Operations and Management Area Working Group
Internet Engineering Task Force (IETF) M. Boucadair, Ed.
Internet-Draft
Request for Comments: 9835 Orange
Intended status:
Category: Standards Track R. Roberts
Expires: 27 July 2025
ISSN: 2070-1721 Juniper
O. G. D. Gonzalez de Dios
Telefonica
S. B. Barguil Giraldo
Nokia
B. Wu
Huawei Technologies
23 January
August 2025
A Network YANG Data Model for Attachment Circuits
draft-ietf-opsawg-ntw-attachment-circuit-16
Abstract
This document specifies a network model for attachment circuits. The
model can be used for the provisioning of attachment circuits prior
to or during service provisioning (e.g., VPN, Network Slice Service).
A companion service model is specified in the YANG "YANG Data Models for
Bearers and 'Attachment Circuits'-as-a-Service (ACaaS) (I-D.ietf-
opsawg-teas-attachment-circuit). (ACaaS)" (RFC9834).
The module augments the base network ('ietf-network') and the Service
Attachment Point (SAP) models with the detailed information for the
provisioning of attachment circuits in Provider Edges (PEs).
Discussion Venues
This note is to be removed before publishing as an RFC.
Discussion of this document takes place on the Operations and
Management Area Working Group Working Group mailing list
(opsawg@ietf.org), which is archived at
https://mailarchive.ietf.org/arch/browse/opsawg/.
Source for this draft and an issue tracker can be found at
https://github.com/boucadair/attachment-circuit-model.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list It represents the consensus of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid the IETF community. It has
received public review and has been approved for a maximum publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of six months RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be updated, replaced, or obsoleted by other documents obtained at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 27 July 2025.
https://www.rfc-editor.org/info/rfc9835.
Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info)
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Editorial Note (To be removed by RFC Editor) . . . . . . 5
2. Conventions and Definitions . . . . . . . . . . . . . . . . . 5
3. Relationship to Other AC Data Models . . . . . . . . . . . . 7
4. Sample Uses of the Attachment Circuit Data Models . . . . . . 8
4.1. ACs Terminated by One or Multiple Customer Edges (CEs) . 8
4.2. Positioning the AC Network Model in the Overall Service
Delivery Process . . . . . . . . . . . . . . . . . . . . 10
5. Description of the Attachment Circuit YANG Module . . . . . . 12
5.1. Overall Structure of the Module . . . . . . . . . . . . . 12
5.2. References . . . . . . . . . . . . . . . . . . . . . . . 15
5.3. Provisioning Profiles . . . . . . . . . . . . . . . . . . 16
5.4. L2 Connection . . . . . . . . . . . . . . . . . . . . . . 18
5.5. IP Connection . . . . . . . . . . . . . . . . . . . . . . 21
5.6. Routing . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6.1. Static Routing . . . . . . . . . . . . . . . . . . . 25
5.6.2. BGP . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6.3. OSPF . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6.4. IS-IS . . . . . . . . . . . . . . . . . . . . . . . . 37
5.6.5. RIP . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6.6. VRRP . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7. OAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.8. Security . . . . . . . . . . . . . . . . . . . . . . . . 46
5.9. Service . . . . . . . . . . . . . . . . . . . . . . . . . 47
6. YANG Module . . . . . . . . . . . . . . . . . . . . . . . . . 50
7. Security Considerations . . . . . . . . . . . . . . . . . . . 92
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 93
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.1. Normative References . . . . . . . . . . . . . . . . . . 94
9.2. Informative References . . . . . . . . . . . . . . . . . 97
Appendix A. Examples . . . . . . . . . . . . . . . . . . . . . . 99
A.1. VPLS . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.2. Parent AC . . . . . . . . . . . . . . . . . . . . . . . . 105
Appendix B. Full Tree . . . . . . . . . . . . . . . . . . . . . 106
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 119
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 120
1. Introduction
Connectivity services are provided by networks to customers via
dedicated terminating points, such as Service Functions [RFC7665],
customer edges
Customer Edges (CEs), peer Autonomous System Border Routers (ASBRs),
data centers center gateways, or Internet Exchange Points.
The procedure to provision a service in a service provider network
may depend on the practices adopted by a service provider, including
the flow put in place for the provisioning of advanced network
services and how they are bound to an attachment circuit (AC). For
example, the same attachment circuit may host multiple services
(e.g., Layer 2 Virtual Private Network (VPN), or VPN (L2VPN), Layer 3 VPN, VPN (L3VPN), or Network Slice
Service [RFC9543]). In order to avoid service interference and
redundant information in various locations, a service provider may
expose an interface to manage ACs network-wide. Customers can then
request a standalone attachment circuit to be put in place, place and then refer
to that attachment circuit when requesting services to be bound to
that AC.
[I-D.ietf-opsawg-teas-attachment-circuit] [RFC9834] specifies a data model for managing attachment circuits Attachment
Circuits as a service. Service (ACaaS).
Section 6 specifies a network model for attachment circuits ("ietf-
ac-ntw"). The model can be used for the provisioning of ACs in a
provider network prior to or during service provisioning. For
example,
[I-D.ietf-opsawg-ac-lxsm-lxnm-glue] [RFC9836] specifies augmentations to the L2VPN Network Model
(L2NM) [RFC9291] and the L3VPN Network Model (L3NM) [RFC9182] to bind
LxVPNs to ACs that are provisioned using the procedure defined in
this document.
The
This document leverages [RFC9182] and [RFC9291] by adopting an AC
provisioning structure that uses data nodes that are defined in those
RFCs. Some refinements were introduced to cover not only
conventional service provider networks, networks but also specifics of other
target deployments (e.g., cloud network).
The AC network model is designed as augmentations of both the 'ietf-
network' model [RFC8345] and the Service Attachment Point (SAP) model
[RFC9408]. An attachment circuit can be bound to a single or
multiple SAPs. Likewise, the model is designed to accommodate
deployments where a SAP can be bound to one or multiple ACs (e.g., a
parent AC and its child ACs).
.--.
|CE6|
'-+'
ac | .--. .--.
| |CE5+------+------+CE2|
.-----+-----. '--' | '--'
| | |ac
| | |
.+. .+. .+.
.-+sap+-------+sap+-. .-+sap+-------------.
| '-' '-' | | '-' |
| PE1 | | PE2 |
.--. .+. | | |
|CE1+--+sap| | | |
'--' ac '+' | | |
'-------------------' '-------------------'
.-------------------. .-------------------.
| | | .+. ac .--.
| PE3 | | PE4 |sap+--+CE5|
| | | '-' '--'
| | | |
| .-. | | .-. .-. .-. |
'-------------+sap+-' '-+sap+-+sap+-+sap+-'
'+' '+' '+' '+'
|ac | |ac |ac
.+-. | .+-. |
|CE3+-----ac-----' |CE4+---'
'--' '--'
Figure 1: Attachment Circuits Examples
The AC network model uses the AC common model defined in
[I-D.ietf-opsawg-teas-common-ac]. [RFC9833].
The YANG 1.1 [RFC7950] data model in this document conforms to the
Network Management Datastore Architecture (NMDA) defined in
[RFC8342].
Sample
Some examples are provided in Appendix A.
1.1. Editorial Note (To be removed by RFC Editor)
Note to the RFC Editor: This section is to be removed prior to
publication.
This document contains placeholder values that need to be replaced
with finalized values at the time of publication. This note
summarizes all of the substitutions that are needed.
Please apply the following replacements:
* CCCC --> the assigned RFC number for
[I-D.ietf-opsawg-teas-common-ac]
* SSSS --> the assigned RFC number for
[I-D.ietf-opsawg-teas-attachment-circuit]
* XXXX --> the assigned RFC number for this I-D
* 2025-01-07 --> the actual date of the publication of this document
2. Conventions and Definitions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
The reader should be familiar with the terms defined in Section 2 of
[RFC9408].
This document uses the term "network model" as defined in Section 2.1
of [RFC8969].
The meanings of the symbols in the YANG tree diagrams are defined in
[RFC8340].
LxSM refers to both the Layer 2 Service Model (L2SM) [RFC8466] and
the Layer 3 Service Model (L3SM) [RFC8299].
LxNM refers to both the L2VPN Network Model (L2NM) [RFC9291] and the
L3VPN Network Model (L3NM) [RFC9182].
LxVPN refers to both L2VPN and L3VPN.
The following are used in the module prefixes:
ac: Attachment circuit
ntw: Network
sap: Service Attchment Attachment Point
svc: Service
In addition, this document uses the following terms:
Bearer: A physical or logical link that connects a customer node (or
site) to a provider network.
A bearer can be a wireless or wired link. One or multiple
technologies can be used to build a bearer. The bearer type can
be specified by a customer.
The operator allocates a unique bearer reference to identify a
bearer within its network (e.g., customer line identifier). Such
a reference can be retrieved by a customer and then used in
subsequent service placement requests to unambiguously identify
where a service is to be bound.
The concept of a bearer can be generalized to refer to the
required underlying connection for the provisioning of an
attachment circuit.
One or multiple attachment circuits may be hosted over the same
bearer (e.g., multiple Virtual Local Area Networks (VLANs) on the
same bearer that is provided by a physical link).
Network controller: Denotes a functional entity responsible for the
management of the service provider network. One or multiple
network controllers can be deployed in a service provider network.
Service orchestrator: Refers to a functional entity that interacts
with the customer of a network service.
A service orchestrator is typically responsible for the attachment
circuits, the Provider Edge (PE) selection, and requesting the
activation of the requested services to a network controller.
A service orchestrator may interact with one or more network
controllers.
Service provider network: A network that is able to provide network
services (e.g., LxVPN or Network Slice Services).
Service provider: An entity that offers network services (e.g.,
LxVPN or Network Slice Services).
The names of data nodes are prefixed using the prefix associated with
the corresponding imported YANG module as shown in Table 1:
+=============+=====================+=========================+
+=============+=====================+==========================+
| Prefix | Module | Reference |
+=============+=====================+=========================+
+=============+=====================+==========================+
| ac-common | ietf-ac-common | RFC CCCC [RFC9833] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| ac-svc | ietf-ac-svc | Section 5.2 of RFC SSSS [RFC9834] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| dot1q-types | ieee802-dot1q-types | [IEEE802.1Qcp] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| if | ietf-interfaces | [RFC8343] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| inet | ietf-inet-types | Section 4 of [RFC6991] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| key-chain | ietf-key-chain | [RFC8177] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| nacm | ietf-netconf-acm | [RFC8341] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| nw | ietf-network | [RFC8345] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| rt-types | ietf-routing-types | [RFC8294] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| rt-pol | ietf-routing-policy | [RFC9067] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| sap | ietf-sap-ntw | [RFC9408] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
| vpn-common | ietf-vpn-common | [RFC9181] |
+-------------+---------------------+-------------------------+
+-------------+---------------------+--------------------------+
Table 1: Modules and Their Associated Prefixes
3. Relationship to Other AC Data Models
Figure 2 depicts the relationship between the various AC data models:
* "ietf-ac-common" ([I-D.ietf-opsawg-teas-common-ac]) [RFC9833]
* "ietf-bearer-svc" (Section 5.1 6.1 of
[I-D.ietf-opsawg-teas-attachment-circuit]) [RFC9834])
* "ietf-ac-svc" (Section 5.2 6.2 of
[I-D.ietf-opsawg-teas-attachment-circuit]) [RFC9834])
* "ietf-ac-ntw" (Section 6)
* "ietf-ac-glue" ([I-D.ietf-opsawg-ac-lxsm-lxnm-glue]) [RFC9836]
ietf-ac-common
^ ^ ^
| | |
.----------' | '----------.
| | |
| | |
ietf-ac-svc <--- ietf-bearer-svc |
^ ^ |
| | |
| '------------------------ ietf-ac-ntw
| ^
| |
| |
'------------ ietf-ac-glue ----------'
X --> Y: X imports Y
Figure 2: AC Data Models
The "ietf-ac-common" module is imported by the "ietf-bearer-svc",
"ietf-ac-svc", and "ietf-ac-ntw" modules. Bearers managed using the
"ietf-bearer-svc" module may be referenced by service ACs managed
using the "ietf-ac-svc" module. Similarly, a bearer managed using
the "ietf-bearer-svc" module may list the set of ACs that use that
bearer. To facilitate correlation between an AC service request and
the actual AC provisioned in the network, "ietf-ac-ntw" leverages the
AC references exposed by the "ietf-ac-svc" module. Furthermore, to
bind Layer 2 VPN or Layer 3 VPN services with ACs, the "ietf-ac-glue"
module augments the LxSM and LxNM with AC service references exposed
by the "ietf-ac-svc" module and AC network references exposed by the
"ietf-ac-ntw" module.
4. Sample Uses of the Attachment Circuit Data Models
4.1. ACs Terminated by One or Multiple Customer Edges (CEs)
Figure 3 depicts a sample target topology that involve ACs:
* ACs are terminated by a SAP at the network side. See Figure 1 for
an example of SAPs within a PE.
* A CE can be either a physical device or a logical entity. Such a
logical entity is typically a software component (e.g., a virtual
service function
Service Function that is hosted within the provider's network or a
third-party infrastructure). A CE is seen by the network as a
peer SAP [RFC9408].
* CEs may be either dedicated to one single connectivity service or
host multiple connectivity services (e.g., CEs with roles of
service functions
Service Functions [RFC7665]).
* A network provider may bind a single AC to one or multiple peer
SAPs (e.g., CE1 and CE2 are tagged as peer SAPs for the same AC).
For example, and as discussed in [RFC4364], multiple CEs can be
attached to a PE over the same attachment circuit. This scenario
is typically implemented when the Layer 2 infrastructure between
the CE and the network is a multipoint service.
* A single CE may terminate multiple ACs, which can be associated
with the same bearer or distinct bearers (e.g., CE4).
* Customers may request protection schemes in which the ACs
associated with their endpoints are terminated by the same PE
(e.g., CE3), distinct PEs (e.g., CE4), etc. The network provider
uses this request to decide where to terminate the AC in the
service provider network and also whether to enable specific
capabilities (e.g., Virtual Router Redundancy Protocol (VRRP)).
The
"ietf-ac-ntw" is a network model that is used to manage the PE side
of ACs at a provider network.
.--------------------.
| |
.------. | .--. (b1) .-----.
| +----. | | +---AC---+ |
| CE1 | | | |PE+---AC---+ CE3 |
'------' | .--. '--' (b2) '-----'
+---AC--+PE| Network |
.------. | '--' .--. (b3) .-----.
| | | | | +---AC---+ |
| CE2 +----' | |PE+---AC---+ CE4 |
'------' | '--' (b3) '---+-'
| .--. | |
'----------+PE+------' |
'--' |
| |
'-----------AC----------'
(bx) = bearer Id x
Figure 3: Examples of ACs
4.2. Positioning the AC Network Model in the Overall Service Delivery
Process
Figure 4 shows the positioning of the AC network model in the overall
service delivery process. The "ietf-ac-ntw" module is a network
model which that augments the SAP with a comprehensive set of parameters to
reflect the attachment circuits that are in place in a network. The
model also maintains the mapping with the service references that are
used to expose those ACs to customer customers using the 'ietf-ac-svc' "ietf-ac-svc" module
defined in [I-D.ietf-opsawg-teas-attachment-circuit]. [RFC9834]. Whether the same naming conventions to
reference an AC are used in the service and network layers is
deployment-specific.
.-------------.
| Customer |
'------+------'
Customer Service Models |
ietf-l2vpn-svc, ietf-l3vpn-svc, | ietf-network-slice-service,
ietf-ac-svc, ietf-ac-glue, | and ietf-bearer-svc
.------+------.
| Service |
| Orchestration |
'------+------'
Network Models |
ietf-l2vpn-ntw, ietf-l3vpn-ntw, | ietf-sap-ntw, ietf-ac-glue,
and ietf-ac-ntw |
.------+------.
| Network |
| Orchestration |
'------+------'
Network Configuration Model |
.-----------+-----------.
| |
.-------+-----. .-------+-----.
| Domain | | Domain |
| Orchestration | | Orchestration |
'--+--------+-' '-------+-----'
Device | | |
Configuration | | |
Models | | |
.---+---. | |
| Config | | |
| Manager | | |
'---+---' | |
| | |
NETCONF/CLI.......................
| | |
.--------------------------------.
.---. Bearer | | Bearer .---.
|CE#1+--------+ Network +--------+CE#2|
'---' | | '---'
'--------------------------------'
Site A Site B
Figure 4: An Example of the Network AC Model Usage
Similar to [RFC9408], the "ietf-ac-ntw" module can be used for both
User-to-Network Interface (UNI) and Network-to-Network Interface
(NNI). For example, all the ACs shown in Figure 5 have a 'role' set
to 'ietf-sap-ntw:nni'. Typically, ASBRs of each network are directly
connected to ASBRs of a neighboring network via one or multiple links
(bearers). ASBRs of "Network#1" behave as a PE and treat the other
adjacent ASBRs as if it were a CE.
.--------------------. .-------------.
| +---AC----+ |
| | | |
| +---AC----+ Network#2 |
| | | |
| Network#1 | '-------------'
| |
| | .-------------.
| | | |
| | | |
| +---AC----+ Network#3 |
| | | |
'--------------------' '-------------'
Figure 5: An Example of the Network AC Model Usage Between
Provider Networks
5. Description of the Attachment Circuit YANG Module
The full tree diagram of the "ietf-ac-ntw" module is provided in
Appendix B. Subtrees are provided in the following subsections for
the reader's convenience.
5.1. Overall Structure of the Module
The overall tree structure of the "ietf-ac-ntw" module is shown in
Figure 6.
augment /nw:networks/nw:network:
+--rw specific-provisioning-profiles
| ...
+--rw ac-profile* [name]
...
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
+--rw svc-ref? ac-svc:attachment-circuit-reference
+--rw profile* [ac-profile-ref]
| +--rw ac-profile-ref leafref
| +--rw network-ref? -> /nw:networks/network/network-id
+--rw parent-ref
| +--rw ac-ref? leafref
| +--rw node-ref? leafref
| +--rw network-ref? -> /nw:networks/network/network-id
+--ro child-ref
| +--ro ac-ref* leafref
| +--ro node-ref? leafref
| +--ro network-ref? -> /nw:networks/network/network-id
+--rw peer-sap-id* string
+--rw group* [group-id]
| +--rw group-id string
| +--rw precedence? identityref
+--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--ro last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw description? string
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
augment /nw:networks/nw:network/nw:node/sap:service/sap:sap:
+--rw ac* [ac-ref]
+--rw ac-ref leafref
+--rw node-ref? leafref
+--rw network-ref? -> /nw:networks/network/network-id
Figure 6: Overall Tree Structure
A node can host one or more SAPs. Per [RFC9408], a SAP is an
abstraction of the network reference point (the PE side of an AC, in
the context of this document) where network services can be delivered and/or
are delivered to customers. Each SAP terminates one or multiple ACs. Each
In turn, each AC in turn may be terminated by one or more peer SAPs ('peer-sap'). ('peer-
sap'). In order to expose such AC/SAP binding information, the SAP
model [RFC9408] is augmented with the required AC-
related AC-related
information.
