Internet Engineering Task Force (IETF) C. Kaufman

Request for Comments: 7296 Microsoft
STD: 79 P. Hoffman
Obsoletes: 5996 VPN Consortium
Category: Standards Track Y. Nir
ISSN: 2070-1721 Check Point
P. Eronen
Independent
T. Kivinen

INSIDE Secure
October 2014

Internet Key Exchange Protocol Version 2 (IKEv2)
Abstract

This document describes version 2 of the Internet Key Exchange (IKE)
protocol. IKE is a component of IPsec used for performing mutual
authentication and establishing and maintaining Security Associations
(SAs). This document obsoletes RFC 5996, and includes all of the
errata for it. It advances IKEv2 to be an Internet Standard.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://lwww.rfc-editor.org/info/rfc7296.

Kaufman, et al. Standards Track [Page 1]

RFC 7296 IKEv2bis October 2014

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Kaufman, et al. Standards Track [Page 2]

RFC 7296 IKEv2bis October 2014

Table of Contents

1. INtroduction ... 5
1.1. USAQe SCENAIIOS ...cevveeeeeiiiiiiiiiiiiieeeaaaa e e 7
1.1.1. Security Gateway to Security Gateway in
Tunnel Modeccoovvviiieeiiiec e, 7
1.1.2. Endpoint-to-Endpoint Transport Mode 8
1.1.3. Endpoint to Security Gateway in Tunnel Mode 8
1.1.4. Other Scenariosccccceeeeeeeeeeeinininnnns 9
1.2. The Initial EXchangescccoovoeieiiiiiiininnnns 9
1.3. The CREATE_CHILD_SA Exchangecccccccceervinennen. 13
1.3.1. Creating New Child SAs with the
CREATE_CHILD_SA Exchangeccccvvvvneen. 14
1.3.2. Rekeying IKE SAs with the CREATE_CHILD_SA
EXchangecccovieiiiiiiiiiiecees 16
1.3.3. Rekeying Child SAs with the CREATE_CHILD_SA
Exchangeccocoeeeeiiiiiiiiiieee, 16
1.4. The INFORMATIONAL Exchangecccccvvevineennnnnn. 17
1.4.1. Deleting an SA with INFORMATIONAL Exchanges 18
1.5. Informational Messages outside of an IKE SA 19
1.6. Requirements Terminologyccccceveeeiniiereennnnn. 20
1.7. Significant Differences between RFC 4306 and RFC 599620
1.8. Differences between RFC 5996 and This Document 23
2. IKE Protocol Details and Variationsc.ccccevvveene 23
2.1. Use of Retransmission TIMErScccccevevvernneenns 24
2.2. Use of Sequence Numbers for Message ID 25
2.3. Window Size for Overlapping Requests 26
2.4. State Synchronization and Connection Timeouts 28
2.5. Version Numbers and Forward Compatibility 30
2.6. IKE SA SPIs and COOKIEScocvverrereriinieninn 32
2.6.1. Interaction of COOKIE and INVALID_KE_PAYLOAD 35
2.7. Cryptographic Algorithm Negotiation 35
2.8. REKEYING ..coooiiiiiiiiiiiiieeeeiee e 36
2.8.1. Simultaneous Child SA Rekeyingc.c......... 38
2.8.2. Simultaneous IKE SA Rekeyingcc.oe.. 40
2.8.3. Rekeying the IKE SA versus Reauthentication 42
2.9. Traffic Selector Negotiationcccccceeveeeeeennn. 42
2.9.1. Traffic Selectors Violating Own Policy 45
2.9.2. Traffic Selectors in Rekeyingc.c....... 46
2.10. NONCES ...cooiiiiiiiieeieeiie e 46
2.11. Address and Port Agilitycccuvieiieeiiinennnnnn. 47
2.12. Reuse of Diffie-Hellman Exponentials 47
2.13. Generating Keying Materialcccccvvvvenennn. 48
2.14. Generating Keying Material for the IKE SA 49
2.15. Authentication of the IKE SAcccccooviiieennnn 50
2.16. Extensible Authentication Protocol Methods 52
2.17. Generating Keying Material for Child SAs 54

2.18. Rekeying IKE SAs Using a CREATE_CHILD_SA Exchange

Kaufman, et al. Standards Track [Page 3]

