage of this situation. That said, an application should enforce separation whenever
possible. For example, a purpose identifier for use in the X.509 extended key usage certificate
extension [RFC5280] could be identified in the future to indicate that a public key should only be
used in conjunction with or without a PSK.

Implementations must randomly generate key-derivation keys as well as content-encryption keys
or content-authenticated-encryption keys. Also, the generation of public/private key pairs for the
key transport and key agreement algorithms rely on random numbers. The use of inadequate
pseudorandom number generators (PRNGS) to generate cryptographic keys can result in little or
no security. An attacker may find it much easier to reproduce the PRNG environment that
produced the keys, searching the resulting small set of possibilities, rather than brute-force
searching the whole key space. The generation of quality random numbers is difficult. [RFC4086]
offers important guidance in this area.

Implementers should be aware that cryptographic algorithms become weaker with time. As new
cryptanalysis techniques are developed and computing performance improves, the work factor
to break a particular cryptographic algorithm will be reduced. Therefore, cryptographic
algorithm implementations should be modular, allowing new algorithms to be readily inserted.
That is, implementers should be prepared for the set of supported algorithms to change over
time.

The security properties provided by the mechanisms specified in this document can be validated
using formal methods. A ProVerif proof in [H2019] shows that an attacker with a large-scale
quantum computer that is capable of breaking the Diffie-Hellman key agreement algorithm
cannot disrupt the delivery of the content-encryption key to the recipient and that the attacker
cannot learn the content-encryption key from the protocol exchange.

8. Privacy Considerations

An observer can see which parties are using each PSK simply by watching the PSK key
identifiers. However, the addition of these key identifiers does not really weaken the privacy
situation. When key transport is used, the RecipientIdentifier is always present, and it clearly
identifies each recipient to an observer. When key agreement is used, either the
IssuerAndSerialNumber or the RecipientKeyldentifier is always present, and these clearly
identify each recipient.
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9. IANA Considerations

One object identifier for the ASN.1 module in Section 6 was assigned in the "SMI Security for S/
MIME Module Identifier (1.2.840.113549.1.9.16.0)" registry [TANA]:

id-mod-cms-ori-psk-2019 OBJECT IDENTIFIER ::= {
iso(1l) member-body(2) us(840) rsadsi(113549) pkcs(1l)
pkcs-9(9) smime(16) mod(0) 69 }

One new entry has been added in the "SMI Security for S/MIME Mail Security
(1.2.840.113549.1.9.16)" registry [IANA]:

id-ori OBJECT IDENTIFIER ::= { 1diso(l) member-body(2) us(840)
rsadsi(113549) pkcs(l) pkcs-9(9) smime(1l6) 13 }

A new registry titled "SMI Security for S/MIME Other Recipient Info Identifiers
(1.2.840.113549.1.9.16.13)" has been created.

Updates to the new registry are to be made according to the Specification Required policy as
defined in [RFC8126]. The expert is expected to ensure that any new values identify additional
RecipientInfo structures for use with the CMS. Object identifiers for other purposes should not be
assigned in this arc.

Two assignments were made in the new "SMI Security for S/MIME Other Recipient Info
Identifiers (1.2.840.113549.1.9.16.13)" registry [TANA] with references to this document:

id-ori-keyTransPSK OBJECT IDENTIFIER ::= {
iso(1l) member-body(2) us(840) rsadsi(113549) pkcs(1l)
pkcs-9(9) smime(16) id-ori(13) 1 }

id-ori-keyAgreePSK OBJECT IDENTIFIER ::= {

iso(1l) member-body(2) us(840) rsadsi(113549) pkcs(1l)
pkcs-9(9) smime(16) id-ori(13) 2 }
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Appendix A. Key Transport with PSK Example

This example shows the establishment of an AES-256 content-encryption key using:

* a pre-shared key of 256 bits;

» key transport using RSA PKCS#1 v1.5 with a 3072-bit key;
* key derivation using HKDF with SHA-384; and

» key wrap using AES-256-KEYWRAP.

Housley
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In real-world use, the originator would encrypt the key-derivation key in their own RSA public
key as well as the recipient's public key. This is omitted in an attempt to simplify the example.

A.1. Originator Processing Example

The pre-shared key known to Alice and Bob, in hexadecimal, is:
c244cdd11a0d1f39d9b61282770244fb0febefb91ab7f96cb05213365¢cf95b15
The identifier assigned to the pre-shared key is:
ptf-kmc:13614122112

Alice obtains Bob's public key:

MIIBojANBgkghkiGOwOBAQEFAAOCAY8AMIIBigKCAYEA30cW1l4cxncPJ47fnEjBZ
AyfC21lqapL3ET4jvV6C7gGeVrRQxWPDwl+cFYBBR2ej3j3/0ecDmu+XuVi2+s5JH
Keeza+itfuhsz3yifgeEpeK8T+SusHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDclqq
vS3jg/V0+0PnZbofoHOOevt8Q/roahJelP1IyQ4udwWB8zZezJ4mLLfbOA9YVaYXx
2AHHZJevo3nmRn1lgIXo6mEOOE /6qkhjDHKSMd12WGEMO9TCDZc9qY3cAIDUGIrOV
SH7qU18/vN13y4UOFkn8hM4kmzZ6bJgbZt5NbjHtY4uQOVMW3RYESZzhr002mrp39a
ULNNH3EXdXaV1tk75H3qC7zJaeGWMIyQfOE3YfEGRKN8fxubji716D8UecAXxAzFy
FL6mM1Ji0yV5acAiOpxN14qRYZdHNXOM9DqGIGpoeY1UuD4Mo050s0qOUpBIHASTS
whSZG7VNT+vgNWTLNYSYLIO4KiMdulnvU6ds+QPz+KKtAgMBAAE=

————— END PUBLIC KEY-----

Bob's RSA public key has the following key identifier:
9eeb67c9b95a74d44d2116396680e801b5cha49c

Alice randomly generates a content-encryption key:
c8adc30f4a3e20ac420caa76a68f5787c02ab42afea20d19672fd963a5338e83

Alice randomly generates a key-derivation key:
df85af9e3cebffde6e9b9d24263db31114d0a8e33a0d50e05eb64578ccde81eb

Alice encrypts the key-derivation key in Bob's public key:
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52693f12140c91dea2b44cOb7936f6be46de8a7bfab072bch6ecfd56b06a9f65
1bd4669d336aef7b449e5cd9b151893b7c7a3b8e364394840b0a5434cbf10elb
5670aefd074fat380665d204fb95153543346Ff36c2125dba6f4d23d2bc61434b
5e36ff72b3eafe57c6¢cf7f74924c309f174b0Ob8753554b58ed33a8848d707a98
cOc2blddcfd09e31fe213cafa48dd157bd7d842e85cc76f77710d58efeaads525
c651bcd1410fb47534ecabaf5ab7daabed809d4b97220caf6d4929c5fb684f7b
b8692e6e70332ff9b3f7clld6cac51d4a35593173d481f80ca843b89789d625e7
997ad7d674d25a2a7d165a5f39b3cb6358e937bdb02ac8a524ac93113cedd9ad
c68263025c0Obb0997d716e58d4d7b69739bf591f3e71c7678dcOdfo96f3df9e8a
a5738f4f9ce214891f300e040891b20b2ab6d9051b3c2e68efa2fa9799a706878
d5f462018c021d6669ed649f9acdf78476810198bfb8bd41ffedc585eafa957e
eald3625e4bed376e7ae49718aee2f575c401a26a29941d8da5b7ee9aca36471

Alice produces a 256-bit key-encryption key with HKDF using 