Unlike the AC service model
[I-D.ietf-opsawg-teas-attachment-circuit], [RFC9834], an AC is uniquely identified
by a name within the scope of a node, not a network. A textual
description of the AC may be provided ('description').
Also, in order to ease the correlation between the AC exposed at the
service layer and the AC that is actually provisioned in the network
operation, a reference to the AC exposed to the customer ('svc-ref')
is stored in the "ietf-ac-ntw" module.
ACs that are terminated by a SAP are listed in the 'ac' container
under '/nw:networks/nw:network/nw:node/sap:service/sap:sap'. A
controller may indicate a filter based on the service type (e.g.,
Network Slice or L3VPN) to retrieve the list of available SAPs, and
thus ACs, for that service.
In order to factorize common data that is provisioned for a group of
ACs, a set of profiles (Section 5.3) can be defined at the network
level,
level and then called under the node level. The information
contained in a profile is thus inherited, unless the corresponding
data node is refined at the AC level. In such a case, the value
provided at the AC level takes precedence over the global one.
In contexts where the same AC is terminated by multiple peer SAPs
(e.g., an AC with multiple CEs) but a subset of them have specific
information, the module allows operators to:
* Define a parent AC that may list all these CEs as peer SAPs.
* Create individual ACs that are bound to the parent AC using
'parent-ref'.
* Indicate for each individual AC one or a subset of the CEs as peer
SAPs. All these individual ACs will inherit the properties of the
parent AC.
Whenever a parent AC is deleted, then all child ACs of that AC MUST
be deleted. Child ACs are referenced using 'child-ref'.
An AC may belong to one or multiple groups [RFC9181]. For example,
the 'group-id' is used to associate redundancy or protection
constraints with ACs.
The status of an AC can be tracked using 'status'. Both operational
status and administrative status are maintained. A mismatch between
the administrative status vs. the operational status can be used as a
trigger to detect anomalies.
An AC can be characterized using Layer 2 connectivity (Section 5.4),
Layer 3 connectivity (Section 5.5), routing protocols (Section 5.6),
Operations, Administration, and Maintenance (OAM) (Section 5.7),
security (Section 5.8), and service (Section 5.9) considerations.
Features are used to tag conditional protions portions to accomodate accommodate various
deployments (support of layer Layer 2 ACs, Layer 3 ACs, IPv4, IPv6, routing
protocols, BFD, Bidirectional Forwarding Detection (BFD), etc.).
5.2. References
The AC network module defines a set of groupings depicted in Figure 7
for referencing purposes. These references are used within or
outside the AC network module. The use of such groupings is
consistent with the design in [RFC8345].
grouping attachment-circuit-reference:
+-- ac-ref? leafref
+-- node-ref? leafref
+-- network-ref? -> /nw:networks/network/network-id
grouping attachment-circuit-references:
+-- ac-ref* leafref
+-- node-ref? leafref
+-- network-ref? -> /nw:networks/network/network-id
grouping ac-profile-reference:
+-- ac-profile-ref? leafref
+-- network-ref? -> /nw:networks/network/network-id
grouping encryption-profile-reference:
+-- encryption-profile-ref? leafref
+-- network-ref? -> /nw:networks/network/network-id
grouping qos-profile-reference:
+-- qos-profile-ref? leafref
+-- network-ref? -> /nw:networks/network/network-id
grouping failure-detection-profile-reference:
+-- failure-detection-profile-ref? leafref
+-- network-ref? -> /nw:networks/network/network-id
grouping forwarding-profile-reference:
+-- forwarding-profile-ref? leafref
+-- network-ref? -> /nw:networks/network/network-id
grouping routing-profile-reference:
+-- routing-profile-ref? leafref
+-- network-ref? -> /nw:networks/network/network-id
Figure 7: References Groupings
The groupings shown in Figure 7 contain the information necessary to
reference:
* an attachment circuit that is terminated by a specific node in a
given network,
* an attachment circuit profile of a specific network (Section 5.3),
and
* specific provisioning profiles that are bound to a specific
network (Section 5.3).
5.3. Provisioning Profiles
The AC and specific provisioning profiles tree structure is shown in
Figure 8.
augment /nw:networks/nw:network:
+--rw specific-provisioning-profiles
| +--rw valid-provider-identifiers
| +--rw encryption-profile-identifier* [id]
| | +--rw id string
| +--rw qos-profile-identifier* [id]
| | +--rw id string
| +--rw failure-detection-profile-identifier* [id]
| | +--rw id string
| +--rw forwarding-profile-identifier* [id]
| | +--rw id string
| +--rw routing-profile-identifier* [id]
| +--rw id string
+--rw ac-profile* [name]
+--rw name string
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw bgp {vpn-common:rtg-bgp}?
| | +--rw peer-groups
| | +--rw peer-group* [name]
| | +--rw name string
| | +--rw description? string
| | +--rw apply-policy
| | | +--rw import-policy* leafref
| | | +--rw default-import-policy?
| | | | default-policy-type
| | | +--rw export-policy* leafref
| | | +--rw default-export-policy?
| | | default-policy-type
| | +--rw local-as? inet:as-number
| | +--rw peer-as inet:as-number
| | +--rw address-family? identityref
| | +--rw role? identityref
| | +--rw multihop? uint8
| | +--rw as-override? boolean
| | +--rw allow-own-as? uint8
| | +--rw prepend-global-as? boolean
| | +--rw send-default-route? boolean
| | +--rw site-of-origin?
| | | rt-types:route-origin
| | +--rw ipv6-site-of-origin?
| | | rt-types:ipv6-route-origin
| | +--rw redistribute-connected* [address-family]
| | | +--rw address-family identityref
| | | +--rw enabled? boolean
| | +--rw bgp-max-prefix
| | | +--rw max-prefix? uint32
| | | +--rw warning-threshold? decimal64
| | | +--rw violate-action? enumeration
| | | +--rw restart-timer? uint32
| | +--rw bgp-timers
| | +--rw keepalive? uint16
| | +--rw hold-time? uint16
| +--rw ospf {vpn-common:rtg-ospf}?
| | +--rw address-family? identityref
| | +--rw area-id yang:dotted-quad
| | +--rw metric? uint16
| | +--rw max-lsa? uint32
| | +--rw passive? boolean
| +--rw isis {vpn-common:rtg-isis}?
| | +--rw address-family? identityref
| | +--rw area-address area-address
| | +--rw level? identityref
| | +--rw metric? uint32
| | +--rw passive? boolean
| +--rw rip {vpn-common:rtg-rip}?
| | +--rw address-family? identityref
| | +--rw timers
| | | +--rw update-interval? uint16
| | | +--rw invalid-interval? uint16
| | | +--rw holddown-interval? uint16
| | | +--rw flush-interval? uint16
| | +--rw default-metric? uint8
| +--rw vrrp {vpn-common:rtg-vrrp}?
| +--rw address-family? identityref
| +--rw ping-reply? boolean
+--rw oam
+--rw bfd {vpn-common:bfd}?
+--rw session-type? identityref
+--rw desired-min-tx-interval? uint32
+--rw required-min-rx-interval? uint32
+--rw local-multiplier? uint8
+--rw holdtime? uint32
Figure 8: Profiles Tree Structure
Similar to [RFC9182] and [RFC9291], the exact definition of the
specific provisioning profiles is local to each service provider.
The model only includes an identifier for these profiles in order to
ease identifying and binding local policies when building an AC. As
shown in Figure 8, the following identifiers can be included:
'encryption-profile-identifier': An encryption profile refers to a
set of policies related to the encryption schemes and setup that
can be applied on the AC. See also Section 5.8.
'qos-profile-identifier': A Quality of Service (QoS) profile refers
to a set of policies such as classification, marking, and actions
(e.g., [RFC3644]). See also Section 5.9.
'failure-detection-profile-identifier': A failure detection profile
refers to a set of failure detection policies such as
Bidirectional Forwarding Detection (BFD) policies [RFC5880] that
can be invoked when building an AC. Such a profile can be, for
example, referenced in static routes (Section 5.6.1) or under the
OAM level (Section 5.7). The use of this profile is similar to
the detailed examples depicted in Appendices A.11.3 and A.12 of
[I-D.ietf-opsawg-teas-attachment-circuit].
[RFC9834].
'forwarding-profile-identifier': A forwarding profile refers to the
policies that apply to the forwarding of packets conveyed over an
AC. Such policies may consist of, for example, applying Access
Control Lists (ACLs) as in Section 5.9.
'routing-profile-identifier': A routing profile refers to a set of
routing policies that will be invoked (e.g., BGP policies) for an
AC. Refer to Section 5.6.
The 'ac-profile' defines parameters that can be factorized among a
set of ACs. Each profile is identified by a 'name' that is unique in
a network. Some of the data nodes can be adjusted at the node level.
These adjusted values take precedence over the values in the profile.
5.4. L2 Connection
The 'l2-connection' container is used to manage the Layer 2
properties of an AC (mainly, the PE side of an AC). The Layer 2
connection tree structure is shown in Figure 9.
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
+ ...
+--rw l2-connection {ac-common:layer2-ac}?
| +--rw encapsulation
| | +--rw encap-type? identityref
| | +--rw dot1q
| | | +--rw tag-type? identityref
| | | +--rw cvlan-id? uint16
| | | +--rw tag-operations
| | | +--rw (op-choice)?
| | | | +--:(pop)
| | | | | +--rw pop? empty
| | | | +--:(push)
| | | | | +--rw push? empty
| | | | +--:(translate)
| | | | +--rw translate? empty
| | | +--rw tag-1? dot1q-types:vlanid
| | | +--rw tag-1-type?
| | | | dot1q-types:dot1q-tag-type
| | | +--rw tag-2? dot1q-types:vlanid
| | | +--rw tag-2-type?
| | | dot1q-types:dot1q-tag-type
| | +--rw priority-tagged
| | | +--rw tag-type? identityref
| | +--rw qinq
| | +--rw tag-type? identityref
| | +--rw svlan-id? uint16
| | +--rw cvlan-id? uint16
| | +--rw tag-operations
| | +--rw (op-choice)?
| | | +--:(pop)
| | | | +--rw pop? uint8
| | | +--:(push)
| | | | +--rw push? empty
| | | +--:(translate)
| | | +--rw translate? uint8
| | +--rw tag-1? dot1q-types:vlanid
| | +--rw tag-1-type?
| | | dot1q-types:dot1q-tag-type
| | +--rw tag-2? dot1q-types:vlanid
| | +--rw tag-2-type?
| | dot1q-types:dot1q-tag-type
| +--rw (l2-service)?
| | +--:(l2-tunnel-service)
| | | +--rw l2-tunnel-service
| | | +--rw type? identityref
| | | +--rw pseudowire
| | | | +--rw vcid? uint32
| | | | +--rw far-end? union
| | | +--rw vpls
| | | | +--rw vcid? uint32
| | | | +--rw far-end* union
| | | +--rw vxlan
| | | +--rw vni-id? uint32
| | | +--rw peer-mode? identityref
| | | +--rw peer-ip-address* inet:ip-address
| | +--:(l2vpn)
| | +--rw l2vpn-id? vpn-common:vpn-id
| +--rw l2-termination-point? string
| +--rw local-bridge-reference? string
| +--rw bearer-reference? string
| | {ac-common:server-assigned-reference}?
| +--rw lag-interface {vpn-common:lag-interface}?
| +--rw lag-interface-id? string
| +--rw member-link-list
| +--rw member-link* [name]
| +--rw name string
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
Figure 9: Layer 2 Connection Tree Structure
The 'encapsulation' container specifies the Layer 2 encapsulation to
use (if any) and allows the configuration of the relevant tags.
Also, the model supports tag manipulation operations (e.g., tag
rewrite).
The 'l2-tunnel-service' container is used to specify the required
parameters to set a Layer 2 tunneling service (e.g., a Virtual
Private LAN Service (VPLS), a Virtual eXtensible Local Area Network
(VXLAN), or a pseudowire (Section 6.1 of [RFC8077])). 'l2vpn-id' is
used to identify a L2VPN service that is associated with an
Integrated Routing and Bridging (IRB) interface.
Specific Layer 2 sub-interfaces may be required to be configured in
some implementations/deployments. Such a Layer-2-specific interface
can be included in 'l2-termination-point'.
To accommodate implementations that require internal bridging, a
local bridge reference can be specified in 'local-bridge-reference'.
Such a reference may be a local bridge domain.
A reference to the bearer used by this AC is maintained using
'bearer-reference'.
5.5. IP Connection
This 'ip-connection' container is used to group Layer 3 connectivity
information, particularly the IP addressing information, of an AC.
The Layer 3 connection tree structure is shown in Figure 10.
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
+ ...
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | +--rw local-address?
| | | inet:ipv4-address
| | +--rw prefix-length? uint8
| | +--rw address-allocation-type?
| | | identityref
| | +--rw (allocation-type)?
| | +--:(dynamic)
| | | +--rw (address-assign)?
| | | | +--:(number)
| | | | | +--rw number-of-dynamic-address? uint16
| | | | +--:(explicit)
| | | | +--rw customer-addresses
| | | | +--rw address-pool* [pool-id]
| | | | +--rw pool-id string
| | | | +--rw start-address
| | | | | inet:ipv4-address
| | | | +--rw end-address?
| | | | inet:ipv4-address
| | | +--rw (provider-dhcp)?
| | | | +--:(dhcp-service-type)
| | | | | +--rw dhcp-service-type?
| | | | | enumeration
| | | | +--:(service-type)
| | | | +--rw (service-type)?
| | | | +--:(relay)
| | | | +--rw server-ip-address*
| | | | inet:ipv4-address
| | | +--rw (dhcp-relay)?
| | | +--:(customer-dhcp-servers)
| | | +--rw customer-dhcp-servers
| | | +--rw server-ip-address*
| | | inet:ipv4-address
| | +--:(static-addresses)
| | +--rw address* [address-id]
| | +--rw address-id string
| | +--rw customer-address?
| | | inet:ipv4-address
| | +--rw failure-detection-profile-ref? leafref
| | +--rw network-ref?
| | -> /nw:networks/network/network-id
| +--rw ipv6 {vpn-common:ipv6}?
| +--rw local-address?
| | inet:ipv6-address
| +--rw prefix-length? uint8
| +--rw address-allocation-type?
| | identityref
| +--rw (allocation-type)?
| +--:(dynamic)
| | +--rw (address-assign)?
| | | +--:(number)
| | | | +--rw number-of-dynamic-address? uint16
| | | +--:(explicit)
| | | +--rw customer-addresses
| | | +--rw address-pool* [pool-id]
| | | +--rw pool-id string
| | | +--rw start-address
| | | | inet:ipv6-address
| | | +--rw end-address?
| | | inet:ipv6-address
| | +--rw (provider-dhcp)?
| | | +--:(dhcp-service-type)
| | | | +--rw dhcp-service-type?
| | | | enumeration
| | | +--:(service-type)
| | | +--rw (service-type)?
| | | +--:(relay)
| | | +--rw server-ip-address*
| | | inet:ipv6-address
| | +--rw (dhcp-relay)?
| | +--:(customer-dhcp-servers)
| | +--rw customer-dhcp-servers
| | +--rw server-ip-address*
| | inet:ipv6-address
| +--:(static-addresses)
| +--rw address* [address-id]
| +--rw address-id string
| +--rw customer-address?
| | inet:ipv6-address
| +--rw failure-detection-profile-ref? leafref
| +--rw network-ref?
| -> /nw:networks/network/network-id
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
Figure 10: IP Connection Tree Structure
A distinct Layer 3 interface other than the interface indicated under
the 'l2-connection' container may be needed to terminate the Layer 3
connectivity. The identifier of such an interface is included in
'l3-termination-point'. For example, this data node can be used to
carry the identifier of a bridge domain interface.
This container can include IPv4, IPv6, or both if dual-stack is
enabled. For both IPv4 and IPv6, the IP connection supports three IP
address assignment modes for customer addresses: provider DHCP, DHCP
relay, and static addressing. Note that for the IPv6 case, Stateless
Address Autoconfiguration (SLAAC) [RFC4862] can be used.
For both IPv4 and IPv6, 'address-allocation-type' is used to indicate
the IP address allocation mode to activate for an AC. The allocated
address represents the PE interface address configuration. When
'address-allocation-type' is set to 'provider-dhcp', DHCP assignments
can be made locally or by an external DHCP server. Such behavior is
controlled by setting 'dhcp-service-type'.
For IPv6, if 'address-allocation-type' is set to 'slaac', the Prefix
Information option of Router Advertisements that will be issued for
SLAAC purposes will carry the IPv6 prefix that is determined by
'local-address' and 'prefix-length'. For example, if 'local-address'
is set to '2001:db8:0:1::1' and 'prefix-length' is set to '64', the
IPv6 prefix that will be used is '2001:db8:0:1::/64'.
In some deployment contexts (e.g., network merging), multiple IP
subnets may be used in a transition period. For such deployments,
multiple ACs (typically, two) with overlapping information may be
maintained during a transition period. The correlation between these
ACs may rely upon the same 'svc-ref'.
5.6. Routing
The overall routing subtree structure is shown in Figure 11.
module: ietf-ac-ntw
augment /nw:networks/nw:network:
+--rw ac-profile* [name]
+--rw name string
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| ...
+--rw oam
...
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
...
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw routing-profile* [routing-profile-ref]
| | +--rw routing-profile-ref leafref
| | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw type? identityref
| +--rw static
| | ...
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
Figure 11: Routing Tree Structure
Multiple routing instances ('routing-protocol') can be defined, each
uniquely identified by an 'id'. Specifically, each instance is
uniquely identified to accommodate scenarios where multiple instances
of the same routing protocol have to be configured on the same AC.
The type of a routing instance is indicated in 'type'. The values of
this attribute are those defined in [RFC9181] (the 'routing-protocol-
type' identity). Specific data nodes are then provided as a function
of the 'type'. See more details in the following subsections.
One or multiple routing profiles ('routing-profile') can be provided
for a given routing instance.
5.6.1. Static Routing
The static routing subtree structure is shown in Figure 12.
module: ietf-ac-ntw
...
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
...
