Stream: Independent Submission

RFC: 9189

Category: Informational

Published: March 2022

ISSN: 2070-1721

Authors: S.Smyshlyaev, Ed. D. Belyavskiy E. Alekseev
CryptoPro Cryptocom CryptoPro

RFC 9189
GOST Cipher Suites for Transport Layer Security
(TLS) Protocol Version 1.2

Abstract

This document specifies three new cipher suites, two new signature algorithms, seven new
supported groups, and two new certificate types for the Transport Layer Security (TLS) protocol
version 1.2 to support the Russian cryptographic standard algorithms (called "GOST" algorithms).
This document specifies a profile of TLS 1.2 with GOST algorithms so that implementers can
produce interoperable implementations.

This specification facilitates implementations that aim to support the GOST algorithms. This
document does not imply IETF endorsement of the cipher suites, signature algorithms, supported
groups, and certificate types.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9189.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Smyshlyaev, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9189
https://www.rfc-editor.org/info/rfc9189

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

Table of Contents

1. Introduction
2. Conventions Used in This Document
3. Basic Terms and Definitions
4. Cipher Suite Definitions
4.1. Record Payload Protection
4.1.1. CTR_OMAC
4.1.2. CNT_IMIT

4.2. Key Exchange and Authentication
4.2.1. Hello Messages
4.2.2. Server Certificate
4.2.3. CertificateRequest
4.2.4. ClientKeyExchange
4.24.1. CTR_OMAC
4.2.4.2. CNT_IMIT

4.2.5. CertificateVerify
4.2.6. Finished

4.3. Cryptographic Algorithms
4.3.1. Block Cipher
4.3.2. MAC Algorithm
4.3.3. Encryption Algorithm
4.3.4. PRF and HASH Algorithms
4.3.5. SNMAX Parameter

5. New Values for the TLS SignatureAlgorithm Registry
6. New Values for the TLS Supported Groups Registry
7. New Values for the TLS ClientCertificateType Identifiers Registry

Smyshlyaev, et al. Informational Page 2

https://trustee.ietf.org/license-info

RFC9189 GOST Cipher Suites for TLS 1.2

8. Additional Algorithms
8.1. TLSTREE

8.1.1. Key Tree Parameters

8.2. Key Export and Key Import Algorithms
8.2.1. KExp15 and KImp15 Algorithms
8.2.2. KExp28147 and KImp28147 Algorithms

8.3. Key Exchange Generation Algorithms
8.3.1. KEG Algorithm
8.3.2. KEG_28147 Algorithm

8.4. gostIMIT28147

9. IANA Considerations
10. Historical Considerations
11. Security Considerations
12. References
12.1. Normative References

12.2. Informative References

Appendix A. Test Examples
A.1. Test Examples for CTR_OMAC Cipher Suites
A1.1. TLSTREE Examples
A.1.1.1. TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC Cipher Suite
A.1.1.2. TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC Cipher Suite

A.1.2. Record Examples
A1.2.1. TLS_GOSTR341112_256_ WITH_MAGMA_CTR_OMAC Cipher Suite
A1.2.2. TLS_GOSTR341112_256_WITH_KUZNYECHIK CTR_OMAC Cipher Suite
A.1.3. Handshake Examples
A1.3.1. TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC Cipher Suite
A.1.3.2. TLS_GOSTR341112_256_WITH_KUZNYECHIK _CTR_OMAC Cipher Suite
A.2. Test Examples for CNT_IMIT Cipher Suites

A.2.1. Record Examples

Smyshlyaev, et al. Informational

March 2022

Page 3

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

A.2.2. Handshake Examples

Contributors

Authors' Addresses

1. Introduction

This document specifies three new cipher suites, two new signature algorithms, seven new
supported groups, and two new certificate types for the Transport Layer Security (TLS) protocol
version 1.2 [RFC5246] (note that [RFC5246] has been obsoleted by [RFC8446]) to support the set of
Russian cryptographic standard algorithms (called "GOST" algorithms). This document specifies a
profile of TLS 1.2 with GOST algorithms so that implementers can produce interoperable
implementations. The profile of TLS 1.2 with GOST algorithms uses the hash algorithm GOST R
34.11-2012 [RFC6986], the signature algorithm GOST R 34.10-2012 [RFC7091], and two types of
cipher suites: the CTR_OMAC and the CNT_IMIT.

The CTR_OMALC cipher suites use the GOST R 34.12-2015 (see [RFC7801] and [RFC8891]) block
ciphers.

The CNT_IMIT cipher suite uses the GOST 28147-89 [RFC5830] block cipher.

This document specifies the profile of the TLS protocol version 1.2 with GOST algorithms. The
profile of the TLS protocol version 1.3 [RFC8446] with GOST algorithms is specified in a separate
document [DraftGostTLS13].

This specification facilitates implementations that aim to support the GOST algorithms. This
document does not imply IETF endorsement of the cipher suites, signature algorithms, supported
groups, and certificate types.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

3. Basic Terms and Definitions

This document follows the terminology from [RFC8446bis] for "preliminary secret” and
"extended_main_secret".