RFC 7296 IKEv2bis October 2014

2.19. Requesting an Internal Address on a Remote Network
2.20. Requesting the Peer's Versioncccccceevvvveeeen. 58
2.21. Error Handlingccoooviieiiiniiiieceniieeeeee 58
2.21.1. Error Handling in IKE_SA_INITocoeee 59
2.21.2. Error Handling in IKE_AUTH ... 59
2.21.3. Error Handling after IKE SA is Authenticated 60
2.21.4. Error Handling Outside IKE SAccccceeee..... 60
2.22. IPCOMP oo 61
2.23. NAT Traversalccccovveeeiieieeeieeiiiiieee, 62
2.23.1. Transport Mode NAT Traversalccccceee... 66
2.24. Explicit Congestion Notification (ECN) 70
2.25. Exchange ColliSionscccoevccvvvviveeeeeeeenn, 70
2.25.1. Collisions while Rekeying or Closing Child SAs71
2.25.2. Collisions while Rekeying or Closing IKE SAs 71
3. Header and Payload Formatscccccceeviiiiiiiiiinnnnnn. 72
3.1. The IKE Headerccccueeeeeiiiiiiniiiiiiiieeee, 72
3.2. Generic Payload Headercccccceeveeeiinnninns 75
3.3. Security Association Payloadcccccceeeeeeiinn, 77
3.3.1. Proposal Substructureccccocevveeeeeennn. 80
3.3.2. Transform Substructurecccccvvveeenn. 81
3.3.3. Valid Transform Types by Protocol 85
3.3.4. Mandatory Transform IDSccccuvvveeeeen. 85
3.3.5. Transform Attributesccccceeeeeeeeennn. 86
3.3.6. Attribute Negotiationccccvveeeeennn. 88
3.4. Key Exchange Payloadccccccevvveeeviiiinnnnnee, 89
3.5. Identification Payloadscccccovviiereennnnnn. 90
3.6. Certificate Payloadccccceeviiiieienninnenen, 92
3.7. Certificate Request Payloadccccuvviinneee. 95
3.8. Authentication Payloadcccuvviiieeeenennnn. 97
3.9. Nonce Payloadccccceeveeeiiiiiiiiiiiieeeeeee, 98
3.10. Notify Payloadccoecvvvviiieiiieeee s 99
3.10.1. Notify Message TYPEScceevvvveererrvnnnnn. 101
3.11. Delete Payloadccceeeviiiieeeiiiiiieeene 104
3.12. Vendor ID Payloadccccceeveeeiiiiiiiiiiineen, 105
3.13. Traffic Selector Payloadcccuvvvvneeeeen. 106
3.13.1. Traffic Selectorccceveeviiieeeenns 108
3.14. Encrypted Payloadcccocvveeveiieeeieiiins 110
3.15. Configuration Payloadccccccevvivieieinnnne. 112
3.15.1. Configuration Attributescccccceeeee.. 113
3.15.2. Meaning of INTERNAL_IP4_SUBNET and
INTERNAL_IP6_SUBNETccovvveeeiiiieeeee 116
3.15.3. Configuration Payloads for IPV6 118
3.15.4. Address Assignment Failures 119
3.16. Extensible Authentication Protocol (EAP) Payload 120
4. Conformance Requirementscccoccveeeeeniiieneennnenn 122
5. Security Considerationsccccceeeeieeeeeeiniiinnns 124
5.1. Traffic Selector Authorizationccueveeee. 127

Kaufman, et al. Standards Track [Page 4]

RFC 7296 IKEv2bis October 2014

6. IANA Considerationsccccovvveeeeiiiiieeee e, 128
7. Referencescccocvvvvieeiiee e 128
7.1. Normative Referencesccooccvvveeeeenneennnnn 128
7.2. Informative Referencesccccccoviiiiiiiiennen. 130
Appendix A. Summary of Changes from IKEV1 136
Appendix B. Diffie-Hellman Groupscccccvvvvveeeeennn. 137
B.1. Group 1 - 768-bit MODPcccccvveeeiiiiiiiiinne, 137
B.2. Group 2 - 1024-bit MODPccccvvveiiiiiieeeeinee, 137
Appendix C. Exchanges and Payloadscccccccceeeee. 138
C.1. IKE_SA_INIT Exchangecccccouveeeiiinieininiinns 138
C.2. IKE_AUTH Exchange without EAPcccccccovevvneenn. 138
C.3. IKE_AUTH Exchange with EAPccccoeiivennnnnen. 139
C.4. CREATE_CHILD_SA Exchange for Creating or Rekeying
Child SAS ..voeeeiieeee e 140
C.5. CREATE_CHILD_SA Exchange for Rekeying the IKE SA 140
C.6. INFORMATIONAL Exchangecccccccevvveenicvineennnnn, 141
Acknowledgements ... 141
AUthOrs’ AddreSSEScovvveeeeiiiiiiee et 142

1. Introduction

IP Security (IPsec) provides confidentiality, data integrity, access
control, and data source authentication to IP datagrams. These
services are provided by maintaining shared state between the source
and the sink of an IP datagram. This state defines, among other
things, the specific services provided to the datagram, which
cryptographic algorithms will be used to provide the services, and

the keys used as input to the cryptographic algorithms.