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw routing-profile* [routing-profile-ref]
| | +--rw routing-profile-ref leafref
| | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw type? identityref
| +--rw static
| | +--rw cascaded-lan-prefixes
| | +--rw ipv4-lan-prefix* [lan next-hop]
| | | {vpn-common:ipv4}?
| | | +--rw lan inet:ipv4-prefix
| | | +--rw lan-tag? string
| | | +--rw next-hop union
| | | +--rw metric? uint32
| | | +--rw bfd {vpn-common:bfd}?
| | | | +--rw enabled?
| | | | | boolean
| | | | +--rw failure-detection-profile-ref?
| | | | | leafref
| | | | +--rw network-ref?
| | | | -> /nw:networks/network/network-id
| | | +--rw preference? uint32
| | | +--rw status
| | | +--rw admin-status
| | | | +--rw status? identityref
| | | | +--ro last-change? yang:date-and-time
| | | +--ro oper-status
| | | +--ro status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--rw ipv6-lan-prefix* [lan next-hop]
| | {vpn-common:ipv6}?
| | +--rw lan inet:ipv6-prefix
| | +--rw lan-tag? string
| | +--rw next-hop union
| | +--rw metric? uint32
| | +--rw bfd {vpn-common:bfd}?
| | | +--rw enabled?
| | | | boolean
| | | +--rw failure-detection-profile-ref?
| | | | leafref
| | | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw preference? uint32
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
Figure 12: Static Routing Tree Structure
The following data nodes can be defined for a given IP prefix:
'lan-tag': Indicates a local tag (e.g., "myfavorite-lan") 'myfavorite-lan') that is
used to enforce local policies.
'next-hop': Indicates the next hop to be used for the static route.
It can be identified by an IP address, a predefined next-hop type
(e.g., 'discard' or 'local-link'), etc.
'bfd': Indicates whether BFD is enabled or disabled for this static
route entry. A BFD profile may also be provided.
'metric': Indicates the metric associated with the static route
entry. This metric is used when the route is exported into an
IGP.
'preference': Indicates the preference associated with the static
route entry.
This preference is used to select a preferred route among routes
to the same destination prefix.
'status': Used to convey the status of a static route entry. This
data node can also be used to control the (de)activation of
individual static route entries.
5.6.2. BGP
The BGP routing subtree structure is shown in Figure 13.
module: ietf-ac-ntw
augment /nw:networks/nw:network:
+--rw ac-profile* [name]
+--rw name string
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw bgp {vpn-common:rtg-bgp}?
| | +--rw peer-groups
| | +--rw peer-group* [name]
| | +--rw name string
| | +--rw description? string
| | +--rw apply-policy
| | | +--rw import-policy* leafref
| | | +--rw default-import-policy?
| | | | default-policy-type
| | | +--rw export-policy* leafref
| | | +--rw default-export-policy?
| | | default-policy-type
| | +--rw local-as? inet:as-number
| | +--rw peer-as inet:as-number
| | +--rw address-family? identityref
| | +--rw role? identityref
| | +--rw multihop? uint8
| | +--rw as-override? boolean
| | +--rw allow-own-as? uint8
| | +--rw prepend-global-as? boolean
| | +--rw send-default-route? boolean
| | +--rw site-of-origin?
| | | rt-types:route-origin
| | +--rw ipv6-site-of-origin?
| | | rt-types:ipv6-route-origin
| | +--rw redistribute-connected* [address-family]
| | | +--rw address-family identityref
| | | +--rw enabled? boolean
| | +--rw bgp-max-prefix
| | | +--rw max-prefix? uint32
| | | +--rw warning-threshold? decimal64
| | | +--rw violate-action? enumeration
| | | +--rw restart-timer? uint32
| | +--rw bgp-timers
| | +--rw keepalive? uint16
| | +--rw hold-time? uint16
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| ...
+--rw oam
...
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
...
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw routing-profile* [routing-profile-ref]
| | +--rw routing-profile-ref leafref
| | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw type? identityref
| +--rw static
| | ...
| +--rw bgp {vpn-common:rtg-bgp}?
| | +--rw peer-groups
| | | +--rw peer-group* [name]
| | | +--rw name string
| | | +--rw local-address? union
| | | +--rw description? string
| | | +--rw apply-policy
| | | | +--rw import-policy* leafref
| | | | +--rw default-import-policy?
| | | | | default-policy-type
| | | | +--rw export-policy* leafref
| | | | +--rw default-export-policy?
| | | | default-policy-type
| | | +--rw local-as? inet:as-number
| | | +--rw peer-as inet:as-number
| | | +--rw address-family? identityref
| | | +--rw role? identityref
| | | +--rw multihop? uint8
| | | +--rw as-override? boolean
| | | +--rw allow-own-as? uint8
| | | +--rw prepend-global-as? boolean
| | | +--rw send-default-route? boolean
| | | +--rw site-of-origin?
| | | | rt-types:route-origin
| | | +--rw ipv6-site-of-origin?
| | | | rt-types:ipv6-route-origin
| | | +--rw redistribute-connected* [address-family]
| | | | +--rw address-family identityref
| | | | +--rw enabled? boolean
| | | +--rw bgp-max-prefix
| | | | +--rw max-prefix? uint32
| | | | +--rw warning-threshold? decimal64
| | | | +--rw violate-action? enumeration
| | | | +--rw restart-timer? uint32
| | | +--rw bgp-timers
| | | | +--rw keepalive? uint16
| | | | +--rw hold-time? uint16
| | | +--rw authentication
| | | +--rw enabled? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(ao)
| | | | +--rw enable-ao? boolean
| | | | +--rw ao-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(md5)
| | | | +--rw md5-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm?
| | | identityref
| | +--rw neighbor* [remote-address]
| | +--rw remote-address inet:ip-address
| | +--rw local-address? union
| | +--rw peer-group?
| | | -> ../../peer-groups/peer-group/name
| | +--rw description? string
| | +--rw apply-policy
| | | +--rw import-policy* leafref
| | | +--rw default-import-policy?
| | | | default-policy-type
| | | +--rw export-policy* leafref
| | | +--rw default-export-policy?
| | | default-policy-type
| | +--rw local-as? inet:as-number
| | +--rw peer-as inet:as-number
| | +--rw address-family? identityref
| | +--rw role? identityref
| | +--rw multihop? uint8
| | +--rw as-override? boolean
| | +--rw allow-own-as? uint8
| | +--rw prepend-global-as? boolean
| | +--rw send-default-route? boolean
| | +--rw site-of-origin?
| | | rt-types:route-origin
| | +--rw ipv6-site-of-origin?
| | | rt-types:ipv6-route-origin
| | +--rw redistribute-connected* [address-family]
| | | +--rw address-family identityref
| | | +--rw enabled? boolean
| | +--rw bgp-max-prefix
| | | +--rw max-prefix? uint32
| | | +--rw warning-threshold? decimal64
| | | +--rw violate-action? enumeration
| | | +--rw restart-timer? uint32
| | +--rw bgp-timers
| | | +--rw keepalive? uint16
| | | +--rw hold-time? uint16
| | +--rw bfd {vpn-common:bfd}?
| | | +--rw enabled? boolean
| | | +--rw failure-detection-profile-ref? leafref
| | | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw authentication
| | | +--rw enabled? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(ao)
| | | | +--rw enable-ao? boolean
| | | | +--rw ao-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(md5)
| | | | +--rw md5-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
Figure 13: BGP Routing Tree Structure
The following data nodes are supported for each 'peer-group':
'name': Defines a name for the peer group.
'local-address': Specifies an address or a reference to an interface
to use when establishing the BGP transport session.
'description': Includes a description of the peer group.
'apply-policy': Lists a set of import/export policies [RFC9067] to
apply for this group.
'local-as': Indicates a local AS Number (ASN).
'peer-as': Indicates the peer's ASN.
'address-family': Indicates the address family of the peer. It can
be set to 'ipv4', 'ipv6', or 'dual-stack'.
This address family might be used together with the service type
that uses an AC (e.g., 'vpn-type' [RFC9182]) to derive the
appropriate Address Family Identifiers (AFIs) / Subsequent Address
Family Identifiers (SAFIs) that will be part of the derived device
configurations (e.g., unicast IPv4 MPLS L3VPN (AFI,SAFI = 1,128)
as defined in Section 4.3.4 of [RFC4364]).
'role': Specifies the BGP role in a session. Role values are taken
from the list defined in Section 4 of [RFC9234].
'multihop': Indicates the number of allowed IP hops to reach a BGP
peer.
'as-override': If set, this parameter indicates whether ASN override
is enabled, i.e., replacing the ASN of the customer specified in
the AS_PATH BGP attribute with the ASN identified in the 'local-
as' attribute.
'allow-own-as': Used in some topologies (e.g., hub-and-spoke) to
allow the provider's ASN to be included in the AS_PATH BGP
attribute received from a peer. Loops are prevented by setting
'allow-own-as' to a maximum number of the provider's ASN
occurrences. By default, this parameter is set to '0' (that is,
reject any AS_PATH attribute that includes the provider's ASN).
'prepend-global-as': When distinct ASNs are configured at the node
and AC levels, this parameter controls whether the ASN provided at
the node level is prepended to the AS_PATH attribute.
'send-default-route': Controls whether default routes can be
advertised to the peer.
'site-of-origin': Meant to uniquely identify the set of routes
learned from a site via a particular AC. It is used to prevent
routing loops (Section 7 of [RFC4364]). The Site of Origin
attribute is encoded as a Route Origin Extended Community.
'ipv6-site-of-origin': Carries an IPv6 Address Specific BGP Extended
Community that is used to indicate the Site of Origin [RFC5701].
It is used to prevent routing loops.
'redistribute-connected': Controls whether the AC is advertised to
other PEs.
'bgp-max-prefix': Controls the behavior when a prefix maximum is
reached.
'max-prefix': Indicates the maximum number of BGP prefixes allowed
in a session for this group. If the limit is reached, the action
indicated in 'violate-action' will be followed.
'warning-threshold': A warning notification is triggered when this
limit is reached.
'violate-action': Indicates which action to execute when the maximum
number of BGP prefixes is reached. Examples of such actions
include sending a warning message, discarding extra paths from the
peer, or restarting the session.
'restart-timer': Indicates, in seconds, the time interval after
which the BGP session will be reestablished.
'bgp-timers': Two timers can be captured in this container: (1)
'hold-time', which is the time interval that will be used for the
Hold Timer (Section 4.2 of [RFC4271]) when establishing a BGP
session and (2) 'keepalive', which is the time interval for the
KeepaliveTimer between a PE and a BGP peer (Section 4.4 of
[RFC4271]).
Both timers are expressed in seconds.
'bfd': Indicates whether BFD is enabled or disabled for this
nighbor.
neighbor. A BFD profile to apply may also be provided.
'authentication': The module adheres to the recommendations in
Section 13.2 of [RFC4364], as it allows enabling the TCP
Authentication Option (TCP-AO) [RFC5925] and accommodates the
installed base that makes use of MD5.
This version of the model assumes that parameters specific to the
TCP-AO are preconfigured as part of the key chain that is
referenced in the model. No assumption is made about how such a
key chain is preconfigured. However, the structure of the key
chain should cover data nodes beyond those in [RFC8177], mainly
SendID and RecvID (Section 3.1 of [RFC5925]).
For each neighbor, the following data nodes are supported in addition
to similar parameters that are provided for a peer group:
'remote-address': Specifies the remote IP address of a BGP neighbor.
'peer-group': A name of a peer group.
Parameters that are provided at the 'neighbor' level takes take
precedence over the ones provided in the peer group.
'status': Indicates the status of the BGP session.
5.6.3. OSPF
The OSPF routing subtree structure is shown in Figure 14.
module: ietf-ac-ntw
augment /nw:networks/nw:network:
+--rw ac-profile* [name]
+--rw name string
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | +--rw address-family? identityref
| | +--rw area-id yang:dotted-quad
| | +--rw metric? uint16
| | +--rw max-lsa? uint32
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| ...
+--rw oam
...
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
...
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw routing-profile* [routing-profile-ref]
| | +--rw routing-profile-ref leafref
| | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw type? identityref
| +--rw static
| | ...
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | +--rw address-family? identityref
| | +--rw area-id yang:dotted-quad
| | +--rw metric? uint16
| | +--rw sham-links {vpn-common:rtg-ospf-sham-link}?
| | | +--rw sham-link* [target-site]
| | | +--rw target-site string
| | | +--rw metric? uint16
| | +--rw max-lsa? uint32
| | +--rw passive? boolean
| | +--rw authentication
| | | +--rw enabled? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
Figure 14: OSPF Routing Tree Structure
The following OSPF data nodes are supported:
'address-family': Indicates whether IPv4, IPv6, or both address
families are to be activated.
When the IPv4 or dual-stack address family is requested, it is up
to the implementation (e.g., network orchestrator) to decide
whether OSPFv2 [RFC4577] or OSPFv3 [RFC6565] is used to announce
IPv4 routes.
'area-id': Indicates the OSPF Area ID.
'metric': Associates a metric with OSPF routes.
'sham-links': Used to create OSPF sham links between two ACs sharing
the same area and having a backdoor link (Section 4.2.7 of
[RFC4577] and Section 5 of [RFC6565]).
'max-lsa': Sets the maximum number of Link State Advertisements
(LSAs) that the OSPF instance will accept.
'passive': Controls whether an OSPF interface is passive or active.
'authentication': Controls the authentication schemes to be enabled
for the OSPF instance. The module supports authentication options
that are common to both OSPF versions: the Authentication Trailer
for OSPFv2 [RFC5709] [RFC7474] and OSPFv3 [RFC7166]; as such, the
model does not support [RFC4552].
'status': Indicates the status of the OSPF routing instance.
5.6.4. IS-IS
The IS-IS routing subtree structure is shown in Figure 15.
module: ietf-ac-ntw
augment /nw:networks/nw:network:
+--rw ac-profile* [name]
+--rw name string
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | +--rw address-family? identityref
| | +--rw area-address area-address
| | +--rw level? identityref
| | +--rw metric? uint32
| | +--rw passive? boolean
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| ...
+--rw oam
...
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
...
+--rw l2-connection
| ...
+--rw ip-connection
| ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw routing-profile* [routing-profile-ref]
| | +--rw routing-profile-ref leafref
| | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw type? identityref
| +--rw static
| | ...
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | +--rw address-family? identityref
| | +--rw area-address area-address
| | +--rw level? identityref
| | +--rw metric? uint32
| | +--rw passive? boolean
| | +--rw authentication
| | | +--rw enabled? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
Figure 15: IS-IS Routing Tree Structure
The following IS-IS data nodes are supported:
'address-family': Indicates whether IPv4, IPv6, or both address
families are to be activated.
'area-address': Indicates the IS-IS area address.
'level': Indicates the IS-IS level: Level 1, Level 2, or both.
'metric': Associates a metric with IS-IS routes.
'passive': Controls whether an IS-IS interface is passive or active.
'authentication': Controls the authentication schemes to be enabled
for the IS-IS instance. Both the specification of a key chain
[RFC8177] and the direct specification of key and authentication
algorithms are supported.
'status': Indicates the status of the IS-IS routing instance.
5.6.5. RIP
The RIP routing subtree structure is shown in Figure 16.
module: ietf-ac-ntw
augment /nw:networks/nw:network:
+--rw ac-profile* [name]
+--rw name string
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | +--rw address-family? identityref
| | +--rw timers
| | | +--rw update-interval? uint16
| | | +--rw invalid-interval? uint16
| | | +--rw holddown-interval? uint16
| | | +--rw flush-interval? uint16
| | +--rw default-metric? uint8
| +--rw vrrp {vpn-common:rtg-vrrp}?
| ...
+--rw oam
...
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
...
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw routing-profile* [routing-profile-ref]
| | +--rw routing-profile-ref leafref
| | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw type? identityref
| +--rw static
| | ...
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | +--rw address-family? identityref
| | +--rw timers
| | | +--rw update-interval? uint16
| | | +--rw invalid-interval? uint16
| | | +--rw holddown-interval? uint16
| | | +--rw flush-interval? uint16
| | +--rw default-metric? uint8
| | +--rw authentication
| | | +--rw enabled? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw vrrp
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
Figure 16: RIP Routing Tree Structure
The following RIP data nodes are supported:
'address-family': Indicates whether IPv4, IPv6, or both address
families are to be activated. This parameter is used to determine
whether RIPv2 [RFC2453], RIP Next Generation (RIPng) [RFC2080], or
both are to be enabled.
'timers': Indicates the following timers (expressed in seconds):
*
'update-interval': The interval at which RIP updates are sent.
*
'invalid-interval': The interval before a RIP route is declared
invalid.
*
'holddown-interval': The interval before better RIP routes are
released.
*
'flush-interval': The interval before a route is removed from the
routing table.
'default-metric': Sets the default RIP metric.
'authentication': Controls the authentication schemes to be enabled
for the RIP instance.
'status': Indicates the status of the RIP routing instance.
5.6.6. VRRP
The VRRP subtree structure is shown in Figure 17.
module: ietf-ac-ntw
augment /nw:networks/nw:network:
+--rw ac-profile* [name]
+--rw name string
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| +--rw address-family? identityref
| +--rw ping-reply? boolean
+--rw oam
...
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
...
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw routing-profile* [routing-profile-ref]
| | +--rw routing-profile-ref leafref
| | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw type? identityref
| +--rw static
| | ...
| +--rw bgp {vpn-common:rtg-bgp}?
| | ...
| +--rw ospf {vpn-common:rtg-ospf}?
| | ...
| +--rw isis {vpn-common:rtg-isis}?
| | ...
| +--rw rip {vpn-common:rtg-rip}?
| | ...
| +--rw vrrp {vpn-common:rtg-vrrp}?
| +--rw address-family? identityref
| +--rw vrrp-group? uint8
| +--rw backup-peer? inet:ip-address
| +--rw virtual-ip-address* inet:ip-address
| +--rw priority? uint8
| +--rw ping-reply? boolean
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--ro last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw oam
| ...
+--rw security
| ...
+--rw service
...
Figure 17: VRRP Tree Structure
The following VRRP data nodes are supported:
'address-family': Indicates whether IPv4, IPv6, or both address
families are to be activated. Note that VRRP version 3 [RFC9568]
supports both IPv4 and IPv6.
'vrrp-group': Used to identify the VRRP group.
'backup-peer': Carries the IP address of the peer.
'virtual-ip-address': Includes virtual IP addresses for a single
VRRP group.
'priority': Assigns the VRRP election priority for the backup
virtual router.
'ping-reply': Controls whether the VRRP speaker should reply to ping
requests.
'status': Indicates the status of the VRRP instance.
Note that no authentication data node is included for VRRP, as there
isn't any type of VRRP authentication at this time (see Section 9 of
[RFC9568]).
5.7. OAM
The OAM subtree structure is shown in Figure 18.
augment /nw:networks/nw:network:
+--rw ac-profile* [name]
+--rw name string
+--rw routing-protocols
| ...
+--rw oam
+--rw bfd {vpn-common:bfd}?
+--rw session-type? identityref
+--rw desired-min-tx-interval? uint32
+--rw required-min-rx-interval? uint32
+--rw local-multiplier? uint8
+--rw holdtime? uint32
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
+ ...
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| ...
+--rw oam
| +--rw bfd {vpn-common:bfd}?
| +--rw session* [dest-addr]
| +--rw dest-addr inet:ip-address
| +--rw source-address? union
| +--rw failure-detection-profile-ref? leafref
| +--rw network-ref?
| | -> /nw:networks/network/network-id
| +--rw session-type? identityref
| +--rw desired-min-tx-interval? uint32
| +--rw required-min-rx-interval? uint32
| +--rw local-multiplier? uint8
| +--rw holdtime? uint32
| +--rw authentication!
| | +--rw key-chain? key-chain:key-chain-ref
| | +--rw meticulous? boolean
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--ro last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw security
| ...