This document uses the following terms and definitions for the sets and operations on the
elements of these sets:

Smyshlyaev, et al. Informational Page 4

RFC9189

B_t

B*

AlLLj]

L(A)
AlC

AXORC

i&j
STR_t

str_t

INT

int

Q_c
dc
Q_s
ds

GOST Cipher Suites for TLS 1.2 March 2022

the set of byte strings of length t, t >= 0. For t = 0, the B_t set consists of a single empty
string of zero length. If Ais an element of B_t,then A=(a_1,a_2,..,a_t), wherea_1,a_2,
..,a_tarein {0, ..., 255}.

the set of all byte strings of a finite length (hereinafter referred to as "strings"),
including the empty string.

the string A[i..j] =(a_i, a_{i+1}, ..., a_j) in B_{j-i+1}, where A=(a_1,..,a_t) in B_tand
1<=i<=j<=t.

the length of the byte string A in bytes.

concatenation of strings A and C both belonging to B i.e., a string in B_{L(A)+L(C)},
where the left substring in B_L(A) is equal to A and the right substring in B_L(C) is equal
to C.

bitwise exclusive-or of byte strings A and C both belonging to B_t (both are of length t
bytes),i.e,a string in B_t suchthatifA=(a_1,a_2,..,a_t)andC=(c_1,c_2,..,c_t),then A
XORC=(a_1(xor)c_1,a_2(xor) c_2,..,a_t (xor) c_t), where (xor) is bitwise exclusive-or
of bytes.

bitwise AND of unsigned integersiand j.

the transformation that maps an integeri= 25601 * i1+..+256*1 {t-1} +i _tinto the
byte string STR_t(i) = (i_1, ...,1i_t) in B_t (the interpretation of the integer as a byte string
in big-endian format).

the transformation that maps an integeri= 25651 *§ t+..+256%i 2 +i 1 into the byte
string str_t(i) = (i_1, ..., 1i_t) in B_t (the interpretation of the integer as a byte string in
little-endian format).

the transformation that maps a stringa =(a_1, ..., a_t) in B_t into the integer INT(a) =

2561 % a_1+..+256* a_{t-1} +a_t (the interpretation of the byte string in big-endian
format as an integer).

the transformation that maps a string a = (a_1, ..., a_t) in B_t into the integer int(a) =

2561 % a_t+..+256*a_2+a_1 (the interpretation of the byte string in little-endian
format as an integer).

the length of the block cipher key in bytes.

the length of the block cipher block in bytes.
the public key stored in the client's certificate.
the private key that corresponds to the Q_c key.
the public key stored in the server's certificate.

the private key that corresponds to the Q_s key.

Smyshlyaev, et al. Informational Page 5

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

q.s an order of a cyclic subgroup of the elliptic curve points group containing point Q_s.

Ps the distinguished generator of the subgroup of order q_s that belongs to the same curve
as Q_s.

rc the random string contained in the ClientHello.random field (see [RFC5246]).

r s the random string contained in the ServerHello.random field (see [RFC5246]).

4. Cipher Suite Definitions

This document specifies the CTR_OMAC cipher suites and the CNT_IMIT cipher suite.

The CTR_OMAC cipher suites have the following values:

TLS_GOSTR341112_256 _WITH_KUZNYECHIK_CTR_OMAC = {@xC1, ©x00};
TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC = {@xC1, 0x01}.

The CNT_IMIT cipher suite has the following value:

TLS_GOSTR341112_256_WITH_28147_CNT_IMIT = {0xC1, 0x02}.

4.1. Record Payload Protection
The profile of TLS 1.2 with GOST algorithms requires that the compression not be used.

All of the cipher suites described in this document use such modes of operation (see Section 4.3.3)
that protect the records in the same way as if they were protected by a stream cipher. The
TLSCiphertext structure for the CTR_OMAC and CNT_IMIT cipher suites is specified in accordance
with the standard stream cipher case (see Section 6.2.3.1 of [RFC5246]):

struct {
ContentType type;
ProtocolVersion version;
uint16 length;
GenericStreamCipher fragment;
} TLSCiphertext;

where TLSCiphertext.fragment is generated in accordance with Section 4.1.1 when the CTR_OMAC
cipher suites are used and Section 4.1.2 when the CNT_IMIT cipher suite is used.

The connection key material is a key material that consists of the sender_write_key (either the
client_write_key or the server_write_key), the sender_write_MAC_key (either the
client_write_MAC_key or the server_write_MAC_key), and the sender_write_IV (either the
client_write_IV or the server_write_IV) parameters that are generated in accordance with Section
6.3 of [RFC5246].

Smyshlyaev, et al. Informational Page 6

https://www.rfc-editor.org/rfc/rfc5246#section-6.2.3.1
https://www.rfc-editor.org/rfc/rfc5246#section-6.3
https://www.rfc-editor.org/rfc/rfc5246#section-6.3

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

The record key material is a key material that is generated from the connection key material and
is used to protect a record with a certain sequence number. Note that with some cipher suites
defined in this document, the record key material can be equal to the connection key material.

In this section, the TLSCiphertext.fragment generation is described for one particular endpoint
(server or client) with the corresponding connection key material and record key material.

4.1.1. CTR_OMAC

In the CTR_OMAC cipher suites, the record key material differs from the connection key material,
and for the seqnum sequence number consists of:

K_ENC_segnum in B_k;
K_MAC_seqnum in B_k; and

IV_seqgnum in B_{n/2}.

The K_ENC_seqnum and K_MAC_seqnum values are calculated using the TLSTREE function
defined in Section 8.1, the connection key material, and the seqnum sequence number .

IV_seqnum is calculated by adding the seqnum value to sender_write_IV modulo 2(/2)*8,

K_ENC_seqnum = TLSTREE(sender_write_key, seqnum);

K_MAC_segnum TLSTREE (sender_write_MAC_key, seqgnum); and

IV_seqgnum = STR_{n/2}((INT(sender_write_IV) + seqnum)
mod 2A({(n/2)*8}).

The TLSCiphertext.fragment that corresponds to the seqnum sequence number is calculated as
follows:

1. The MACValue_seqnum value is generated using the Message Authentication Code (MAC)
algorithm (see Section 4.3.2) similar to Section 6.2.3.1 of [RFC5246], except the
sender_write_MAC_Kkey is replaced by the K MAC_seqnum key:

MACValue_seqnum = MAC(K_MAC_seqnum, STR_8(seqnum) | type_segnum |
version_segnum | length_segnum | fragment_seqgnum),

where type_seqnum, version_seqnum, length_seqnum, and fragment_seqnum are the
TLSCompressed.type, TLSCompressed.version, TLSCompressed.length, and
TLSCompressed.fragment values of the record with the seqnum sequence number.

2. The entire data with the MACValue is encrypted with the ENC stream cipher (see Section 4.3.3):

ENCValue_segnum = ENC(K_ENC_segnum, IV_seqnum, fragment_seqgnum |
MACValue_seqgnum),

Smyshlyaev, et al. Informational Page 7

https://www.rfc-editor.org/rfc/rfc5246#section-6.2.3.1

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

where fragment_seqnum is the TLSCompressed.fragment value of the record with the seqnum
sequence number.

3. The fields of the GenericStreamCipher structure (see Section 6.2.3.1 of [RFC5246]) for the
TLSCiphertext.fragment value are defined by the ENCValue_seqnum value:

TLSCiphertext.fragment.content =
ENCValue_seqnum[1..length_seqnum],

TLSCiphertext.fragment.MAC = ENCValue_seqnum[length_segnum +
1..length_seqnum + mac_length],

where length_seqnum is the TLSCompressed.length value of the record with the seqnum
sequence number and mac_length is equal to 16 for the
TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC cipher suite and 8 for the
TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC cipher suite.

Note that the CTR_OMALC cipher suites use the authenticate-then-encrypt method (see Appendix F.
4 of [RFC5246]). Since these ciphers are functioning as stream ciphers, the authenticate-then-
encrypt method is secure, and as specified by [RFC7366], the server that selects the CTR_OMAC
ciphers MUST NOT send an encrypt_then_mac extension to the client.

4.1.2. CNT_IMIT

In the CNT_IMIT cipher suite, the record key material is equal to the connection key material and
consists of:

sender_write_key in B_k;
sender_write_MAC_key in B_k; and

sender_write_IV in B_n.

The TLSCiphertext.fragment that corresponds to the seqnum sequence number is calculated as
follows:

1. The MACValue_segqnum value is generated by the MAC algorithm (see Section 4.3.2) as follows:

MACValue_segnum = MAC(sender_write_MAC_key, STR_8(0) | type_0 |
version_0 | length_@ | fragment_© | ... | STR_8(segnum) |
type_seqnum | version_seqnum | length_seqnum | fragment_seqnum),

where type_i, version_i,length_i, fragment_i,andiin {0, ..., seqnum} are the
TLSCompressed.type, TLSCompressed.version, TLSCompressed.length, and
TLSCompressed.fragment values of the record with the i sequence number.

Due to the use of the mode based on Cipher Block Chaining MAC (CBC-MAC) (see Section 4.3.2),
producing the MACValue_seqnum value does not mean processing all previous records. It is
enough to store only an intermediate internal state of the MAC algorithm.

Smyshlyaev, et al. Informational Page 8

https://www.rfc-editor.org/rfc/rfc5246#section-6.2.3.1
https://www.rfc-editor.org/rfc/rfc5246#appendix-F.4
https://www.rfc-editor.org/rfc/rfc5246#appendix-F.4

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

2. The entire data with the MACValue is encrypted with the ENC stream cipher (see Section 4.3.3):

ENCValue_© | ... | ENCValue_segnum = ENC(sender_write_key,
sender_write_IV, fragment_© | MACValue_© | ... | fragment_segnum |
MACValue_seqgnum),

where the length of the byte string ENCValue_i in bytes is equal to the length of the byte string
(fragment_i | MACValue_i) in bytes and iin {0, ..., seqnumj}.

Due to the use of the stream cipher (see Section 4.3.3), producing the ENCValue_seqnum value
does not mean processing all previous records. It is enough to store only an intermediate
internal state of the ENC stream cipher.

3. The fields of the GenericStreamCipher structure (see Section 6.2.3.1 of [RFC5246]) for the
TLSCiphertext.fragment value are defined by the ENCValue_seqnum value:

TLSCiphertext.fragment.content =
ENCValue_seqgnum[1..length_seqgnum],

TLSCiphertext.fragment.MAC = ENCValue_seqgnum|[length_seqgnum +
1..length_seqgnum + mac_length],

where length_seqnum is the TLSCompressed.length value of the record with the seqnum
sequence number, and mac_length is equal to 4.

Note that the CNT_IMIT cipher suite uses the authenticate-then-encrypt method (see Appendix F.4
of [RFC5246]). Since this cipher is functioning as a stream cipher, the authenticate-then-encrypt
method is secure, and as specified by [RFC7366], the server that selects the CNT_IMIT cipher MUST
NOT send an encrypt_then_mac extension to the client.

4.2. Key Exchange and Authentication

The cipher suites defined in this document use a key encapsulation mechanism based on Diffie-
Hellman to share the TLS preliminary secret.