+--rw service
...
Figure 18: OAM Tree Structure
The following OAM data nodes can be specified for each BFD session:
'dest-addr': Specifies the BFD peer address. This data node is
mapped to 'remote-address' of the BFD container in
[I-D.ietf-opsawg-teas-attachment-circuit]. [RFC9834].
'dest-address' is used here to ease the mapping with the
underlying device model defind defined in [RFC9127].
'source-address': Specifies the local IP address or interface to use
for the session. This data node is mapped to 'local-address' of
the BFD container in [I-D.ietf-opsawg-teas-attachment-circuit]. [RFC9834]. 'source-address' is used here to
ease the mapping with the underlying device model defind defined in
[RFC9127].
'failure-detection-profile-ref': Refers to a BFD profile in
Section 5.3.
'network-ref': Includes a network reference to uniquely identify a
BFD profile.
'session-type': Indicates which BFD flavor is used to set up the
session (e.g., classic BFD [RFC5880], Seamless BFD [RFC7880]). By
default, it is assumed that the BFD session will follow the
behavior specified in [RFC5880].
'desired-min-tx-interval': The minimum interval, in microseconds, to
use when transmitting BFD Control packets, less any jitter
applied.
'required-min-rx-interval': The minimum interval, in microseconds,
between received BFD Control packets packets, less any jitter applied by
the sender.
'local-multiplier': The negotiated transmit interval, multiplied by
this value, provides the detection time for the peer.
'holdtime': Used to indicate the expected BFD holddown time, in
milliseconds.
'authentication': Includes the required information to enable the
BFD authentication modes discussed in Section 6.7 of [RFC5880].
In particular, 'meticulous' controls the activation of meticulous
mode as discussed in Sections 6.7.3 and 6.7.4 of [RFC5880].
'status': Indicates the status of BFD.
5.8. Security
The security subtree structure is shown in Figure 19. The 'security'
container specifies the the encryption to be applied to traffic for a
given AC. The model can be used to directly control the encryption
to be applied (e.g., Layer 2 or Layer 3 encryption) or invoke a local
encryption profile.
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
+ ...
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
| +--rw encryption {vpn-common:encryption}?
| | +--rw enabled? boolean
| | +--rw layer? enumeration
| +--rw encryption-profile
| +--rw (profile)?
| +--:(provider-profile)
| | +--rw encryption-profile-ref? leafref
| | +--rw network-ref?
| | -> /nw:networks/network/network-id
| +--:(customer-profile)
| +--rw customer-key-chain? key-chain:key-chain-ref
+--rw service
...
Figure 19: Security Tree Structure
5.9. Service
The service subtree structure is shown in Figure 20.
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
+ ...
+--rw l2-connection {ac-common:layer2-ac}?
| ...
+--rw ip-connection {ac-common:layer3-ac}?
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
| ...
+--rw service
+--rw mtu? uint32
+--rw svc-pe-to-ce-bandwidth {vpn-common:inbound-bw}?
| +--rw bandwidth* [bw-type]
| +--rw bw-type identityref
| +--rw (type)?
| +--:(per-cos)
| | +--rw cos* [cos-id]
| | +--rw cos-id uint8
| | +--rw cir? uint64
| | +--rw cbs? uint64
| | +--rw eir? uint64
| | +--rw ebs? uint64
| | +--rw pir? uint64
| | +--rw pbs? uint64
| +--:(other)
| +--rw cir? uint64
| +--rw cbs? uint64
| +--rw eir? uint64
| +--rw ebs? uint64
| +--rw pir? uint64
| +--rw pbs? uint64
+--rw svc-ce-to-pe-bandwidth {vpn-common:outbound-bw}?
| +--rw bandwidth* [bw-type]
| +--rw bw-type identityref
| +--rw (type)?
| +--:(per-cos)
| | +--rw cos* [cos-id]
| | +--rw cos-id uint8
| | +--rw cir? uint64
| | +--rw cbs? uint64
| | +--rw eir? uint64
| | +--rw ebs? uint64
| | +--rw pir? uint64
| | +--rw pbs? uint64
| +--:(other)
| +--rw cir? uint64
| +--rw cbs? uint64
| +--rw eir? uint64
| +--rw ebs? uint64
| +--rw pir? uint64
| +--rw pbs? uint64
+--rw qos {vpn-common:qos}?
| +--rw qos-profiles
| +--rw qos-profile* [qos-profile-ref]
| +--rw qos-profile-ref leafref
| +--rw network-ref?
| | -> /nw:networks/network/network-id
| +--rw direction? identityref
+--rw access-control-list
+--rw acl-profiles
+--rw acl-profile* [forwarding-profile-ref]
+--rw forwarding-profile-ref leafref
+--rw network-ref?
-> /nw:networks/network/network-id
Figure 20: Service Tree Structure
The description of the service data nodes is are defined as follows:
'mtu': Specifies the Layer 2 MTU, in bytes, for the AC.
'svc-pe-to-ce-bandwidth' and 'svc-ce-to-pe-bandwidth': Specify the
service bandwidth for the AC.
'svc-pe-to-ce-bandwidth' indicates
'svc-pe-to-ce-bandwidth': Indicates the inbound bandwidth of the
connection (i.e., download bandwidth from the service provider
to the site).
'svc-ce-to-pe-bandwidth' indicates
'svc-ce-to-pe-bandwidth': Indicates the outbound bandwidth of the
connection (i.e., upload bandwidth from the site to the service
provider).
'svc-pe-to-ce-bandwidth' and 'svc-ce-to-pe-bandwidth' can be
represented using the Committed Information Rate (CIR), the
Committed Burst Size (CBS), the Excess Information Rate (EIR), the
Excess Burst Size (EBS), the Peak Information Rate (PIR), and the
Peak Burst Size (PBS). CIR, EIR, and PIR are expressed in bps,
while CBS, EBS, and PBS are expressed in bytes.
The following types, defined in [RFC9181], can be used to indicate
the bandwidth type:
'bw-per-cos': The bandwidth is per CoS. Class of Service (CoS).
'bw-per-port': The bandwidth is per port.
'bw-per-site': The bandwidth is to all peer SAPs that belong to
the same site.
'bw-per-service': The bandwidth is per service instance that is
bound to an AC.
'qos': Specifies a list of QoS profiles to apply for this AC.
'access-control-list': Specifies a list of ACL profiles to apply for
this AC.
6. YANG Module
This module uses types defined in [RFC6991], [RFC8177], [RFC8294],
[RFC8343], [RFC9067], [RFC9181], [I-D.ietf-opsawg-teas-common-ac], [RFC9833], and [IEEE802.1Qcp].
<CODE BEGINS> file "ietf-ac-ntw@2025-01-07.yang" "ietf-ac-ntw@2025-08-11.yang"
module ietf-ac-ntw {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-ac-ntw";
prefix ac-ntw;
import ietf-vpn-common {
prefix vpn-common;
reference
"RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3
VPNs";
}
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types, Section 4";
}
import ietf-key-chain {
prefix key-chain;
reference
"RFC 8177: YANG Data Model for Key Chains";
}
import ietf-routing-types {
prefix rt-types;
reference
"RFC 8294: Common YANG Data Types for the Routing Area";
}
import ietf-routing-policy {
prefix rt-pol;
reference
"RFC 9067: A YANG Data Model for Routing Policy";
}
import ietf-interfaces {
prefix if;
reference
"RFC 8343: A YANG Data Model for Interface Management";
}
import ieee802-dot1q-types {
prefix dot1q-types;
reference
"IEEE Std 802.1Qcp: Bridges and Bridged Networks--
Amendment 30: YANG Data Model";
}
import ietf-network {
prefix nw;
reference
"RFC 8345: A YANG Data Model for Network Topologies,
Section 6.1";
}
import ietf-sap-ntw {
prefix sap;
reference
"RFC 9408: A YANG Network Data Model for Service Attachment
Points (SAPs)";
}
import ietf-ac-common {
prefix ac-common;
reference
"RFC CCCC: 9833: A Common YANG Data Model for Attachment Circuits";
}
import ietf-ac-svc {
prefix ac-svc;
reference
"RFC SSSS: 9834: YANG Data Models for Bearers and 'Attachment
Circuits'-as-a-Service (ACaaS)";
}
organization
"IETF OPSAWG (Operations and Management Area Working Group)";
contact
"WG Web: <https://datatracker.ietf.org/wg/opsawg/>
WG List: <mailto:opsawg@ietf.org>
Editor: Mohamed Boucadair
<mailto:mohamed.boucadair@orange.com>
Author: Richard Roberts
<mailto:rroberts@juniper.net>
Author: Oscar Gonzalez de Dios
<mailto:oscar.gonzalezdedios@telefonica.com>
Author: Samier Barguil
<mailto:ssamier.barguil_giraldo@nokia.com>
Author: Bo Wu
<mailto:lana.wubo@huawei.com>";
description
"This YANG module defines a YANG network model for the management
of attachment circuits (ACs).
Copyright (c) 2025 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX; 9835; see the
RFC itself for full legal notices.";
revision 2025-01-07 2025-08-11 {
description
"Initial revision.";
reference
"RFC XXXX: 9835: A YANG Network Data Model for Attachment Circuits";
}
// References
/* A set of groupings to ease referencing cross-modules */
grouping attachment-circuit-reference {
description
"This grouping can be used to reference an attachment circuit
in a specific node.";
leaf ac-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"
+ "network-ref]/nw:node[nw:node-id=current()/../"
+ "node-ref]/ac-ntw:ac/ac-ntw:name";
require-instance false;
}
description
"An absolute reference to an attachment circuit.";
}
uses nw:node-ref;
}
grouping attachment-circuit-references {
description
"This grouping can be used to reference a list of attachment
circuits in a specific node.";
leaf-list ac-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"
+ "network-ref]/nw:node[nw:node-id=current()/../"
+ "node-ref]/ac-ntw:ac/ac-ntw:name";
require-instance false;
}
description
"An absolute reference to an attachment circuit.";
}
uses nw:node-ref;
}
grouping ac-profile-reference {
description
"This grouping can be used to reference an attachment circuit
profile.";
leaf ac-profile-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"
+ "network-ref]/ac-ntw:ac-profile/ac-ntw:name";
require-instance false;
}
description
"An absolute reference to an attachment circuit.";
}
uses nw:network-ref;
}
grouping encryption-profile-reference {
description
"This grouping can be used to reference an encryption
profile.";
leaf encryption-profile-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"
+ "network-ref]"
+ "/ac-ntw:specific-provisioning-profiles"
+ "/ac-ntw:valid-provider-identifiers"
+ "/ac-ntw:encryption-profile-identifier/ac-ntw:id";
require-instance false;
}
description
"An absolute reference to an encryption profile.";
}
uses nw:network-ref;
}
grouping qos-profile-reference {
description
"This grouping can be used to reference a QoS profile.";
leaf qos-profile-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"
+ "network-ref]"
+ "/ac-ntw:specific-provisioning-profiles"
+ "/ac-ntw:valid-provider-identifiers"
+ "/ac-ntw:qos-profile-identifier/ac-ntw:id";
require-instance false;
}
description
"An absolute reference to a QoS profile.";
}
uses nw:network-ref;
}
grouping failure-detection-profile-reference {
description
"This grouping can be used to reference a failure detection
profile.";
leaf failure-detection-profile-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"
+ "network-ref]"
+ "/ac-ntw:specific-provisioning-profiles"
+ "/ac-ntw:valid-provider-identifiers"
+ "/ac-ntw:failure-detection-profile-identifier/ac-ntw:id";
require-instance false;
}
description
"An absolute reference to a failure detection profile.";
}
uses nw:network-ref;
}
grouping forwarding-profile-reference {
description
"This grouping can be used to reference a forwarding profile.";
leaf forwarding-profile-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"
+ "network-ref]"
+ "/ac-ntw:specific-provisioning-profiles"
+ "/ac-ntw:valid-provider-identifiers"
+ "/ac-ntw:forwarding-profile-identifier/ac-ntw:id";
require-instance false;
}
description
"An absolute reference to a forwarding profile.";
}
uses nw:network-ref;
}
grouping routing-profile-reference {
description
"This grouping can be used to reference a routing profile.";
leaf routing-profile-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"
+ "network-ref]"
+ "/ac-ntw:specific-provisioning-profiles"
+ "/ac-ntw:valid-provider-identifiers"
+ "/ac-ntw:routing-profile-identifier/ac-ntw:id";
require-instance false;
}
description
"An absolute reference to a routing profile.";
}
uses nw:network-ref;
}
// Layer 2 connection
grouping l2-connection {
description
"Defines Layer 2 protocols and parameters that are required to
enable AC connectivity on the network side.";
container encapsulation {
description
"Container for Layer 2 encapsulation.";
leaf encap-type {
type identityref {
base vpn-common:encapsulation-type;
}
description
"Tagged interface type.";
}
container dot1q {
when "derived-from-or-self(../encap-type, "
+ "'vpn-common:dot1q')" {
description
"Only applies when the type of the tagged interface is
'dot1q'.";
}
description
"Tagged interface.";
uses ac-common:dot1q;
container tag-operations {
description
"Sets the tag manipulation policy for this AC. It
defines a set of tag manipulations that allow for the
insertion, removal, or rewriting of 802.1Q VLAN tags.
These operations are indicated for the CE-PE direction.
By default, tag operations are symmetric. As such, the
reverse tag operation is assumed on the PE-CE
direction.";
choice op-choice {
description
"Selects the tag rewriting policy for an AC.";
leaf pop {
type empty;
description
"Pop the outer tag.";
}
leaf push {
type empty;
description
"Pushes one or two tags defined by the tag-1 and
tag-2 leaves. It is assumed that, absent any
policy, the default value of 0 will be used for
the Priority Code Point (PCP) setting.";
}
leaf translate {
type empty;
description
"Translates the outer tag to one or two tags. PCP
bits are preserved.";
}
}
leaf tag-1 {
when 'not(../pop)';
type dot1q-types:vlanid;
description
"A first tag to be used for push or translate
operations. This tag will be used as the outermost
tag as a result of the tag operation.";
}
leaf tag-1-type {
type dot1q-types:dot1q-tag-type;
default "dot1q-types:s-vlan";
description
"Specifies a specific 802.1Q tag type of tag-1.";
}
leaf tag-2 {
when '(../translate)';
type dot1q-types:vlanid;
description
"A second tag to be used for translation.";
}
leaf tag-2-type {
type dot1q-types:dot1q-tag-type;
default "dot1q-types:c-vlan";
description
"Specifies a specific 802.1Q tag type of tag-2.";
}
}
}
container priority-tagged {
when "derived-from-or-self(../encap-type, "
+ "'vpn-common:priority-tagged')" {
description
"Only applies when the type of the tagged interface is
'priority-tagged'.";
}
description
"Priority tagged container.";
uses ac-common:priority-tagged;
}
container qinq {
when "derived-from-or-self(../encap-type, "
+ "'vpn-common:qinq')" {
description
"Only applies when the type of the tagged interface is
'QinQ'.";
}
description
"Includes QinQ parameters.";
uses ac-common:qinq;
container tag-operations {
description
"Sets the tag manipulation policy for this AC. It
defines a set of tag manipulations that allow for the
insertion, removal, or rewriting of 802.1Q VLAN tags.
These operations are indicated for the CE-PE direction.
By default, tag operations are symmetric. As such, the
reverse tag operation is assumed on the PE-CE
direction.";
choice op-choice {
description
"Selects the tag rewriting policy for a an AC.";
leaf pop {
type uint8 {
range "1|2";
}
description
"Pops one or two tags as a function of the indicated
pop value.";
}
leaf push {
type empty;
description
"Pushes one or two tags defined by the tag-1 and
tag-2 leaves. It is assumed that, absent any
policy, the default value of 0 will be used for
PCP setting.";
}
leaf translate {
type uint8 {
range "1|2";
}
description
"Translates one or two outer tags. PCP bits are
preserved. The following operations are supported:
- translate 1 with tag-1 leaf is provided: only the
outermost tag is translated to the value in tag-1.
- translate 2 with both tag-1 and tag-2 leaves are
provided: both outer and inner tags are translated
to the values in tag-1 and tag-2, respectively.
- translate 2 with tag-1 leaf is provided: the
outer tag is popped while the inner tag is
translated to the value in tag-1.";
}
}
leaf tag-1 {
when 'not(../pop)';
type dot1q-types:vlanid;
description
"A first tag to be used for push or translate
operations. This tag will be used as the outermost
tag as a result of the tag operation.";
}
leaf tag-1-type {
type dot1q-types:dot1q-tag-type;
default "dot1q-types:s-vlan";
description
"Specifies a specific 802.1Q tag type of tag-1.";
}
leaf tag-2 {
when 'not(../pop)';
type dot1q-types:vlanid;
description
"A second tag to be used for push or translate
operations.";
}
leaf tag-2-type {
type dot1q-types:dot1q-tag-type;
default "dot1q-types:c-vlan";
description
"Specifies a specific 802.1Q tag type of tag-2.";
}
}
}
}
choice l2-service {
description
"The Layer 2 connectivity service can be provided by
indicating a pointer to an L2VPN or by specifying a Layer 2
tunnel service.";
container l2-tunnel-service {
description
"Defines a Layer 2 tunnel termination.";
uses ac-common:l2-tunnel-service;
}
case l2vpn {
leaf l2vpn-id {
type vpn-common:vpn-id;
description
"Indicates the L2VPN service associated with an
Integrated Routing and Bridging (IRB) interface.";
}
}
}
}
grouping l2-connection-if-ref {
description
"Specifies Layer 2 connection parameters with interface
references.";
uses l2-connection;
leaf l2-termination-point {
type string;
description
"Specifies a reference to a local Layer 2 termination point,
such as a Layer 2 sub-interface.";
}
leaf local-bridge-reference {
type string;
description
"Specifies a local bridge reference to accommodate, e.g.,
implementations that require internal bridging.
A reference may be a local bridge domain.";
}
leaf bearer-reference {
if-feature "ac-common:server-assigned-reference";
type string;
description
"This is an internal reference for the service provider to
identify the bearer associated with this AC.";
}
container lag-interface {
if-feature "vpn-common:lag-interface";
description
"Container for configuration of Link Aggregation Group (LAG)
interface attributes.";
leaf lag-interface-id {
type string;
description
"LAG interface identifier.";
}
container member-link-list {
description
"Container for the member link list.";
list member-link {
key "name";
description
"Member link.";
leaf name {
type string;
description
"Member link name.";
}
}
}
}
}
// IPv4 connection
grouping ipv4-connection {
description
"IPv4-specific connection parameters.";
leaf local-address {
type inet:ipv4-address;
description
"The IPv4 address used at the provider's interface.";
}
uses ac-common:ipv4-allocation-type;
choice allocation-type {
description
"Choice of the IPv4 address allocation.";
case dynamic {
description
"When the addresses are allocated by DHCP or other
dynamic means local to the infrastructure.";
choice address-assign {
description
"A choice for how IPv4 addresses are assigned.";
case number {
leaf number-of-dynamic-address {
type uint16;
description
"Specifies the number of IP addresses to be
assigned to the customer on this access.";
}
}
case explicit {
container customer-addresses {
description
"Container for customer addresses to be allocated
using DHCP.";
list address-pool {
key "pool-id";
description
"Describes IP addresses to be dynamically
allocated.
When only 'start-address' is present, it
represents a single address.
When both 'start-address' and 'end-address' are
specified, it implies a range inclusive of both
addresses.";
leaf pool-id {
type string;
description
"A pool identifier for the address range from
'start-address' to 'end-address'.";
}
leaf start-address {
type inet:ipv4-address;
mandatory true;
description
"Indicates the first address in the pool.";
}
leaf end-address {
type inet:ipv4-address;
description
"Indicates the last address in the pool.";
}
}
}
}
}
choice provider-dhcp {
description
"Parameters related to DHCP-allocated addresses.
IP addresses are allocated by DHCP, which is provided
by the operator.";
leaf dhcp-service-type {
type enumeration {
enum server {
description
"Local DHCP server.";
}
enum relay {
description
"Local DHCP relay. DHCP requests are relayed to a
provider's server.";
}
}
description
"Indicates the type of DHCP service to be enabled on
this access.";
}
choice service-type {
description
"Choice based on the DHCP service type.";
case relay {
description
"Container for a list of the provider's DHCP servers
(i.e., 'dhcp-service-type' is set to 'relay').";
leaf-list server-ip-address {
type inet:ipv4-address;
description
"IPv4 addresses of the provider's DHCP server, for
use by the local DHCP relay.";
}
}
}
}
choice dhcp-relay {
description
"The DHCP relay is provided by the operator.";
container customer-dhcp-servers {
description
"Container for a list of the customer's DHCP servers.";
leaf-list server-ip-address {
type inet:ipv4-address;
description
"IPv4 addresses of the customer's DHCP server.";
}
}
}
}
case static-addresses {
description
"Lists the static IPv4 addresses that are used.";
list address {
key "address-id";
ordered-by user;
description
"Lists the IPv4 addresses that are used. The first
address of the list is the primary address of the
connection.";
leaf address-id {
type string;
description
"An identifier of the static IPv4 address.";
}
leaf customer-address {
type inet:ipv4-address;
description
"An IPv4 address of the customer side.";
}
uses failure-detection-profile-reference;
}
}
}
}
grouping ipv6-connection {
description
"IPv6-specific connection parameters.";
leaf local-address {
type inet:ipv6-address;
description
"IPv6 address of the provider side.";
}
uses ac-common:ipv6-allocation-type;
choice allocation-type {
description
"Choice of the IPv6 address allocation.";
case dynamic {
description
"When the addresses are allocated by DHCP or other
dynamic means local to the infrastructure.";
choice address-assign {
description
"A choice for how IPv6 addresses are assigned.";
case number {
leaf number-of-dynamic-address {
type uint16;
description
"Specifies the number of IP addresses to be
assigned to the customer on this access.";
}
}
case explicit {
container customer-addresses {
description
"Container for customer addresses to be allocated
using DHCP.";
list address-pool {
key "pool-id";
description
"Describes IPv6 addresses to be dynamically
allocated.
When only 'start-address' is present, it
represents a single address.
When both 'start-address' and 'end-address' are
specified, it implies a range inclusive of both
addresses.";
leaf pool-id {
type string;
description
"A pool identifier for the address range from
'start-address' to 'end-address'.";
}
leaf start-address {
type inet:ipv6-address;
mandatory true;
description
"Indicates the first address in the pool.";
}
leaf end-address {
type inet:ipv6-address;
description
"Indicates the last address in the pool.";
}
}
}
}
}
choice provider-dhcp {
description
"Parameters related to DHCP-allocated addresses.
IP addresses are allocated by DHCP, which is provided
by the operator.";
leaf dhcp-service-type {
type enumeration {
enum server {
description
"Local DHCP server.";
}
enum relay {
description
"Local DHCP relay. DHCP requests are relayed to
a provider's server.";
}
}
description
"Indicates the type of DHCP service to be enabled on
this access.";
}
choice service-type {
description
"Choice based on the DHCP service type.";
case relay {
description
"Container for a list of the provider's DHCP servers
(i.e., 'dhcp-service-type' is set to 'relay').";
leaf-list server-ip-address {
type inet:ipv6-address;
description
"IPv6 addresses of the provider's DHCP server, for
use by the local DHCP relay.";
}
}
}
}
choice dhcp-relay {
description
"The DHCP relay is provided by the operator.";
container customer-dhcp-servers {
description
"Container for a list of the customer's DHCP servers.";
leaf-list server-ip-address {
type inet:ipv6-address;
description
"IPv6 addresses of the customer's DHCP servers.";
}
}
}
}
case static-addresses {
description
"Lists the static IPv6 addresses that are used.";
list address {
key "address-id";
ordered-by user;
description
"Lists the IPv6 addresses that are used. The first
address of the list is the primary address of
the connection.";
leaf address-id {
type string;
description
"An identifier of the static IPv6 address.";
}
leaf customer-address {
type inet:ipv6-address;
description
"An IPv6 address of the customer side.";
}
uses failure-detection-profile-reference;
}
}
}
}
grouping ip-connection {
description
"Defines IP connection parameters.";
leaf l3-termination-point {
type string;
description
"Specifies a reference to a local Layer 3 termination point,
such as a bridge domain interface.";
}
container ipv4 {
if-feature "vpn-common:ipv4";
description
"IPv4-specific connection parameters.";
uses ipv4-connection;
}
container ipv6 {
if-feature "vpn-common:ipv6";
description
"IPv6-specific connection parameters.";
uses ipv6-connection;
}
}
/* Routing */
//BGP base parameters
grouping bgp-base {
description
"Configuration specific to BGP.";
leaf description {
type string;
description
"Includes a description of the BGP session. This description
is meant to be used for diagnostic purposes. The semantic semantics
of the description is are local to an implementation.";
}
uses rt-pol:apply-policy-group;
leaf local-as {
type inet:as-number;
description
"Indicates a local AS Number (ASN), if an ASN distinct from
the ASN configured at the AC level is needed.";
}
leaf peer-as {
type inet:as-number;
mandatory true;
description
"Indicates the customer's ASN when the customer requests BGP
routing.";
}
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"This node contains the address families to be activated.
'dual-stack' means that both IPv4 and IPv6 will be
activated.";
}
leaf role {
type identityref {
base ac-common:bgp-role;
}
description
"Specifies the BGP role (provider, customer, peer, etc.).";
}
leaf multihop {
type uint8;
description
"Describes the number of IP hops allowed between a given BGP
neighbor and the PE.";
}
leaf as-override {
type boolean;
description
"Defines whether ASN override is enabled, i.e., replacing the
ASN of the customer specified in the AS_PATH attribute with
the local ASN.";
}
leaf allow-own-as {
type uint8;
description
"If set, specifies the maximum number of occurrences of the
provider's ASN that are permitted within the AS_PATH
before it is rejected.";
}
leaf prepend-global-as {
type boolean;
description
"In some situations, the ASN that is provided at the node
level may be distinct from the ASN configured at the AC.
When such ASNs are provided, they are both prepended to the
BGP route updates for this AC. To disable that behavior,
'prepend-global-as' must be set to 'false'. In such a
case, the ASN that is provided at the node level is not
prepended to the BGP route updates for this access.";
}
leaf send-default-route {
type boolean;
description
"Defines whether default routes can be advertised to a peer.
If set to 'true', the default routes are advertised to
a peer.";
}
leaf site-of-origin {
when "derived-from-or-self(../address-family, "
+ "'vpn-common:ipv4' or 'vpn-common:dual-stack')" {
description
"Only applies if IPv4 is activated.";
}
type rt-types:route-origin;
description
"The Site of Origin attribute is encoded as a Route Origin
Extended Community. It is meant to uniquely identify the
set of routes learned from a site via a particular AC and
is used to prevent routing loops.";
reference
"RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs),
Section 7";
}
leaf ipv6-site-of-origin {
when "derived-from-or-self(../address-family, "
+ "'vpn-common:ipv6' or 'vpn-common:dual-stack')" {
description
"Only applies if IPv6 is activated.";
}
type rt-types:ipv6-route-origin;
description
"The IPv6 Site of Origin attribute is encoded as an IPv6
Route Origin Extended Community. It is meant to uniquely
identify the set of routes learned from a site.";
reference
"RFC 5701: IPv6 Address Specific BGP Extended Community
Attribute";
}
list redistribute-connected {
key "address-family";
description
"Indicates, per address family, the policy to follow for
connected routes.";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates the address family.";
}
leaf enabled {
type boolean;
description
"Enables, when set to 'true', the redistribution of
Connected
connected routes.";
}
}
container bgp-max-prefix {
description
"Controls the behavior when a prefix maximum is reached.";
leaf max-prefix {
type uint32;
description
"Indicates the maximum number of BGP prefixes allowed in
the BGP session.
It allows control of how many prefixes can be received
from a neighbor.
If the limit is exceeded, the action indicated in
'violate-action' will be followed.";
reference
"RFC 4271: A Border Gateway Protocol 4 (BGP-4),
Section 8.2.2";
}
leaf warning-threshold {
type decimal64 {
fraction-digits 5;
range "0..100";
}
units "percent";
description
"When this value is reached, a warning notification will be
triggered.";
}
leaf violate-action {
type enumeration {
enum warning {
description
"Only a warning message is sent to the peer when the
limit is exceeded.";
}
enum discard-extra-paths {
description
"Discards extra paths when the limit is exceeded.";
}
enum restart {
description
"The BGP session restarts after the indicated time
interval.";
}
}
description
"If the BGP neighbor 'max-prefix' limit is reached, the
action indicated in 'violate-action' will be followed.";
}
leaf restart-timer {
type uint32;
units "seconds";
description
"Time interval after which the BGP session will be
reestablished.";
}
}
container bgp-timers {
description
"Includes two BGP timers.";
leaf keepalive {
type uint16 {
range "0..21845";
}
units "seconds";
description
"This timer indicates the KEEPALIVE messages' frequency
between a PE and a BGP peer.
If set to '0', it indicates that KEEPALIVE messages are
disabled.
It is suggested that the maximum time between KEEPALIVE
messages be one-third of the Hold Time interval.";
reference
"RFC 4271: A Border Gateway Protocol 4 (BGP-4),
Section 4.4";
}
leaf hold-time {
type uint16 {
range "0 | 3..65535";
}
units "seconds";
description
"Indicates the maximum number of seconds that may elapse
between the receipt of successive KEEPALIVE and/or UPDATE
messages from the peer.
The Hold Time must be either zero or at least three
seconds.";
reference
"RFC 4271: A Border Gateway Protocol 4 (BGP-4),
Section 4.2";
}
}
}
grouping bgp-base-peer-group {
description
"Grouping for a basic BGP peer group.";
leaf name {
type string;
description
"Name of the BGP peer group.";
}
uses bgp-base;
}
grouping bgp-base-peer-group-list {
description
"Grouping for a list of basic BGP peer groups.";
list peer-group {
key "name";
description
"List of BGP peer groups uniquely identified by a name.";
uses bgp-base-peer-group;
}
}
grouping bgp-peer-group {
description
"Grouping for BGP peer group.";
leaf name {
type string;
description
"Name of the BGP peer group";
}
leaf local-address {
type union {
type inet:ip-address;
type if:interface-ref;
}
description
"Sets the local IP address to use for the BGP transport
session. This may be expressed as either an IP
address or a reference to an interface.";
}
uses bgp-base;
uses ac-common:bgp-authentication;
}
grouping bgp-peer-group-list {
description
"Grouping for a list of BGP peer groups.";
list peer-group {
key "name";
description
"List of BGP peer groups uniquely identified by a name.";
uses bgp-peer-group;
}
}
// RIP base parameters
grouping rip-base {
description
"Configuration specific to RIP routing.";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or both address families are
to be activated.";
}
container timers {
description
"Indicates the RIP timers.";
reference
"RFC 2080: RIPng for IPv6
RFC 2453: RIP Version 2";
leaf update-interval {
type uint16 {
range "1..32767";
}
units "seconds";
description
"Indicates the RIP update time, i.e., the amount of time
for which RIP updates are sent.";
}
leaf invalid-interval {
type uint16 {
range "1..32767";
}
units "seconds";
description
"The interval before a route is declared invalid after no
updates are received. This value is at least three times
the value for the 'update-interval' argument.";
}
leaf holddown-interval {
type uint16 {
range "1..32767";
}
units "seconds";
description
"Specifies the interval before better routes are
released.";
}
leaf flush-interval {
type uint16 {
range "1..32767";
}
units "seconds";
description
"Indicates the RIP flush timer, i.e., the amount of time
that must elapse before a route is removed from the
routing table.";
}
}
leaf default-metric {
type uint8 {
range "0..16";
}
description
"Sets the default metric.";
}
}
// Routing profile
grouping routing-profile {
description
"Defines profiles for routing protocols.";
list routing-protocol {
key "id";
description
"List of routing protocols used on the AC.";
leaf id {
type string;
description
"Unique identifier for the routing protocol.";
}
leaf type {
type identityref {
base vpn-common:routing-protocol-type;
}
description
"Type of routing protocol.";
}
container bgp {
when "derived-from-or-self(../type, "
+ "'vpn-common:bgp-routing')" {
description
"Only applies when the protocol is BGP.";
}
if-feature "vpn-common:rtg-bgp";
description
"Configuration specific to BGP.";
container peer-groups {
description
"Lists a set of BGP peer groups.";
uses bgp-base-peer-group-list;
}
}
container ospf {
when "derived-from-or-self(../type, "
+ "'vpn-common:ospf-routing')" {
description
"Only applies when the protocol is OSPF.";
}
if-feature "vpn-common:rtg-ospf";
description
"Configuration specific to OSPF.";
uses ac-common:ospf-basic;
leaf max-lsa {
type uint32 {
range "1..4294967294";
}
description
"Maximum number of allowed Link State Advertisements
(LSAs) that the OSPF instance will accept.";
}
leaf passive {
type boolean;
description
"Enables when
"When set to 'true' 'true', enables a passive interface. It is
active when set to 'false'. A passive interface's
prefix will be advertised, but no neighbor adjacencies
will be formed on the interface.";
}
}
container isis {
when "derived-from-or-self(../type, "
+ "'vpn-common:isis-routing')" {
description
"Only applies when the protocol is IS-IS.";
}
if-feature "vpn-common:rtg-isis";
description
"Configuration specific to IS-IS.";
uses ac-common:isis-basic;
leaf level {
type identityref {
base vpn-common:isis-level;
}
description
"Can be 'level-1', 'level-2', or 'level-1-2'.";
reference
"RFC 9181: A Common YANG Data Model for Layer 2
and Layer 3 VPNs";
}
leaf metric {
type uint32 {
range "0 .. 16777215";
}
description
"Metric of the AC. It is used in the routing state
calculation and path selection.";
}
leaf passive {
type boolean;
description
"When set to 'false', the interface is active. In such
mode, the interface sends or receives IS-IS protocol
control packets.
When set to 'true', the interface is passive. That
is, it suppresses the sending of IS-IS updates through
the specified interface.";
}
}
container rip {
when "derived-from-or-self(../type, "
+ "'vpn-common:rip-routing')" {
description
"Only applies when the protocol is RIP.";
}
if-feature "vpn-common:rtg-rip";
description
"Configuration specific to RIP routing.";
uses rip-base;
}
container vrrp {
when "derived-from-or-self(../type, "
+ "'vpn-common:vrrp-routing')" {
description
"Only applies when the protocol is the Virtual Router
Redundancy Protocol (VRRP).";
}
if-feature "vpn-common:rtg-vrrp";
description
"Configuration specific to VRRP.";
reference
"RFC 9568: Virtual Router Redundancy Protocol (VRRP)
Version 3 for IPv4 and IPv6";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or both address families
are to be enabled.";
}
leaf ping-reply {
type boolean;
description
"Controls whether the VRRP speaker should reply to ping
requests. Such behavior is enabled, if set to 'true'.";
}
}
}
}
grouping routing {
description
"Defines routing protocols.";
list routing-protocol {
key "id";
description
"List of routing protocols used on the AC.";
leaf id {
type string;
description
"Unique identifier for the routing protocol.";
}
leaf type {
type identityref {
base vpn-common:routing-protocol-type;
}
description
"Type of routing protocol.";
}
list routing-profile {
key "routing-profile-ref";
description
"Routing profiles.";
uses routing-profile-reference;
leaf type {
type identityref {
base vpn-common:ie-type;
}
description
"Import, export, or both.";
}
}
container static {
when "derived-from-or-self(../type, "
+ "'vpn-common:static-routing')" {
description
"Only applies when the protocol is static routing.";
}
description
"Configuration specific to static routing.";
container cascaded-lan-prefixes {
description
"LAN prefixes from the customer.";
list ipv4-lan-prefix {
if-feature "vpn-common:ipv4";
key "lan next-hop";
description
"List of LAN prefixes for the site.";
uses ac-common:ipv4-static-rtg-entry;
uses bfd-routing;
leaf preference {
type uint32;
description
"Indicates the preference associated with the static
route.";
}
uses ac-common:service-status;
}
list ipv6-lan-prefix {
if-feature "vpn-common:ipv6";
key "lan next-hop";
description
"List of LAN prefixes for the site.";
uses ac-common:ipv6-static-rtg-entry;
uses bfd-routing;
leaf preference {
type uint32;
description
"Indicates the preference associated with the static
route.";
}
uses ac-common:service-status;
}
}
}
container bgp {
when "derived-from-or-self(../type, "
+ "'vpn-common:bgp-routing')" {
description
"Only applies when the protocol is BGP.";
}
if-feature "vpn-common:rtg-bgp";
description
"Configuration specific to BGP.";
container peer-groups {
description
"Configuration for BGP peer groups";
uses bgp-peer-group-list;
}
list neighbor {
key "remote-address";
description
"List of BGP neighbors.";
leaf remote-address {
type inet:ip-address;
description
"The remote IP address of this entry's BGP peer.";
}
leaf local-address {
type union {
type inet:ip-address;
type if:interface-ref;
}
description
"Sets the local IP address to use for the BGP transport
session. This may be expressed as either an IP
address or a reference to an interface.";
}
leaf peer-group {
type leafref {
path "../../peer-groups/peer-group/name";
}
description
"The peer group with which this neighbor is
associated.";
}
uses bgp-base;
uses bfd-routing;
uses ac-common:bgp-authentication;
uses ac-common:service-status;
}
}
container ospf {
when "derived-from-or-self(../type, "
+ "'vpn-common:ospf-routing')" {
description
"Only applies when the protocol is OSPF.";
}
if-feature "vpn-common:rtg-ospf";
description
"Configuration specific to OSPF.";
uses ac-common:ospf-basic;
container sham-links {
if-feature "vpn-common:rtg-ospf-sham-link";
description
"List of sham links.";
reference
"RFC 4577: OSPF as the Provider/Customer Edge Protocol
for BGP/MPLS IP Virtual Private Networks
(VPNs), Section 4.2.7
RFC 6565: OSPFv3 as a Provider Edge to Customer Edge
(PE-CE) Routing Protocol, Section 5";
list sham-link {
key "target-site";
description
"Creates a sham link with another site.";
leaf target-site {
type string;
description
"Target site for the sham link connection. The site
is referred to by its identifier.";
}
leaf metric {
type uint16;
description
"Metric of the sham link. It is used in the routing
state calculation and path selection.";
reference
"RFC 4577: OSPF as the Provider/Customer Edge
Protocol for BGP/MPLS IP Virtual Private
Networks (VPNs), Section 4.2.7.3
RFC 6565: OSPFv3 as a Provider Edge to Customer Edge
(PE-CE) Routing Protocol, Section 5.2";
}
}
}
leaf max-lsa {
type uint32 {
range "1..4294967294";
}
description
"Maximum number of allowed Link State Advertisements
(LSAs) that the OSPF instance will accept.";
}
leaf passive {
type boolean;
description
"Enables when
"When set to 'true' 'true', enables a passive interface. It is
active when set to 'false'. A passive interface's
prefix will be advertised, but no neighbor adjacencies
will be formed on the interface.";
}
uses ac-common:ospf-authentication;
uses ac-common:service-status;
}
container isis {
when "derived-from-or-self(../type, "
+ "'vpn-common:isis-routing')" {
description
"Only applies when the protocol is IS-IS.";
}
if-feature "vpn-common:rtg-isis";
description
"Configuration specific to IS-IS.";
uses ac-common:isis-basic;
leaf level {
type identityref {
base vpn-common:isis-level;
}
description
"Can be 'level-1', 'level-2', or 'level-1-2'.";
reference
"RFC 9181: A Common YANG Data Model for Layer 2 and
Layer 3 VPNs";
}
leaf metric {
type uint32 {
range "0 .. 16777215";
}
description
"Metric of the AC. It is used in the routing state
calculation and path selection.";
}
leaf passive {
type boolean;
description
"When set to 'false', the interface is active. In such
mode, the interface sends or receives IS-IS protocol
control packets.