Smyshlyaev, et al. Informational Page 9

https://www.rfc-editor.org/rfc/rfc5246#section-6.2.3.1
https://www.rfc-editor.org/rfc/rfc5246#appendix-F.4

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

Client Server
ClientHello —==----- >
ServerHello
Certificate
CertificateRequest*
<= ——————— ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished ————--—--- >
[ChangeCipherSpec]
S Finished
Application Data SR > Application Data

Figure 1: Message Flow for a Full Handshake
Notes for Figure 1:

1."™"indicates optional messages that are sent for the client authentication.

2. To help avoid pipeline stalls, ChangeCipherSpec is an independent TLS protocol content type
andis not actually a TLS handshake message.

Figure 1 shows all messages involved in the TLS key establishment protocol (full handshake). A
ServerKeyExchange MUST NOT be sent (the server's certificate contains enough data to allow the
client to exchange the preliminary secret).

The server side of the channel is always authenticated; the client side is optionally authenticated.
The server is authenticated by proving that it knows the preliminary secret that is encrypted with
the public key Q_s from the server's certificate. The client is authenticated via its signature over
the handshake transcript.

In general, the key exchange process for both the CTR_OMAC and CNT_IMIT cipher suites consists
of the following steps:

1. The client generates the ephemeral key pair (d_eph, Q_eph) that corresponds to the server's
public key Q_s stored in its certificate.

2. The client generates the preliminary secret PS. The PS value is chosen from B_32 at random.

3.Using d_eph and Q_s, the client generates the export key material (see Sections 4.2.4.1 and
4.2.4.2) for the particular key export algorithm (see Sections 8.2.1 and 8.2.2) to generate the
export representation PSExp of the PS value.

4. The client sends its ephemeral public key Q_eph and PSExp value in the ClientKeyExchange
message.

5. Using its private key d_s, the server generates the import key material (see Sections 4.2.4.1
and 4.2.4.2) for the particular key import algorithm (see Sections 8.2.1 and 8.2.2) to extract the
preliminary secret PS from the export representation PSExp.

Smyshlyaev, et al. Informational Page 10

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

This section specifies the data structures and computations used by the profile of TLS 1.2 with
GOST algorithms. The specifications for the ClientHello, ServerHello, Server Certificate,
CertificateRequest, ClientKeyExchange, CertificateVerify, and Finished handshake messages are
described in further detail below.

4.2.1. Hello Messages

The ClientHello message is generated in accordance with Section 7.4.1.2 of [RFC5246] and must
meet the following requirements:

* The ClientHello.compression_methods field MUST contain exactly one byte, set to zero, which
corresponds to the "null" compression method.

* The ClientHello.extensions field MUST contain the signature_algorithms extension (see
[RFC5246]).

If the negotiated cipher suite is one of CTR_OMAC/CTR_IMIT and the signature_algorithms
extension in the ClientHello message does not contain the values defined in Section 5, the
server MUST either abort the connection or ignore this extension and behave as if the client
had sent the signature_algorithms extension with the values {8, 64} and {8, 65}.

The ServerHello message is generated in accordance with Section 7.4.1.3 of [RFC5246] and must
meet the following requirements:

* The ServerHello.compression_method field MUST contain exactly one byte, set to zero, which
corresponds to the "null" compression method.

* The ServerHello.extensions field MUST NOT contain the encrypt_then_mac extension (see
[RFC7366]).

4.2.2. Server Certificate

This message is used to authentically convey the server's public key Q_s to the client and is
generated in accordance with Section 7.4.2 of [RFC5246].

Upon receiving this message, the client validates the certificate chain, extracts the server's public
key, and checks that the key type is appropriate for the negotiated key exchange algorithm. (A
possible reason for a fatal handshake failure is that the client's capabilities for handling elliptic
curves and point formats are exceeded).

4.2.3. CertificateRequest
This message is sent by the server when requesting client authentication and is generated in

accordance with Section 7.4.4 of [RFC5246].

If the CTR_OMAC or CNT_IMIT cipher suite is negotiated, the CertificateRequest message MUST
meet the following requirements:

* the CertificateRequest.supported_signature_algorithm field MUST contain only signature/
hash algorithm pairs with the values {8, 64} or {8, 65} defined in Section 5;

» the CertificateRequest.certificate_types field MUST contain only the gost_sign256 (67) or
gost_sign512 (68) values defined in Section 7.

Smyshlyaev, et al. Informational Page 11

https://www.rfc-editor.org/rfc/rfc5246#section-7.4.1.2
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.1.3
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.2
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.4

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

4.2.4. ClientKeyExchange

The ClientKeyExchange message is defined as follows:

enum { vko_kdf_gost, vko_gost } KeyExchangeAlgorithm;

struct {
select (KeyExchangeAlgorithm) {
case vko_kdf_gost: GostKeyTransport;
case vko_gost: TLSGostKeyTransportBlob;
} exchange_keys;
} ClientKeyExchange;

The body of the ClientKeyExchange message consists of a GostKeyTransport/
TLSGostKeyTransportBlob structure that contains an export representation of the preliminary
secret PS.

The GostKeyTransport structure corresponds to the CTR_OMAC cipher suites and is described in
Section 4.2.4.1, and the TLSGostKeyTransportBlob structure corresponds to the CNT_IMIT cipher
suite and is described in Section 4.2.4.2.

The DER encoding rules are used to encode the GostKeyTransport and the
TLSGostKeyTransportBlob structures.

4.2.4.1. CTR_ OMAC

In the CTR_OMAC cipher suites, the body of the ClientKeyExchange message consists of the
GostKeyTransport structure that is defined below.