When set to 'true', the interface is passive. That
is, it suppresses the sending of IS-IS updates through
the specified interface.";
}
uses ac-common:isis-authentication;
uses ac-common:service-status;
}
container rip {
when "derived-from-or-self(../type, "
+ "'vpn-common:rip-routing')" {
description
"Only applies when the protocol is RIP.
For IPv4, the model assumes that RIP version 2
is used.";
}
if-feature "vpn-common:rtg-rip";
description
"Configuration specific to RIP routing.";
uses rip-base;
uses ac-common:rip-authentication;
uses ac-common:service-status;
}
container vrrp {
when "derived-from-or-self(../type, "
+ "'vpn-common:vrrp-routing')" {
description
"Only applies when the protocol is the VRRP.";
}
if-feature "vpn-common:rtg-vrrp";
description
"Configuration specific to VRRP.";
reference
"RFC 9568: Virtual Router Redundancy Protocol (VRRP)
Version 3 for IPv4 and IPv6";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or both address families
are to be enabled.";
}
leaf vrrp-group {
type uint8 {
range "1..255";
}
description
"Includes the VRRP group identifier.";
}
leaf backup-peer {
type inet:ip-address;
description
"Indicates the IP address of the peer.";
}
leaf-list virtual-ip-address {
type inet:ip-address;
description
"Virtual IP addresses for a single VRRP group.";
reference
"RFC 9568: Virtual Router Redundancy Protocol (VRRP)
Version 3 for IPv4 and IPv6, Sections 1.2
and 1.3";
}
leaf priority {
type uint8 {
range "1..254";
}
description
"Sets the local priority of the VRRP speaker.";
}
leaf ping-reply {
type boolean;
description
"Controls whether the VRRP speaker should reply to ping
requests.";
}
uses ac-common:service-status;
}
}
}
// OAM
grouping bfd {
description
"Grouping for BFD.";
leaf session-type {
type identityref {
base vpn-common:bfd-session-type;
}
description
"Specifies the BFD session type.";
}
leaf desired-min-tx-interval {
type uint32;
units "microseconds";
description
"The minimum interval between transmissions of BFD Control
packets, as desired by the operator.";
reference
"RFC 5880: Bidirectional Forwarding Detection (BFD),
Section 6.8.7";
}
leaf required-min-rx-interval {
type uint32;
units "microseconds";
description
"The minimum interval between received BFD Control packets
that the PE should support.";
reference
"RFC 5880: Bidirectional Forwarding Detection (BFD),
Section 6.8.7";
}
leaf local-multiplier {
type uint8 {
range "1..255";
}
description
"Specifies the detection multiplier that is transmitted to a
BFD peer.
The detection interval for the receiving BFD peer is
calculated by multiplying the value of the negotiated
transmission interval by the received detection multiplier
value.";
reference
"RFC 5880: Bidirectional Forwarding Detection (BFD),
Section 6.8.7";
}
leaf holdtime {
type uint32;
units "milliseconds";
description
"Expected BFD holdtime.
The customer may impose some fixed values for the holdtime
period if the provider allows the customer to use this
function.";
reference
"RFC 5880: Bidirectional Forwarding Detection (BFD),
Section 6.8.18";
}
}
grouping bfd-routing {
description
"Defines a basic BFD grouping for routing configuration.";
container bfd {
if-feature "vpn-common:bfd";
description
"BFD control for this neighbor.";
leaf enabled {
type boolean;
description
"Enables BFD if set to 'true'. BFD is disabled of if set to
'false'.";
}
uses failure-detection-profile-reference;
}
}
grouping oam {
description
"Defines the Operations, Administration, and Maintenance
(OAM) mechanisms used.";
container bfd {
if-feature "vpn-common:bfd";
description
"Container for BFD.";
list session {
key "dest-addr";
description
"List of IP sessions.";
leaf dest-addr {
type inet:ip-address;
description
"IP address of the peer.";
}
leaf source-address {
type union {
type inet:ip-address;
type if:interface-ref;
}
description
"Sets the local IP address to use for the BFD session.
This may be expressed as either an IP address or
a reference to an interface.";
}
uses failure-detection-profile-reference;
uses bfd;
container authentication {
presence "Enables BFD authentication";
description
"Parameters for BFD authentication.";
leaf key-chain {
type key-chain:key-chain-ref;
description
"Name of the key chain.";
}
leaf meticulous {
type boolean;
description
"Enables meticulous mode, if set to 'true'.";
reference
"RFC 5880: Bidirectional Forwarding Detection (BFD),
Section 6.7";
}
}
uses ac-common:service-status;
}
}
}
// Security
grouping security {
description
"Security parameters for an AC.";
container encryption {
if-feature "vpn-common:encryption";
description
"Container for AC encryption.";
leaf enabled {
type boolean;
description
"If set to 'true', traffic encryption on the connection is
required. Otherwise, it is disabled.";
}
leaf layer {
when "../enabled = 'true'" {
description
"Included only when encryption is enabled.";
}
type enumeration {
enum layer2 {
description
"Encryption occurs at Layer 2.";
}
enum layer3 {
description
"Encryption occurs at Layer 3. For example, IPsec
may be used when a customer requests Layer 3
encryption.";
}
}
description
"Indicates the layer on which encryption is applied.";
}
}
container encryption-profile {
when "../encryption/enabled = 'true'" {
description
"Indicates the layer on which encryption is enabled.";
}
description
"Container for the encryption profile.";
choice profile {
description
"Choice for the encryption profile.";
case provider-profile {
uses encryption-profile-reference;
}
case customer-profile {
leaf customer-key-chain {
type key-chain:key-chain-ref;
description
"Customer-supplied key chain.";
}
}
}
}
}
// AC profile
grouping ac-profile {
description
"Grouping for attachment circuit profiles.";
container routing-protocols {
description
"Defines routing protocols.";
uses routing-profile;
}
container oam {
description
"Defines the OAM mechanisms used for the AC profile.";
container bfd {
if-feature "vpn-common:bfd";
description
"Container for BFD.";
uses bfd;
}
}
}
// Parent and Child ACs
grouping ac-hierarchy {
description
"Container for parent and child AC references.";
container parent-ref {
description
"Specifies the parent AC that is inherited by an AC.
Parent ACs are used, e.g., in contexts where multiple
CEs are terminating the same AC, but some specific
information is required for each peer SAP.";
uses ac-ntw:attachment-circuit-reference;
}
container child-ref {
config false;
description
"Specifies a child AC that relies upon a parent AC.";
uses ac-ntw:attachment-circuit-references;
}
}
// AC network provisioning
grouping ac {
description
"Grouping for attachment circuits.";
leaf description {
type string;
description
"Associates a description with an AC.";
}
container l2-connection {
if-feature "ac-common:layer2-ac";
description
"Defines Layer 2 protocols and parameters that are required
to enable AC connectivity.";
uses l2-connection-if-ref;
}
container ip-connection {
if-feature "ac-common:layer3-ac";
description
"Defines IP connection parameters.";
uses ip-connection;
}
container routing-protocols {
description
"Defines routing protocols.";
uses routing;
}
container oam {
description
"Defines the OAM mechanisms used for the AC.";
uses oam;
}
container security {
description
"AC-specific security parameters.";
uses security;
}
container service {
description
"AC-specific bandwidth parameters.";
leaf mtu {
type uint32;
units "bytes";
description
"Layer 2 MTU.";
}
uses ac-svc:bandwidth;
container qos {
if-feature "vpn-common:qos";
description
"QoS configuration.";
container qos-profiles {
description
"QoS profile configuration.";
list qos-profile {
key "qos-profile-ref";
description
"Points to a QoS profile.";
uses qos-profile-reference;
leaf direction {
type identityref {
base vpn-common:qos-profile-direction;
}
description
"The direction to which the QoS profile is applied.";
}
}
}
}
container access-control-list {
description
"Container for the Access Control List (ACL).";
container acl-profiles {
description
"ACL profile configuration.";
list acl-profile {
key "forwarding-profile-ref";
description
"Points to an ACL profile.";
uses forwarding-profile-reference;
}
}
}
}
}
augment "/nw:networks/nw:network" {
description
"Add a list of profiles.";
container specific-provisioning-profiles {
description
"Contains a set of valid profiles to reference in the AC
activation.";
uses ac-common:ac-profile-cfg;
}
list ac-profile {
key "name";
description
"Specifies a list of AC profiles.";
leaf name {
type string;
description
"Name of the AC.";
}
uses ac-ntw:ac-profile;
}
}
augment "/nw:networks/nw:network/nw:node" {
when '../nw:network-types/sap:sap-network' {
description
"Augmentation parameters apply only for SAP networks.";
}
description
"Augments nodes with AC provisioning details.";
list ac {
key "name";
description
"List of ACs.";
leaf name {
type string;
description
"A name that identifies the AC locally.";
}
leaf svc-ref {
type ac-svc:attachment-circuit-reference;
description
"A reference to the AC as exposed at the service level.";
}
list profile {
key "ac-profile-ref";
description
"List of AC profiles.";
uses ac-profile-reference;
}
uses ac-hierarchy;
leaf-list peer-sap-id {
type string;
description
"One or more peer SAPs can be indicated.";
}
uses ac-common:redundancy-group;
uses ac-common:service-status;
uses ac-ntw:ac;
}
}
augment "/nw:networks/nw:network/nw:node"
+ "/sap:service/sap:sap" {
when '../../../nw:network-types/sap:sap-network' {
description
"Augmentation parameters apply only for SAP networks.";
}
description
"Augments SAPs with AC provisioning details.";
list ac {
key "ac-ref";
description
"Specifies the ACs that are terminated by the SAP.";
uses ac-ntw:attachment-circuit-reference;
}
}
}
<CODE ENDS>
7. Security Considerations
This section is modeled after the template described in in Section 3.7
of [I-D.ietf-netmod-rfc8407bis]. [YANG-GUIDELINES].
The "ietf-ac-ntw" YANG module defines a data model that is designed
to be accessed via YANG-based management protocols, such as NETCONF
[RFC6241] and RESTCONF [RFC8040]. These protocols have to use a
secure transport layer (e.g., SSH [RFC4252], TLS [RFC8446], and QUIC
[RFC9000]) and have to use mutual authentication.
The Network Configuration Access Control Model (NACM) [RFC8341]
provides the means to restrict access for particular NETCONF or
RESTCONF users to a preconfigured subset of all available NETCONF or
RESTCONF protocol operations and content.
There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, "config true", which is the
default). These All writable data nodes may are likely to be considered reasonably
sensitive or vulnerable in some network environments. Write
operations (e.g., edit-config) and delete operations to these data
nodes without proper protection or authentication can have a negative
effect on network operations.
Specifically, the The following subtrees and data nodes
have particular sensitivities/vulnerabilities:
'specific-provisioning-profiles': This container includes a set of
sensitive data that influence influences how an AC is delivered. For
example, an attacker who has access to these data nodes may be
able to manipulate routing policies, QoS policies, or encryption
properties. These data nodes are defined with "nacm:default-deny-
write" tagging [I-D.ietf-opsawg-teas-common-ac]. [RFC9833].
'ac': An attacker who is able to access network nodes can undertake
various attacks, such as modify the attributes of an AC (e.g.,
QoS, bandwidth, routing protocols, keying material), leading to
malfunctioning of services that are delivered over that AC and
therefore to Service Level Agreement (SLA) violations. In
addition, an attacker could attempt to add a new AC. : In
addition to By also
using NACM to prevent unauthorized access, such activity can be
detected by adequately monitoring and tracking network
configuration changes.
Some of the readable data nodes in this YANG module may be considered
sensitive or vulnerable in some network environments. It is thus
important to control read access (e.g., via get, get-config, or
notification) to these data nodes. Specifically, the following
subtrees and data nodes have particular sensitivities/
vulnerabilities:
'ac': Unauthorized access to this subtree can disclose the identity
of a customer 'peer-sap-id'.
'l2-connection' and 'ip-connection': An attacker can retrieve
privacy-related information, which can be used to track a
customer. Disclosing such information may be considered a
violation of the customer-provider trust relationship.
'keying-material' and 'customer-key-chain': An attacker can retrieve
the cryptographic keys protecting an AC (routing, in particular).
These keys could be used to inject spoofed routing advertisements.
Several data nodes ('bgp', 'ospf', 'isis', 'rip', and 'customer-key-
chain') rely upon [RFC8177] for authentication purposes. As such,
the AC network module inherits the security considerations discussed
in Section 5 of [RFC8177]. Also, these data nodes support supplying
explicit keys as strings in ASCII format. The use of keys in
hexadecimal string format would afford greater key entropy with the
same number of key-string octets. However, such a format is not
included in this version of the AC network model, because it is not
supported by the underlying device modules (e.g., [RFC8695]).
Section 5.8 specifies the the encryption to be applied to traffic for a
given AC.
8. IANA Considerations
IANA is requested to register has registered the following URI in the "ns" subregistry within
the "IETF XML Registry" [RFC3688]:
URI: urn:ietf:params:xml:ns:yang:ietf-ac-ntw
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
IANA is requested to register has registered the following YANG module in the "YANG Module
Names" subregistry registry [RFC6020] within the "YANG Parameters"
registry: registry
group:
Name: ietf-ac-ntw
Namespace: urn:ietf:params:xml:ns:yang:ietf-ac-ntw
Prefix: ac-ntw
Maintained by IANA? N
Namespace: urn:ietf:params:xml:ns:yang:ietf-ac-ntw
Prefix: ac-ntw
Reference: RFC XXXX 9835
9. References
9.1. Normative References
[I-D.ietf-opsawg-teas-attachment-circuit]
Boucadair, M., Roberts, R., de Dios, O. G., Barguil, S.,
and B. Wu, "YANG Data Models for Bearers and 'Attachment
Circuits'-as-a-Service (ACaaS)", Work in Progress,
Internet-Draft, draft-ietf-opsawg-teas-attachment-circuit-
20, 23 January 2025,
<https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
teas-attachment-circuit-20>.
[I-D.ietf-opsawg-teas-common-ac]
Boucadair, M., Roberts, R., de Dios, O. G., Barguil, S.,
and B. Wu, "A Common YANG Data Model for Attachment
Circuits", Work in Progress, Internet-Draft, draft-ietf-
opsawg-teas-common-ac-15, 23 January 2025,
<https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
teas-common-ac-15>.
[IEEE802.1Qcp]
IEEE, "IEEE Standard for Local and metropolitan area
networks--Bridges and Bridged Networks--Amendment 30: YANG
Data Model", IEEE Std 802.1Qcp-2018,
DOI 10.1109/IEEESTD.2018.8467507, September 2018,
<https://doi.org/10.1109/IEEESTD.2018.8467507>.
[RFC2080] Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080,
DOI 10.17487/RFC2080, January 1997,
<https://www.rfc-editor.org/rfc/rfc2080>.
<https://www.rfc-editor.org/info/rfc2080>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/rfc/rfc2119>.
<https://www.rfc-editor.org/info/rfc2119>.
[RFC2453] Malkin, G., "RIP Version 2", STD 56, RFC 2453,
DOI 10.17487/RFC2453, November 1998,
<https://www.rfc-editor.org/rfc/rfc2453>.
<https://www.rfc-editor.org/info/rfc2453>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/rfc/rfc3688>.
<https://www.rfc-editor.org/info/rfc3688>.
[RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
January 2006, <https://www.rfc-editor.org/info/rfc4252>.
[RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
Border Gateway Protocol 4 (BGP-4)", RFC 4271,
DOI 10.17487/RFC4271, January 2006,
<https://www.rfc-editor.org/rfc/rfc4271>.
<https://www.rfc-editor.org/info/rfc4271>.
[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
2006, <https://www.rfc-editor.org/rfc/rfc4364>. <https://www.rfc-editor.org/info/rfc4364>.
[RFC4577] Rosen, E., Psenak, P., and P. Pillay-Esnault, "OSPF as the
Provider/Customer Edge Protocol for BGP/MPLS IP Virtual
Private Networks (VPNs)", RFC 4577, DOI 10.17487/RFC4577,
June 2006, <https://www.rfc-editor.org/rfc/rfc4577>. <https://www.rfc-editor.org/info/rfc4577>.
[RFC5701] Rekhter, Y., "IPv6 Address Specific BGP Extended Community
Attribute", RFC 5701, DOI 10.17487/RFC5701, November 2009,
<https://www.rfc-editor.org/rfc/rfc5701>.
<https://www.rfc-editor.org/info/rfc5701>.
[RFC5709] Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M.,
Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic
Authentication", RFC 5709, DOI 10.17487/RFC5709, October
2009, <https://www.rfc-editor.org/rfc/rfc5709>. <https://www.rfc-editor.org/info/rfc5709>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
<https://www.rfc-editor.org/rfc/rfc5880>.
<https://www.rfc-editor.org/info/rfc5880>.
[RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
June 2010, <https://www.rfc-editor.org/rfc/rfc5925>. <https://www.rfc-editor.org/info/rfc5925>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/rfc/rfc6020>.
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6565] Pillay-Esnault, P., Moyer, P., Doyle, J., Ertekin, E., and
M. Lundberg, "OSPFv3 as a Provider Edge to Customer Edge
(PE-CE) Routing Protocol", RFC 6565, DOI 10.17487/RFC6565,
June 2012, <https://www.rfc-editor.org/rfc/rfc6565>. <https://www.rfc-editor.org/info/rfc6565>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/rfc/rfc6991>.
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7166] Bhatia, M., Manral, V., and A. Lindem, "Supporting
Authentication Trailer for OSPFv3", RFC 7166,
DOI 10.17487/RFC7166, March 2014,
<https://www.rfc-editor.org/rfc/rfc7166>.
<https://www.rfc-editor.org/info/rfc7166>.
[RFC7474] Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed.,
"Security Extension for OSPFv2 When Using Manual Key
Management", RFC 7474, DOI 10.17487/RFC7474, April 2015,
<https://www.rfc-editor.org/rfc/rfc7474>.
<https://www.rfc-editor.org/info/rfc7474>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/rfc/rfc7950>.
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8077] Martini, L., Ed. and G. Heron, Ed., "Pseudowire Setup and
Maintenance Using the Label Distribution Protocol (LDP)",
STD 84, RFC 8077, DOI 10.17487/RFC8077, February 2017,
<https://www.rfc-editor.org/rfc/rfc8077>.
<https://www.rfc-editor.org/info/rfc8077>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/rfc/rfc8174>. <https://www.rfc-editor.org/info/rfc8174>.
[RFC8177] Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J.
Zhang, "YANG Data Model for Key Chains", RFC 8177,
DOI 10.17487/RFC8177, June 2017,
<https://www.rfc-editor.org/rfc/rfc8177>.
<https://www.rfc-editor.org/info/rfc8177>.
[RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
"Common YANG Data Types for the Routing Area", RFC 8294,
DOI 10.17487/RFC8294, December 2017,
<https://www.rfc-editor.org/rfc/rfc8294>.
<https://www.rfc-editor.org/info/rfc8294>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/rfc/rfc8341>.
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture
(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
<https://www.rfc-editor.org/rfc/rfc8342>.
<https://www.rfc-editor.org/info/rfc8342>.
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface
Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
<https://www.rfc-editor.org/rfc/rfc8343>.
<https://www.rfc-editor.org/info/rfc8343>.
[RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
2018, <https://www.rfc-editor.org/rfc/rfc8345>. <https://www.rfc-editor.org/info/rfc8345>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,
DOI 10.17487/RFC9000, May 2021,
<https://www.rfc-editor.org/info/rfc9000>.
[RFC9067] Qu, Y., Tantsura, J., Lindem, A., and X. Liu, "A YANG Data
Model for Routing Policy", RFC 9067, DOI 10.17487/RFC9067,
October 2021, <https://www.rfc-editor.org/rfc/rfc9067>. <https://www.rfc-editor.org/info/rfc9067>.
[RFC9181] Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M.,
Ed., and Q. Wu, "A Common YANG Data Model for Layer 2 and
Layer 3 VPNs", RFC 9181, DOI 10.17487/RFC9181, February
2022, <https://www.rfc-editor.org/rfc/rfc9181>. <https://www.rfc-editor.org/info/rfc9181>.
[RFC9182] Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M.,
Ed., Munoz, L., and A. Aguado, "A YANG Network Data Model
for Layer 3 VPNs", RFC 9182, DOI 10.17487/RFC9182,
February 2022, <https://www.rfc-editor.org/rfc/rfc9182>. <https://www.rfc-editor.org/info/rfc9182>.
[RFC9291] Boucadair, M., Ed., Gonzalez de Dios, O., Ed., Barguil,
S., and L. Munoz, "A YANG Network Data Model for Layer 2
VPNs", RFC 9291, DOI 10.17487/RFC9291, September 2022,
<https://www.rfc-editor.org/rfc/rfc9291>.
<https://www.rfc-editor.org/info/rfc9291>.
[RFC9408] Boucadair, M., Ed., Gonzalez de Dios, O., Barguil, S., Wu,
Q., and V. Lopez, "A YANG Network Data Model for Service
Attachment Points (SAPs)", RFC 9408, DOI 10.17487/RFC9408,
June 2023, <https://www.rfc-editor.org/rfc/rfc9408>. <https://www.rfc-editor.org/info/rfc9408>.
[RFC9568] Lindem, A. and A. Dogra, "Virtual Router Redundancy
Protocol (VRRP) Version 3 for IPv4 and IPv6", RFC 9568,
DOI 10.17487/RFC9568, April 2024,
<https://www.rfc-editor.org/rfc/rfc9568>.
9.2. Informative References
[I-D.ietf-netmod-rfc8407bis]
Bierman, A.,
<https://www.rfc-editor.org/info/rfc9568>.
[RFC9833] Boucadair, M., Ed., Roberts, R., Ed., Gonzalez de Dios,
O., Barguil Giraldo, S., and Q. B. Wu, "Guidelines for
Authors and Reviewers of Documents Containing "A Common YANG Data
Models", Work in Progress, Internet-Draft, draft-ietf-
netmod-rfc8407bis-22, 14 January
Model for Attachment Circuits", RFC 9833,
DOI 10.17487/RFC9833, August 2025,
<https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
rfc8407bis-22>.
[I-D.ietf-opsawg-ac-lxsm-lxnm-glue]
<https://www.rfc-editor.org/info/rfc9833>.
[RFC9834] Boucadair, M., Ed., Roberts, R., Ed., Gonzalez de Dios,
O., Barguil, S., and O. G. de
Dios, "A YANG B. Wu, "YANG Data Model Models for Augmenting VPN Service Bearers
and
Network Models with Attachment Circuits", Work in
Progress, Internet-Draft, draft-ietf-opsawg-ac-lxsm-lxnm-
glue-13, 9 January 'Attachment Circuits'-as-a-Service (ACaaS)", RFC 9834,
DOI 10.17487/RFC9834, August 2025,
<https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
ac-lxsm-lxnm-glue-13>.
<https://www.rfc-editor.org/info/rfc9834>.
9.2. Informative References
[RFC3644] Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., and B.
Moore, "Policy Quality of Service (QoS) Information
Model", RFC 3644, DOI 10.17487/RFC3644, November 2003,
<https://www.rfc-editor.org/rfc/rfc3644>.
[RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
January 2006, <https://www.rfc-editor.org/rfc/rfc4252>.
<https://www.rfc-editor.org/info/rfc3644>.
[RFC4552] Gupta, M. and N. Melam, "Authentication/Confidentiality
for OSPFv3", RFC 4552, DOI 10.17487/RFC4552, June 2006,
<https://www.rfc-editor.org/rfc/rfc4552>.
<https://www.rfc-editor.org/info/rfc4552>.
[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
Address Autoconfiguration", RFC 4862,
DOI 10.17487/RFC4862, September 2007,
<https://www.rfc-editor.org/rfc/rfc4862>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/rfc/rfc6241>.
<https://www.rfc-editor.org/info/rfc4862>.
[RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
Chaining (SFC) Architecture", RFC 7665,
DOI 10.17487/RFC7665, October 2015,
<https://www.rfc-editor.org/rfc/rfc7665>.
<https://www.rfc-editor.org/info/rfc7665>.
[RFC7880] Pignataro, C., Ward, D., Akiya, N., Bhatia, M., and S.
Pallagatti, "Seamless Bidirectional Forwarding Detection
(S-BFD)", RFC 7880, DOI 10.17487/RFC7880, July 2016,
<https://www.rfc-editor.org/rfc/rfc7880>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/rfc/rfc8040>.
<https://www.rfc-editor.org/info/rfc7880>.
[RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
"YANG Data Model for L3VPN Service Delivery", RFC 8299,
DOI 10.17487/RFC8299, January 2018,
<https://www.rfc-editor.org/rfc/rfc8299>.
<https://www.rfc-editor.org/info/rfc8299>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/rfc/rfc8340>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/rfc/rfc8446>.
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8466] Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG
Data Model for Layer 2 Virtual Private Network (L2VPN)
Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October
2018, <https://www.rfc-editor.org/rfc/rfc8466>. <https://www.rfc-editor.org/info/rfc8466>.
[RFC8695] Liu, X., Sarda, P., and V. Choudhary, "A YANG Data Model
for the Routing Information Protocol (RIP)", RFC 8695,
DOI 10.17487/RFC8695, February 2020,
<https://www.rfc-editor.org/rfc/rfc8695>.
<https://www.rfc-editor.org/info/rfc8695>.
[RFC8969] Wu, Q., Ed., Boucadair, M., Ed., Lopez, D., Xie, C., and
L. Geng, "A Framework for Automating Service and Network
Management with YANG", RFC 8969, DOI 10.17487/RFC8969,
January 2021, <https://www.rfc-editor.org/rfc/rfc8969>.
[RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,
DOI 10.17487/RFC9000, May 2021,
<https://www.rfc-editor.org/rfc/rfc9000>. <https://www.rfc-editor.org/info/rfc8969>.
[RFC9127] Rahman, R., Ed., Zheng, L., Ed., Jethanandani, M., Ed.,
Pallagatti, S., and G. Mirsky, "YANG Data Model for
Bidirectional Forwarding Detection (BFD)", RFC 9127,
DOI 10.17487/RFC9127, October 2021,
<https://www.rfc-editor.org/rfc/rfc9127>.
<https://www.rfc-editor.org/info/rfc9127>.
[RFC9234] Azimov, A., Bogomazov, E., Bush, R., Patel, K., and K.
Sriram, "Route Leak Prevention and Detection Using Roles
in UPDATE and OPEN Messages", RFC 9234,
DOI 10.17487/RFC9234, May 2022,
<https://www.rfc-editor.org/rfc/rfc9234>.
<https://www.rfc-editor.org/info/rfc9234>.
[RFC9543] Farrel, A., Ed., Drake, J., Ed., Rokui, R., Homma, S.,
Makhijani, K., Contreras, L., and J. Tantsura, "A
Framework for Network Slices in Networks Built from IETF
Technologies", RFC 9543, DOI 10.17487/RFC9543, March 2024,
<https://www.rfc-editor.org/rfc/rfc9543>.
<https://www.rfc-editor.org/info/rfc9543>.
[RFC9836] Boucadair, M., Ed., Roberts, R., Barguil, S., and O.
Gonzalez de Dios, "A YANG Data Model for Augmenting VPN
Service and Network Models with Attachment Circuits",
RFC 9836, DOI 10.17487/RFC9836, August 2025,
<https://www.rfc-editor.org/info/rfc9836>.
[YANG-GUIDELINES]
Bierman, A., Boucadair, M., and Q. Wu, "Guidelines for
Authors and Reviewers of Documents Containing YANG Data
Models", Work in Progress, Internet-Draft, draft-ietf-
netmod-rfc8407bis-28, 5 June 2025,
<https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
rfc8407bis-28>.
Appendix A. Examples
A.1. VPLS
Let us consider the example depicted in Figure 21 with two customer
terminating points (CE1 and CE2). Let us also assume that the
bearers to attach these CEs to the provider network are already in
place. References to the identify these bearers are shown in the figure.
.-----. .--------------. .-----.
.---. | PE1 +===+ +===+ PE2 | .---.
| CE1+------+"450"| | MPLS | |"451"+------+ CE2|
'---' ^ '-----' | | '-----' ^ '---'
| | Core | |
Bearer:1234 '--------------' Bearer:5678
Figure 21: Topology Example
The AC service model [I-D.ietf-opsawg-teas-attachment-circuit] [RFC9834] can be used by the provider to manage
and expose the ACs over existing bearers as shown in Figure 22.
{
"ietf-ac-svc:attachment-circuits": {
"ac-group-profile": [
{
"name": "an-ac-profile",
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"tag-type": "ietf-vpn-common:c-vlan",
"cvlan-id": 550
}
}
},
"service": {
"mtu": 1550,
"svc-pe-to-ce-bandwidth": {
"bandwidth": [
{
"bw-type": "ietf-vpn-common:bw-per-port",
"cir": "20480000"
}
]
},
"svc-ce-to-pe-bandwidth": {
"bandwidth": [
{
"bw-type": "ietf-vpn-common:bw-per-port",
"cir": "20480000"
}
]
},
"qos": {
"qos-profiles": {
"qos-profile": [
{
"profile": "QoS_Profile_A",
"direction": "ietf-vpn-common:both"
}
]
}
}
}
}
],
"ac": [
{
"name": "ac-1",
"description": "First attachment",
"ac-group-profile": [
"an-ac-profile"
],
"l2-connection": {
"bearer-reference": "1234"
}
},
{
"name": "ac-2",
"description": "Second attachment",
"ac-group-profile": [
"an-ac-profile"
],
"l2-connection": {
"bearer-reference": "5678"
}
}
]
}
}
Figure 22: ACs Created Using ACaaS
The provisioned AC at PE1 can be retrieved using the AC network model
as depicted in Figure 23. A similar query can be used for the AC at
PE2.
{
"ietf-ac-ntw:ac":[
{
"name":"ac-11",
"svc-ref":"ac-1",
"peer-sap-id":[
"ce-1"
],
"status":{
"admin-status":{
"status":"ietf-vpn-common:admin-up"
},
"oper-status":{
"status":"ietf-vpn-common:op-up"
}
},
"l2-connection":{
"encapsulation":{
"encap-type":"ietf-vpn-common:dot1q",
"dot1q":{
"tag-type":"ietf-vpn-common:c-vlan",
"cvlan-id":550
}
},
"bearer-reference":"1234"
},
"service":{
"mtu":1550,
"svc-pe-to-ce-bandwidth":{
"bandwidth":[
{
"bw-type": "ietf-vpn-common:bw-per-port",
"cir":"20480000"
}
]
},
"svc-ce-to-pe-bandwidth":{
"bandwidth":[
{
"bw-type": "ietf-vpn-common:bw-per-port",
"cir":"20480000"
}
]
},
"qos":{
"qos-profiles":{
"qos-profile":[
{
"qos-profile-ref":"QoS_Profile_A",
"network-ref":"example:an-id",
"direction":"ietf-vpn-common:both"
}
]
}
}
}
}
]
}
Figure 23: Example of AC Network Response (Message Body)
Also, the AC network model can be used to retrieve the list of SAPs
to which the ACs are bound as shown in Figure 23.
{
"ietf-sap-ntw:service":[
{
"service-type":"ietf-vpn-common:vpls",
"sap":[
{
"sap-id":"sap#1",
"peer-sap-id":[
"ce-1"
],
"description":"A parent SAP",
"attachment-interface":"GE0/6/1",
"interface-type":"ietf-sap-ntw:phy",
"role":"ietf-sap-ntw:uni",
"allows-child-saps":true,
"sap-status":{
"status":"ietf-vpn-common:op-up"
}
},
{
"sap-id":"sap#11",
"description":"A child SAP",
"parent-termination-point":"GE0/6/4",
"attachment-interface":"GE0/6/4.2",
"interface-type":"ietf-sap-ntw:logical",
"encapsulation-type":"ietf-vpn-common:vlan-type",
"sap-status":{
"status":"ietf-vpn-common:op-up"
},
"ietf-ac-ntw:ac":[
{
"ac-ref":"ac-1",
"node-ref":"example:pe2",
"network-ref":"example:an-id"
}
]
}
]
}
]
}
Figure 24: Example of AC Network Response to Retrieve the SAP
(Message Body)
A.2. Parent AC
In reference to the topology depicted in Figure 1, PE2 has a SAP
which that
terminates an AC with two peer SAPs (CE2 and CE5). In order to
control data that is specific to each of these peer SAPs over the
same AC, child ACs can be instantiated as depicted in Figure 25.
{
"ietf-ac-ntw:ac":[
{
"name":"ac-1",
"peer-sap-id":[
"CE2",
"CE5"
],
"status":{
"admin-status":{
"status":"ietf-vpn-common:admin-up"
},
"oper-status":{
"status":"ietf-vpn-common:op-up"
}
},
"l2-connection":{
"encapsulation":{
"encap-type":"ietf-vpn-common:dot1q",
"dot1q":{
"tag-type":"ietf-vpn-common:c-vlan",
"cvlan-id":550
}
},
"bearer-reference":"1234"
}
},
{
"name":"ac-1-to-ce2",
"parent-ref":{
"ac-ref":"ac-1",
"node-ref":"example:pe2",
"network-ref":"example:an-id"
},
"peer-sap-id":[
"CE2"
]
},
{
"name":"ac-1-to-ce5",
"parent-ref":{
"ac-ref":"ac-1",
"node-ref":"example:pe2",
"network-ref":"example:an-id"
},
"peer-sap-id":[
"CE5"
]
}
]
}
Figure 25: Example of Child ACs
Figure 26 shows how to bind the parent AC to a SAP.