The client generates the ClientKeyExchange message in accordance with the following steps:
1. Generates the ephemeral key pair (Q_eph, d_eph), where:

d_eph is chosen from {1, ... , gq_s - 1} at random;

Q_eph = d_eph * P_s.

2. Generates the preliminary secret PS, where PS is chosen from B_32 at random.

3. Generates export keys (K_EXP_MAC and K_EXP_ENC) using the KEG algorithm defined in
Section 8.3.1:

H = HASH(r_c | r_s);

K_EXP_MAC | K_EXP_ENC = KEG(d_eph, Q_s, H).

4. Generates an export representation PSExp of the preliminary secret PS using the KExp15
algorithm defined in Section 8.2.1:

Smyshlyaev, et al. Informational Page 12

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

IV = H[25..24 + n / 2];

PSExp = KExp15(PS, K_EXP_MAC, K_EXP_ENC, IV).

5. Generates the ClientKeyExchange message using the GostKeyTransport structure that is
defined as follows:

GostKeyTransport ::= SEQUENCE {
keyExp OCTET STRING,
ephemeralPublicKey SubjectPublicKeyInfo,
ukm OCTET STRING OPTIONAL

}

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING

}

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY OPTIONAL

}

where the keyExp field contains the PSExp value, the ephemeralPublicKey field contains the
Q_ephvalue, and the ukm field MUST be ignored by the server.

Upon receiving the ClientKeyExchange message, the server process is as follows.

1. The following three conditions are checked. If any of these checks fail, then the server MUST
abort the handshake with an alert.
o Q_ephbelongs to the same curve as server public key Q_s;

o Q_ephis not equal to zero point;
o q_s* Q_ephis equal to zero point.

2. The export keys (K_EXP_MAC and K_EXP_ENC) are generated using the KEG algorithm defined
in Section 8.3.1:

H = HASH(r_c | r_s);
K_EXP_MAC | K_EXP_ENC = KEG(d_s, Q_eph, H).
3. The preliminary secret PS is extracted from the export representation PSExp using the
KImp15 algorithm defined in Section 8.2.1:

Iv

H[25..24 + n / 2];

PS

KImp15(PSExp, K_EXP_MAC, K_EXP_ENC, IV).

Smyshlyaev, et al. Informational Page 13

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

4.2.4.2. CNT_IMIT

In the CNT_IMIT cipher suite, the body of the ClientKeyExchange message consists of a
TLSGostKeyTransportBlob structure that is defined below.

The client generates the ClientKeyExchange message in accordance with the following steps:

1. The ephemeral key pair (Q_eph, d_eph) is generated, where:
d_eph is chosen from {1, ... , gq_s - 1} at random;
Q_eph = d_eph * P_s.

2. The preliminary secret PS is generated, where PS is chosen from B_32 at random.

3. The export key (K_EXP) is generated using the KEG_28147 algorithm defined in Section 8.3.2:
H = HASH(r_c | r_s);
K_EXP = KEG_28147(d_eph, Q_s, H).

4. An export representation PSExp of the preliminary secret PS using the KExp28147 algorithm

defined in Section 8.2.2 is generated:

PSExp = IV | CEK_ENC | CEK_MAC = KExp28147(PS, K_EXP, H[1..8]).

5. The ClientKeyExchange message is generated using the TLSGostKeyTransportBlob structure
that is defined as follows:

TLSGostKeyTransportBlob ::= SEQUENCE {

keyBlob GostR3410-KeyTransport
}
GostR3410-KeyTransport ::= SEQUENCE {

sessionEncryptedKey Gost28147-89-EncryptedKey,
transportParameters [@] IMPLICIT GostR3410-
TransportParameters OPTIONAL

}

Gost28147-89-EncryptedKey ::= SEQUENCE {
encryptedKey Gost28147-89-Key,
maskKey [0] IMPLICIT Gost28147-89-Key OPTIONAL,
macKey Gost28147-89-MAC

}

GostR3410-TransportParameters ::= SEQUENCE {
encryptionParamSet OBJECT IDENTIFIER,
ephemeralPublicKey [0] IMPLICIT SubjectPublicKeyInfo

OPTIONAL,
ukm OCTET STRING

where GostR3410-KeyTransport, Gost28147-89-EncryptedKey, and GostR3410-
TransportParameters are defined according to Section 4.2.1 of [RFC4490].

Smyshlyaev, et al. Informational Page 14

https://www.rfc-editor.org/rfc/rfc4490#section-4.2.1

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

In the context of this document, the GostR3410-KeyTransport.transportParameters field is always
used, the Gost28147-89-EncryptedKey.maskKey field is omitted, and the GostR3410-
KeyTransport.transportParameters.ephemeralPublicKey field is always used.

The Gost28147-89-EncryptedKey.encryptedKey field contains the CEK_ENC value, the
Gost28147-89-EncryptedKey.macKey field contains the CEK_MAC value, and the GostR3410-
TransportParameters.ukm field contains the initialization vector (IV) value.

The keyBlob.transportParameters.ephemeralPublicKey field contains the client ephemeral public
key Q_eph. The encryptionParamSet contains the value 1.2.643.7.1.2.5.1.1, which corresponds to
the id-tc26-gost-28147-param-Z parameters set defined in [RFC7836].

Upon receiving the ClientKeyExchange message, the server process is as follows.

1. The following three conditions are checked. If either of these checks fails, then the server
MUST abort the handshake with an alert.
° Q_ephbelongs to the same curve as server public key Q_s;

o Q_ephis not equal to zero point;
o _s* Q_ephis equal to zero point.

2. The export key (K_EXP) is generated using the KEG_28147 algorithm defined in Section 8.3.2:
H = HASH(r_c | r_s);
K_EXP = KEG_28147(d_s, Q_eph, H).
3. The preliminary secret PS is extracted from the export representation PSExp using the
KImp28147 algorithm defined in Section 8.2.2:

PS = KImp28147(PSExp, K_EXP, H[1..8]1).

4.2.5. CertificateVerify

The client generates the value sgn as follows:
sgn = SIGN_{d_c}(handshake_messages) = str_1(r) | str_1(s)

where SIGN_{d_c} is the GOST R 34.10-2012 [RFC7091] signature algorithm, d_c is a client long-term
private key that corresponds to the client long-term public key Q_c from the client's certificate, 1 =
32 for the gostr34102012_256 value of the SignatureAndHashAlgorithm field, and 1 = 64 for the
gostr34102012_512 value of the SignatureAndHashAlgorithm field.

Here, "handshake_messages" refers to all handshake messages sent or received, starting at
ClientHello and up to CertificateVerify without the last message; it includes the type and length
fields of the handshake messages.

The TLS CertificateVerify message is specified as follows:

Smyshlyaev, et al. Informational Page 15

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

struct {
SignatureAndHashAlgorithm algorithm;
opaque signature<@..2216-1>;

} CertificateVerify;

where the SignatureAndHashAlgorithm structure is specified in Section 5, and the
CertificateVerify.signature field contains the sgn value.

4.2.6. Finished
The TLS Finished message is generated in accordance with Section 7.4.9 of [RFC5246].

The verify_data_length value is equal to 32 for the CTR_OMAC cipher suites and is equal to 12 for
the CNT_IMIT cipher suite. The pseudorandom function (PRF) is defined in Section 4.3.4.

4.3. Cryptographic Algorithms

4.3.1. Block Cipher

The cipher suite TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC MUST use Kuznyechik
[RFC7801] as a base block cipher for the encryption and MAC algorithm. The block length n is 16
bytes, and the key length k is 32 bytes.

The cipher suite TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC MUST use Magma [RFC8891]
as a base block cipher for the encryption and MAC algorithm. The block length n is 8 bytes, and
the key length k is 32 bytes.

The cipher suite TLS_GOSTR341112_256_WITH_28147_CNT_IMIT MUST use GOST 28147-89 as a base
block cipher [RFC5830] with the set of parameters id-tc26-gost-28147-param-Z defined in
[RFC7836]. The block length n is 8 bytes, and the key length k is 32 bytes.

4.3.2. MAC Algorithm

The CTR_OMALC cipher suites use the One-Key MAC (OMAC) construction defined in
[GOST3413-2015], which is the same as the Cipher-Based MAC (CMAC) mode defined in [CMAC]
where the Kuznyechik or Magma block cipher (see Section 4.3.1) is used instead of the AES block
cipher (see [IK2003] for more detail) as the MAC function. The resulting MAC length is equal to the
block length, and the MAC key length is 32 bytes.

The CNT_IMIT cipher suite uses the MAC function gostIMIT28147 defined in Section 8.4 with the
initialization vector IV = IV0, where IV0 in B_8 is a string of all zeros, with the CryptoPro Key
Meshing algorithm defined in [RFC4357]. The resulting MAC length is 4 bytes, and the MAC key
length is 32 bytes.

4.3.3. Encryption Algorithm

The CTR_OMALC cipher suites use the block cipher in the CTR-ACPKM encryption mode defined in
[RFC8645] as the ENC function. The section size N is 4 KB for the
TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC cipher suite and 1 KB for the
TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC cipher suite.

Smyshlyaev, et al. Informational Page 16

https://www.rfc-editor.org/rfc/rfc5246#section-7.4.9

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

The CNT_IMIT cipher suite uses the block cipher in counter encryption mode (CNT) defined in
Section 6 of [RFC5830], with the CryptoPro key meshing algorithm defined in [RFC4357] as the ENC
function.

Note that the counter modes used in cipher suites described in this document act as stream
ciphers.

4.3.4. PRF and HASH Algorithms

The PRF for all the cipher suites defined in this document is the PRF_TLS_GOSTR3411_2012_256
function defined in [RFC7836].

The hash function HASH for all the cipher suites defined in this document is the GOST R 34.11-2012
[RFC6986] hash algorithm with a 32-byte (256-bit) hash code.

4.3.5. SNMAX Parameter

The SNMAX parameter defines the maximal value of the seqnum sequence number during one
TLS 1.2 connection and is defined as follows:

Cipher Suites SNMAX

TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC SNMAX = 2641
TLS_GOSTR341112_256_WITH_28147 CNT_IMIT

TLS_GOSTR341112_256_ WITH_MAGMA_CTR_OMAC SNMAX =232 _1

Table 1

5. New Values for the TLS SignatureAlgorithm Registry

The signature/hash algorithm pairs are used to indicate to the server/client which algorithms can
be used in digital signatures and are defined by the SignatureAndHashAlgorithm structure (see
Section 7.4.1.4.1 of [RFC5246]).

This document defines new values for the "TLS SignatureAlgorithm" registry that can be used in
the SignatureAndHashAlgorithm.signature field for the particular signature/hash algorithm pair:

enum {
gostr34102012_256(64),
gostr341020812_512(65),
} SignatureAlgorithm;

where the gostr34102012_256 and gostr34102012_512 values correspond to the GOST R 34.10-2012
[RFC7091] signature algorithm with a 32-byte (256-bit) and 64-byte (512-bit) key length,
respectively.