{
"ietf-sap-ntw:service":[
{
"service-type":"ietf-vpn-common:l3vpn",
"sap":[
{
"sap-id":"sap#14587",
"description":"A SAP",
"parent-termination-point":"GE0/6/4",
"attachment-interface":"GE0/6/4.2",
"interface-type":"ietf-sap-ntw:logical",
"encapsulation-type":"ietf-vpn-common:vlan-type",
"sap-status":{
"status":"ietf-vpn-common:op-up"
},
"ietf-ac-ntw:ac":[
{
"ac-ref":"ac-1",
"node-ref":"example:pe2",
"network-ref":"example:an-id"
}
]
}
]
}
]
}
Figure 26: Example of Binding Parent AC ACs to SAPs
Appendix B. Full Tree
module: ietf-ac-ntw
augment /nw:networks/nw:network:
+--rw specific-provisioning-profiles
| +--rw valid-provider-identifiers
| +--rw encryption-profile-identifier* [id]
| | +--rw id string
| +--rw qos-profile-identifier* [id]
| | +--rw id string
| +--rw failure-detection-profile-identifier* [id]
| | +--rw id string
| +--rw forwarding-profile-identifier* [id]
| | +--rw id string
| +--rw routing-profile-identifier* [id]
| +--rw id string
+--rw ac-profile* [name]
+--rw name string
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw bgp {vpn-common:rtg-bgp}?
| | +--rw peer-groups
| | +--rw peer-group* [name]
| | +--rw name string
| | +--rw description? string
| | +--rw apply-policy
| | | +--rw import-policy* leafref
| | | +--rw default-import-policy?
| | | | default-policy-type
| | | +--rw export-policy* leafref
| | | +--rw default-export-policy?
| | | default-policy-type
| | +--rw local-as? inet:as-number
| | +--rw peer-as inet:as-number
| | +--rw address-family? identityref
| | +--rw role? identityref
| | +--rw multihop? uint8
| | +--rw as-override? boolean
| | +--rw allow-own-as? uint8
| | +--rw prepend-global-as? boolean
| | +--rw send-default-route? boolean
| | +--rw site-of-origin?
| | | rt-types:route-origin
| | +--rw ipv6-site-of-origin?
| | | rt-types:ipv6-route-origin
| | +--rw redistribute-connected* [address-family]
| | | +--rw address-family identityref
| | | +--rw enabled? boolean
| | +--rw bgp-max-prefix
| | | +--rw max-prefix? uint32
| | | +--rw warning-threshold? decimal64
| | | +--rw violate-action? enumeration
| | | +--rw restart-timer? uint32
| | +--rw bgp-timers
| | +--rw keepalive? uint16
| | +--rw hold-time? uint16
| +--rw ospf {vpn-common:rtg-ospf}?
| | +--rw address-family? identityref
| | +--rw area-id yang:dotted-quad
| | +--rw metric? uint16
| | +--rw max-lsa? uint32
| | +--rw passive? boolean
| +--rw isis {vpn-common:rtg-isis}?
| | +--rw address-family? identityref
| | +--rw area-address area-address
| | +--rw level? identityref
| | +--rw metric? uint32
| | +--rw passive? boolean
| +--rw rip {vpn-common:rtg-rip}?
| | +--rw address-family? identityref
| | +--rw timers
| | | +--rw update-interval? uint16
| | | +--rw invalid-interval? uint16
| | | +--rw holddown-interval? uint16
| | | +--rw flush-interval? uint16
| | +--rw default-metric? uint8
| +--rw vrrp {vpn-common:rtg-vrrp}?
| +--rw address-family? identityref
| +--rw ping-reply? boolean
+--rw oam
+--rw bfd {vpn-common:bfd}?
+--rw session-type? identityref
+--rw desired-min-tx-interval? uint32
+--rw required-min-rx-interval? uint32
+--rw local-multiplier? uint8
+--rw holdtime? uint32
augment /nw:networks/nw:network/nw:node:
+--rw ac* [name]
+--rw name string
+--rw svc-ref? ac-svc:attachment-circuit-reference
+--rw profile* [ac-profile-ref]
| +--rw ac-profile-ref leafref
| +--rw network-ref? -> /nw:networks/network/network-id
+--rw parent-ref
| +--rw ac-ref? leafref
| +--rw node-ref? leafref
| +--rw network-ref? -> /nw:networks/network/network-id
+--ro child-ref
| +--ro ac-ref* leafref
| +--ro node-ref? leafref
| +--ro network-ref? -> /nw:networks/network/network-id
+--rw peer-sap-id* string
+--rw group* [group-id]
| +--rw group-id string
| +--rw precedence? identityref
+--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--ro last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw description? string
+--rw l2-connection {ac-common:layer2-ac}?
| +--rw encapsulation
| | +--rw encap-type? identityref
| | +--rw dot1q
| | | +--rw tag-type? identityref
| | | +--rw cvlan-id? uint16
| | | +--rw tag-operations
| | | +--rw (op-choice)?
| | | | +--:(pop)
| | | | | +--rw pop? empty
| | | | +--:(push)
| | | | | +--rw push? empty
| | | | +--:(translate)
| | | | +--rw translate? empty
| | | +--rw tag-1? dot1q-types:vlanid
| | | +--rw tag-1-type? dot1q-types:dot1q-tag-type
| | | +--rw tag-2? dot1q-types:vlanid
| | | +--rw tag-2-type? dot1q-types:dot1q-tag-type
| | +--rw priority-tagged
| | | +--rw tag-type? identityref
| | +--rw qinq
| | +--rw tag-type? identityref
| | +--rw svlan-id? uint16
| | +--rw cvlan-id? uint16
| | +--rw tag-operations
| | +--rw (op-choice)?
| | | +--:(pop)
| | | | +--rw pop? uint8
| | | +--:(push)
| | | | +--rw push? empty
| | | +--:(translate)
| | | +--rw translate? uint8
| | +--rw tag-1? dot1q-types:vlanid
| | +--rw tag-1-type? dot1q-types:dot1q-tag-type
| | +--rw tag-2? dot1q-types:vlanid
| | +--rw tag-2-type? dot1q-types:dot1q-tag-type
| +--rw (l2-service)?
| | +--:(l2-tunnel-service)
| | | +--rw l2-tunnel-service
| | | +--rw type? identityref
| | | +--rw pseudowire
| | | | +--rw vcid? uint32
| | | | +--rw far-end? union
| | | +--rw vpls
| | | | +--rw vcid? uint32
| | | | +--rw far-end* union
| | | +--rw vxlan
| | | +--rw vni-id? uint32
| | | +--rw peer-mode? identityref
| | | +--rw peer-ip-address* inet:ip-address
| | +--:(l2vpn)
| | +--rw l2vpn-id? vpn-common:vpn-id
| +--rw l2-termination-point? string
| +--rw local-bridge-reference? string
| +--rw bearer-reference? string
| | {ac-common:server-assigned-reference}?
| +--rw lag-interface {vpn-common:lag-interface}?
| +--rw lag-interface-id? string
| +--rw member-link-list
| +--rw member-link* [name]
| +--rw name string
+--rw ip-connection {ac-common:layer3-ac}?
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | +--rw local-address?
| | | inet:ipv4-address
| | +--rw prefix-length? uint8
| | +--rw address-allocation-type?
| | | identityref
| | +--rw (allocation-type)?
| | +--:(dynamic)
| | | +--rw (address-assign)?
| | | | +--:(number)
| | | | | +--rw number-of-dynamic-address? uint16
| | | | +--:(explicit)
| | | | +--rw customer-addresses
| | | | +--rw address-pool* [pool-id]
| | | | +--rw pool-id string
| | | | +--rw start-address
| | | | | inet:ipv4-address
| | | | +--rw end-address?
| | | | inet:ipv4-address
| | | +--rw (provider-dhcp)?
| | | | +--:(dhcp-service-type)
| | | | | +--rw dhcp-service-type?
| | | | | enumeration
| | | | +--:(service-type)
| | | | +--rw (service-type)?
| | | | +--:(relay)
| | | | +--rw server-ip-address*
| | | | inet:ipv4-address
| | | +--rw (dhcp-relay)?
| | | +--:(customer-dhcp-servers)
| | | +--rw customer-dhcp-servers
| | | +--rw server-ip-address*
| | | inet:ipv4-address
| | +--:(static-addresses)
| | +--rw address* [address-id]
| | +--rw address-id string
| | +--rw customer-address?
| | | inet:ipv4-address
| | +--rw failure-detection-profile-ref? leafref
| | +--rw network-ref?
| | -> /nw:networks/network/network-id
| +--rw ipv6 {vpn-common:ipv6}?
| +--rw local-address?
| | inet:ipv6-address
| +--rw prefix-length? uint8
| +--rw address-allocation-type?
| | identityref
| +--rw (allocation-type)?
| +--:(dynamic)
| | +--rw (address-assign)?
| | | +--:(number)
| | | | +--rw number-of-dynamic-address? uint16
| | | +--:(explicit)
| | | +--rw customer-addresses
| | | +--rw address-pool* [pool-id]
| | | +--rw pool-id string
| | | +--rw start-address
| | | | inet:ipv6-address
| | | +--rw end-address?
| | | inet:ipv6-address
| | +--rw (provider-dhcp)?
| | | +--:(dhcp-service-type)
| | | | +--rw dhcp-service-type?
| | | | enumeration
| | | +--:(service-type)
| | | +--rw (service-type)?
| | | +--:(relay)
| | | +--rw server-ip-address*
| | | inet:ipv6-address
| | +--rw (dhcp-relay)?
| | +--:(customer-dhcp-servers)
| | +--rw customer-dhcp-servers
| | +--rw server-ip-address*
| | inet:ipv6-address
| +--:(static-addresses)
| +--rw address* [address-id]
| +--rw address-id string
| +--rw customer-address?
| | inet:ipv6-address
| +--rw failure-detection-profile-ref? leafref
| +--rw network-ref?
| -> /nw:networks/network/network-id
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw routing-profile* [routing-profile-ref]
| | +--rw routing-profile-ref leafref
| | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw type? identityref
| +--rw static
| | +--rw cascaded-lan-prefixes
| | +--rw ipv4-lan-prefix* [lan next-hop]
| | | {vpn-common:ipv4}?
| | | +--rw lan inet:ipv4-prefix
| | | +--rw lan-tag? string
| | | +--rw next-hop union
| | | +--rw metric? uint32
| | | +--rw bfd {vpn-common:bfd}?
| | | | +--rw enabled?
| | | | | boolean
| | | | +--rw failure-detection-profile-ref?
| | | | | leafref
| | | | +--rw network-ref?
| | | | -> /nw:networks/network/network-id
| | | +--rw preference? uint32
| | | +--rw status
| | | +--rw admin-status
| | | | +--rw status? identityref
| | | | +--ro last-change? yang:date-and-time
| | | +--ro oper-status
| | | +--ro status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--rw ipv6-lan-prefix* [lan next-hop]
| | {vpn-common:ipv6}?
| | +--rw lan inet:ipv6-prefix
| | +--rw lan-tag? string
| | +--rw next-hop union
| | +--rw metric? uint32
| | +--rw bfd {vpn-common:bfd}?
| | | +--rw enabled?
| | | | boolean
| | | +--rw failure-detection-profile-ref?
| | | | leafref
| | | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw preference? uint32
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw bgp {vpn-common:rtg-bgp}?
| | +--rw peer-groups
| | | +--rw peer-group* [name]
| | | +--rw name string
| | | +--rw local-address? union
| | | +--rw description? string
| | | +--rw apply-policy
| | | | +--rw import-policy* leafref
| | | | +--rw default-import-policy?
| | | | | default-policy-type
| | | | +--rw export-policy* leafref
| | | | +--rw default-export-policy?
| | | | default-policy-type
| | | +--rw local-as? inet:as-number
| | | +--rw peer-as inet:as-number
| | | +--rw address-family? identityref
| | | +--rw role? identityref
| | | +--rw multihop? uint8
| | | +--rw as-override? boolean
| | | +--rw allow-own-as? uint8
| | | +--rw prepend-global-as? boolean
| | | +--rw send-default-route? boolean
| | | +--rw site-of-origin?
| | | | rt-types:route-origin
| | | +--rw ipv6-site-of-origin?
| | | | rt-types:ipv6-route-origin
| | | +--rw redistribute-connected* [address-family]
| | | | +--rw address-family identityref
| | | | +--rw enabled? boolean
| | | +--rw bgp-max-prefix
| | | | +--rw max-prefix? uint32
| | | | +--rw warning-threshold? decimal64
| | | | +--rw violate-action? enumeration
| | | | +--rw restart-timer? uint32
| | | +--rw bgp-timers
| | | | +--rw keepalive? uint16
| | | | +--rw hold-time? uint16
| | | +--rw authentication
| | | +--rw enabled? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(ao)
| | | | +--rw enable-ao? boolean
| | | | +--rw ao-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(md5)
| | | | +--rw md5-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm?
| | | identityref
| | +--rw neighbor* [remote-address]
| | +--rw remote-address inet:ip-address
| | +--rw local-address? union
| | +--rw peer-group?
| | | -> ../../peer-groups/peer-group/name
| | +--rw description? string
| | +--rw apply-policy
| | | +--rw import-policy* leafref
| | | +--rw default-import-policy?
| | | | default-policy-type
| | | +--rw export-policy* leafref
| | | +--rw default-export-policy?
| | | default-policy-type
| | +--rw local-as? inet:as-number
| | +--rw peer-as inet:as-number
| | +--rw address-family? identityref
| | +--rw role? identityref
| | +--rw multihop? uint8
| | +--rw as-override? boolean
| | +--rw allow-own-as? uint8
| | +--rw prepend-global-as? boolean
| | +--rw send-default-route? boolean
| | +--rw site-of-origin?
| | | rt-types:route-origin
| | +--rw ipv6-site-of-origin?
| | | rt-types:ipv6-route-origin
| | +--rw redistribute-connected* [address-family]
| | | +--rw address-family identityref
| | | +--rw enabled? boolean
| | +--rw bgp-max-prefix
| | | +--rw max-prefix? uint32
| | | +--rw warning-threshold? decimal64
| | | +--rw violate-action? enumeration
| | | +--rw restart-timer? uint32
| | +--rw bgp-timers
| | | +--rw keepalive? uint16
| | | +--rw hold-time? uint16
| | +--rw bfd {vpn-common:bfd}?
| | | +--rw enabled? boolean
| | | +--rw failure-detection-profile-ref? leafref
| | | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw authentication
| | | +--rw enabled? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(ao)
| | | | +--rw enable-ao? boolean
| | | | +--rw ao-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(md5)
| | | | +--rw md5-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw ospf {vpn-common:rtg-ospf}?
| | +--rw address-family? identityref
| | +--rw area-id yang:dotted-quad
| | +--rw metric? uint16
| | +--rw sham-links {vpn-common:rtg-ospf-sham-link}?
| | | +--rw sham-link* [target-site]
| | | +--rw target-site string
| | | +--rw metric? uint16
| | +--rw max-lsa? uint32
| | +--rw passive? boolean
| | +--rw authentication
| | | +--rw enabled? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw isis {vpn-common:rtg-isis}?
| | +--rw address-family? identityref
| | +--rw area-address area-address
| | +--rw level? identityref
| | +--rw metric? uint32
| | +--rw passive? boolean
| | +--rw authentication
| | | +--rw enabled? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw rip {vpn-common:rtg-rip}?
| | +--rw address-family? identityref
| | +--rw timers
| | | +--rw update-interval? uint16
| | | +--rw invalid-interval? uint16
| | | +--rw holddown-interval? uint16
| | | +--rw flush-interval? uint16
| | +--rw default-metric? uint8
| | +--rw authentication
| | | +--rw enabled? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw vrrp {vpn-common:rtg-vrrp}?
| +--rw address-family? identityref
| +--rw vrrp-group? uint8
| +--rw backup-peer? inet:ip-address
| +--rw virtual-ip-address* inet:ip-address
| +--rw priority? uint8
| +--rw ping-reply? boolean
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--ro last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw oam
| +--rw bfd {vpn-common:bfd}?
| +--rw session* [dest-addr]
| +--rw dest-addr inet:ip-address
| +--rw source-address? union
| +--rw failure-detection-profile-ref? leafref
| +--rw network-ref?
| | -> /nw:networks/network/network-id
| +--rw session-type? identityref
| +--rw desired-min-tx-interval? uint32
| +--rw required-min-rx-interval? uint32
| +--rw local-multiplier? uint8
| +--rw holdtime? uint32
| +--rw authentication!
| | +--rw key-chain? key-chain:key-chain-ref
| | +--rw meticulous? boolean
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--ro last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw security
| +--rw encryption {vpn-common:encryption}?
| | +--rw enabled? boolean
| | +--rw layer? enumeration
| +--rw encryption-profile
| +--rw (profile)?
| +--:(provider-profile)
| | +--rw encryption-profile-ref? leafref
| | +--rw network-ref?
| | -> /nw:networks/network/network-id
| +--:(customer-profile)
| +--rw customer-key-chain?
| key-chain:key-chain-ref
+--rw service
+--rw mtu? uint32
+--rw svc-pe-to-ce-bandwidth {vpn-common:inbound-bw}?
| +--rw bandwidth* [bw-type]
| +--rw bw-type identityref
| +--rw (type)?
| +--:(per-cos)
| | +--rw cos* [cos-id]
| | +--rw cos-id uint8
| | +--rw cir? uint64
| | +--rw cbs? uint64
| | +--rw eir? uint64
| | +--rw ebs? uint64
| | +--rw pir? uint64
| | +--rw pbs? uint64
| +--:(other)
| +--rw cir? uint64
| +--rw cbs? uint64
| +--rw eir? uint64
| +--rw ebs? uint64
| +--rw pir? uint64
| +--rw pbs? uint64
+--rw svc-ce-to-pe-bandwidth {vpn-common:outbound-bw}?
| +--rw bandwidth* [bw-type]
| +--rw bw-type identityref
| +--rw (type)?
| +--:(per-cos)
| | +--rw cos* [cos-id]
| | +--rw cos-id uint8
| | +--rw cir? uint64
| | +--rw cbs? uint64
| | +--rw eir? uint64
| | +--rw ebs? uint64
| | +--rw pir? uint64
| | +--rw pbs? uint64
| +--:(other)
| +--rw cir? uint64
| +--rw cbs? uint64
| +--rw eir? uint64
| +--rw ebs? uint64
| +--rw pir? uint64
| +--rw pbs? uint64
+--rw qos {vpn-common:qos}?
| +--rw qos-profiles
| +--rw qos-profile* [qos-profile-ref]
| +--rw qos-profile-ref leafref
| +--rw network-ref?
| | -> /nw:networks/network/network-id
| +--rw direction? identityref
+--rw access-control-list
+--rw acl-profiles
+--rw acl-profile* [forwarding-profile-ref]
+--rw forwarding-profile-ref leafref
+--rw network-ref?
-> /nw:networks/network/network-id
augment /nw:networks/nw:network/nw:node/sap:service/sap:sap:
+--rw ac* [ac-ref]
+--rw ac-ref leafref
+--rw node-ref? leafref
+--rw network-ref? -> /nw:networks/network/network-id
Acknowledgments
This document builds on [RFC9182] and [RFC9291].
Thanks to Moti Morgenstern for the review and comments.
Thanks to Martin Björklund for the yangdoctors YANG Doctors review, Gyan Mishra
for an early rtg-dir RTGDIR review, Joel Halpern for the rtg-dir RTGDIR review,
Giuseppe Fioccola for the ops-dir OPSDIR review, and Russ Housley for the
sec-dir
SECDIR review.
Thanks to Krzysztof Szarkowicz for the Shepherd shepherd review.
Thanks for Mahesh Jethanandani for the AD review.
Contributors
Victor Lopez
Nokia
Email: victor.lopez@nokia.com
Ivan Bykov
Ribbon Communications
Email: Ivan.Bykov@rbbn.com
Qin Wu
Huawei
Email: bill.wu@huawei.com
Ogaki Kenichi
KDDI
Email: ke-oogaki@kddi.com
Luis Angel Munoz
Vodafone
Email: luis-angel.munoz@vodafone.com
Authors' Addresses
Mohamed Boucadair (editor)
Orange
Email: mohamed.boucadair@orange.com
Richard Roberts
Juniper
Email: rroberts@juniper.net
Oscar Gonzalez de Dios
Telefonica
Email: oscar.gonzalezdedios@telefonica.com
Samier Barguil Giraldo
Nokia
Email: samier.barguil_giraldo@nokia.com
Bo Wu
Huawei Technologies
Email: lana.wubo@huawei.com