Smyshlyaev, et al. Informational Page 17

https://www.rfc-editor.org/rfc/rfc5830#section-6
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.1.4.1

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

According to [RFC7091], the GOST R 34.10-2012 signature algorithm with a 32-byte (256-bit) or 64-
byte (512-bit) key length uses the GOST R 34.11-2012 [RFC6986] hash algorithm with a 32-byte (256-
bit) or 64-byte (512-bit) hash code, respectively (the hash algorithm is intrinsic to the signature
algorithm). Therefore, if the SignatureAndHashAlgorithm.signature field of a particular hash/
signature pair listed in the Signature Algorithms Extension is equal to the 64 (gostr34102012_256)
or 65 (gostr34102012_512) value, the SignatureAndHashAlgorithm.hash field of this pair MUST
contain the "Intrinsic" value 8 (see [RFC8422]).

So, to represent gostr34102012_256 and gostr34102012_512 in the signature_algorithms extension,
the value shall be (8,64) and (8,65), respectively.

6. New Values for the TLS Supported Groups Registry

The Supported Groups Extension indicates the set of elliptic curves supported by the client and is
defined in [RFC8422] and [RFC7919].

This document defines new values for the "TLS Supported Groups" registry:

enum A
GC256A(34), GC256B(35), GC256C(36), GC256D(37),
GC512A(38), GC512B(39), GC512C(40),

} NamedGroup;

where the values correspond to the following curves:

Description Curve Identifier Value Reference
GC256A id-tc26-gost-3410-2012-256-paramSetA [RFC7836]
GC256B id-GostR3410-2001-CryptoPro-A-ParamSet [RFC4357]
GC256C id-GostR3410-2001-CryptoPro-B-ParamSet [RFC4357]
GC256D 1d-GostR3410-2001-CryptoPro-C-ParamSet ~ [RFC4357]
GC512A id-tc26-gost-3410-12-512-paramSetA [REC7836]
GC512B id-tc26-gost-3410-12-512-paramSetB [RFC7836]
GC512C id-tc26-gost-3410-2012-512-paramSetC [REC7836]
Table 2

Smyshlyaev, et al. Informational Page 18

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

7. New Values for the TLS ClientCertificateType Identifiers
Registry

The ClientCertificateType field of the CertificateRequest message contains a list of certificate
types that the client may offer and is defined in Section 7.4.4 of [RFC5246].

This document defines new values for the "TLS ClientCertificateType Identifiers" registry:

enum {
gost_sign256(67),
gost_sign512(68),

} ClientCertificateType;

To use the gost_sign256 or gost_sign512 authentication mechanism, the client MUST possess a
certificate containing a GOST R 34.10-2012-capable public key that corresponds to the 32-byte
(256-bit) or 64-byte (512-bit) signature key, respectively.

The client proves possession of the private key corresponding to the certified key by including a
signature in the CertificateVerify message as described in Section 4.2.5.

8. Additional Algorithms

The cipher suites specified in this document rely on some additional algorithms, specified below;
the use of these algorithms is not confined to the use in TLS specified in this document.

8.1. TLSTREE
The TLSTREE function is defined as follows:

TLSTREE(K_root, i) = KDF_3(KDF_2(KDF_1(K_root, STR_8(i & C_1)),
STR_8(i & C_2)), STR_8(i & C_3)),

where

* K rootin B_32;

*iin{0,1,..,2%%-1};

*C_1,C_2,C_3 are constants defined by the particular cipher suite (see Section 8.1.1);

*KDF_j(K,D),j=1,2,3,Kin B_32,D in B_8, is the key derivation function based on the
KDF_GOSTR3411_2012 256 function defined in [RFC7836]:

Smyshlyaev, et al. Informational Page 19

https://www.rfc-editor.org/rfc/rfc5246#section-7.4.4

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

KDF_1(K, D) = KDF_GOSTR3411_2012_256(K, "levell", D);
KDF_2(K, D) = KDF_GOSTR3411_2012_256(K, "level2", D); and
KDF_3(K, D) = KDF_GOSTR3411_2012_256(K, "level3", D).

8.1.1. Key Tree Parameters

The CTR_OMALC cipher suites use the TLSTREE function for the rekeying approach. The constants
for it are defined as in the table below.

Cipher Suites c1,Cc2C3
TLS_GOSTR341112_256 WITH_KUZNYECHIK CTR_OMAC C_1=0xFFEFFFFF00000000

C_2=0xFFFFFFFFFFF80000
C_3=0xFFFFFFFFFFFFFFCO

TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC C_1=0xFFEFFEC000000000

C_2=0xFFFFFFFFFE000000
C_3=0xFFFFFFFFFFFFF000

Table 3

8.2. Key Export and Key Import Algorithms

8.2.1. KExp15 and KImp15 Algorithms
Algorithms KExp15 and KImp15 use the block cipher determined by the particular cipher suite.

The KExp15 key export algorithm is defined as follows:

| Input: |
| - secret S to be exported, S in B¥*,

| - key K_Exp_MAC in B_k,

| - key K_Exp_ENC in B_Kk,

| - IV in B_{n/2} |
| Output: |
| export representation SExp in B_{L(S)+n}

| 1. CEK_MAC = OMAC(K_Exp_MAC, IV | S), CEK_MAC in B_n |
| 2. SExp = CTR-Encrypt(K_Exp_ENC, IV, S | CEK_MAC) |
| 3. return SExp |

Smyshlyaev, et al. Informational Page 20

RFC9189 GOST Cipher Suites for TLS 1.2 March 2022

where the OMAC function is defined in [MODES] and the CTR-Encrypt(K, IV, S) function denotes
the encryption of message S on key Kand nonce IV in the CTR mode with s =n (see [MODES]).

The KImp15 key import algorithm is defined as follows:

| KImp15(SExp, K_Exp_MAC, K_Exp_ENC, IV)
ety |
| Input: |
| - export representation SExp in B*

| - key K_Exp_MAC in B_k,

| - key K_Exp_ENC in B_Kk,

| - IV in B_{n/2} |
| Output: |
| - secret S in B_{L(SExp)-n} or FAIL

| == |
| 1. S | CEK_LMAC = CTR-Decrypt(K_Exp_ENC, IV, SExp), CEK_MAC in B_n|
| 2. If CEK_MAC = OMAC(K_Exp_MAC, IV | S)

| then return S; else return FAIL

where the OMAC function is defined in [MODES] and the CTR-Decrypt(K, IV, S) function denotes
the decryption of message S on key Kand nonce IV in the CTR mode (see [MODES]).

The keys K_Exp_MAC and K_Exp_ENC MUST be independent. For every pair of keys (K_Exp_ENC,
K_Exp_MAQC), the IV values MUST be unique. For the import of a key with the KImp15 algorithm,
the IV value may be sent with the export key representation.

8.2.2. KExp28147 and KImp28147 Algorithms
The KExp28147 key export algorithm is defined as follows:

| KExp28147(S, K, IV) |

| Input: |
| - secret S to be exported, S in B_32,

| - key K in B_32, |
| - IV in B_8. |
| Output: |
| export representation SExp in B_44

1. CEK_MAC = gost28147IMIT(IV, K, S), CEK_MAC in B_4
| 2. CEK_ENC = ECB-Encrypt(K, S), CEK_ENC in B_32
3. return SExp = IV | CEK_ENC | CEK_MAC

where the gost28147IMIT function is defined in Section 8.4 and the ECB-Encrypt(K, S) function
denotes the encryption of message S on key Kwith the block cipher GOST 28147-89 in the
electronic codebook (ECB) mode (see [RFC5830]).

The KImp28147 key import algorithm is defined as follows:

Smyshlyaev, et al. Informational Page 21

RFC9189 GOST Cipher Suites for TLS 1.2

+ __
| KImp28147(SExp, K, IV)

| ___

| Input:

| - export representation SExp in B_44,

| - key K in B_32,

| - IV in B_8.

| Output:

| - imported secret S in B_32 or FAIL

| ___

| 1. extract from SExp

| IV' = SExp[1..8],

| CEK_ENC = SExp[9..40],

| CEK_MAC = SExp[41..44]

| 2. if IV' !'= IV then return FAIL; else

| 3. S = ECB-Decrypt(K, CEK_ENC), S in B_32

| 4. If CEK_MAC = gost28147IMIT(IV, K, S)

| then return S; else return FAIL

+ __

March 2022

where the gost28147IMIT function is defined in Section 8.4 and the ECB-Decrypt(CEK_ENC, M)
function denotes the decryption of ciphertext CEK_ENC on key Kwith a block cipher GOST

28147-89 in the ECB mode (see [RFC5830]).

8.3. Key Exchange Generation Algorithms

8.3.1. KEG Algorithm
The KEG algorithm is defined as follows:

+ __
| KEG(d, Q, H)

| ___

| Input:

| - private key d,

| - public key Q,

| - H in B_32.

| Output:

| - key material K in B_64.

| ___

| 1. If g * Q is not equal to zero point

| return FAIL

| 2. If 22254 < q < 27256

| return KEG_256(d, Q, H)

| 3. If 22508 < q < 2512

| return KEG_512(d, Q, H)

| 4. return FAIL

+ __

where q is an order of a cyclic subgroup of elliptic curve points group containing point Q, d in {1,

v, -1}

The KEG_256 algorithm is defined as follows:

Smyshlyaev, et al. Informational

Page 22

RFC9189 GOST Cipher Suites for TLS 1.2

Input:

- private key d,

- public key Q,

- H in B_32.

Output:

key material K in B_64.

1. r = INT(H[1..16])
2. If r =20
UKM = 1; else UKM = r
. K_EXP = VKO_256(d, Q, UKM)
4. seed = H[17..24]

w

5. return KDFTREE_256(K_EXP, "kdf tree", seed, 1)

March 2022

where VKO_256 is the function VKO_GOSTR3410_2012_256 defined in [RFC7836] and KDFTREE_256
is the KDF_TREE_GOSTR3411_2012_256 function defined in [RFC7836] with the parameter L equal

to 512.

The KEG_512 algorithm is defined as follows:

| Input:

| - private key d,

| - public key Q,

| - H in B_32.

| Output:

| - key material K in B_64.

| 1. r = INT(H[1..16])

| 2. Ifr =0

| UKM = 1; else UKM = r
| 3. return VKO_512(d, Q, UKM)

where VKO_512 is the VKO_GOSTR3410_2012_512 function defined in [RFC7836].

8.3.2. KEG_28147 Algorithm
The KEG_28147 algorithm is defined as follows:

Smyshlyaev, et al. Informational

Page 23

RFC9189

- H in B_32.
Output:
- key material K in B_32.
| __
| 1. If g * Q is not equal to zero point
| return FAIL
| 2. UKM = H[1..8]
| 3. R