Establishing this shared state in a manual fashion does not scale

well. Therefore, a protocol to establish this state dynamically is

needed. This document describes such a protocol -- the Internet Key
Exchange (IKE). Version 1 of IKE was defined in RFCs 2407 [DOI],

2408 [ISAKMP], and 2409 [IKEV1]. IKEv2 replaced all of those RFCs.
IKEv2 was defined in [IKEV2] (RFC 4306) and was clarified in [Clarif]

(RFC 4718). [RFC5996] replaced and updated RFCs 4306 and 4718. This
document replaces RFC 5996. IKEV2 as stated in RFC 4306 was a change
to the IKE protocol that was not backward compatible. RFC 5996

revised RFC 4306 to provide a clarification of IKEv2, making minimal
changes to the IKEv2 protocol. This document replaces RFC 5996,

slightly revising it to make it suitable for progression to Internet

Standard. A list of the significant differences between RFCs 4306

and 5996 is given in Section 1.7, and differences between RFC 5996

and this document are given in Section 1.8.

Kaufman, et al. Standards Track [Page 5]

RFC 7296 IKEv2bis October 2014

IKE performs mutual authentication between two parties and
establishes an IKE Security Association (SA) that includes shared
secret information that can be used to efficiently establish SAs for
Encapsulating Security Payload (ESP) [ESP] or Authentication Header
(AH) [AH] and a set of cryptographic algorithms to be used by the SAs
to protect the traffic that they carry. In this document, the term

"suite" or "cryptographic suite" refers to a complete set of

algorithms used to protect an SA. An initiator proposes one or more
suites by listing supported algorithms that can be combined into

suites in a mix-and-match fashion. IKE can also negotiate use of IP
Compression (IPComp) [IP-COMP] in connection with an ESP or AH SA.
The SAs for ESP or AH that get set up through that IKE SA we call
"Child SAs".

All IKE communications consist of pairs of messages: a request and a

response. The pair is called an "exchange", and is sometimes called

a "request/response pair". The first two exchanges of messages

establishing an IKE SA are called the IKE_SA_INIT exchange and the
IKE_AUTH exchange; subsequent IKE exchanges are called either
CREATE_CHILD_SA exchanges or INFORMATIONAL exchanges. In the common
case, there is a single IKE_SA_INIT exchange and a single IKE_AUTH
exchange (a total of four messages) to establish the IKE SA and the

first Child SA. In exceptional cases, there may be more than one of

each of these exchanges. In all cases, all IKE_SA_INIT exchanges

MUST complete before any other exchange type, then all IKE_AUTH

exchanges MUST complete, and following that, any number of
CREATE_CHILD_SA and INFORMATIONAL exchanges may occur in any order.
In some scenarios, only a single Child SA is needed between the IPsec
endpoints, and therefore there would be no additional exchanges.

Subsequent exchanges MAY be used to establish additional Child SAs

between the same authenticated pair of endpoints and to perform

housekeeping functions.

An IKE message flow always consists of a request followed by a
response. It is the responsibility of the requester to ensure
reliability. If the response is not received within a timeout

interval, the requester needs to retransmit the request (or abandon
the connection).

The first exchange of an IKE session, IKE_SA_INIT, negotiates
security parameters for the IKE SA, sends nonces, and sends
Diffie-Hellman values.

The second exchange, IKE_AUTH, transmits identities, proves knowledge
of the secrets corresponding to the two identities, and sets up an SA

for the first (and often only) AH or ESP Child SA (unless there is

failure setting up the AH or ESP Child SA, in which case the IKE SA

is still established without the Child SA).

Kaufman, et al. Standards Track [Page 6]

RFC 7296 IKEv2bis October 2014

The types of subsequent exchanges are CREATE_CHILD_SA (which creates
a Child SA) and INFORMATIONAL (which deletes an SA, reports error
conditions, or does other housekeeping). Every request requires a

response. An INFORMATIONAL request with no payloads (other than the
empty Encrypted payload required by the syntax) is commonly used as a
check for liveness. These subsequent exchanges cannot be used until

the initial exchanges have completed.

In the description that follows, we assume that no errors occur.
Modifications to the flow when errors occur are described in
Section 2.21.

1.1. Usage Scenarios

IKE is used to negotiate ESP or AH SAs in a number of different
scenarios, each with its own special requirements.

1.1.1. Security Gateway to Security Gateway in Tunnel Mode

ottt e e
[| IPsec |
Protected |Tunnel |tunnel |Tunnel | Protected
Subnet <-->|Endpoint |<---------- >|Endpoint |<--> Subnet
|
ottt ottt

Figure 1: Security Gateway to Security Gateway Tunnel

In this scenario, neither endpoint of the IP connection implements
IPsec, but network nodes between them protect traffic for part of the
way. Protection is transparent to the endpoints, and depends on
ordinary routing to send packets through the tunnel endpoints for
processing. Each endpoint would announce the set of addresses
"behind" it, and packets would be sent in tunnel mode where the inner
IP header would contain the IP addresses of the actual endpoints.

Kaufman, et al. Standards Track [Page 7]

RFC 7296 IKEv2bis October 2014

1.1.2. Endpoint-to-Endpoint Transport Mode

e ottt
| IPsec transport |

|Protected| or tunnel mode SA |Protected|

|Endpoint |< >|Endpoint |

| | | |

ottt e

Figure 2: Endpoint to Endpoint

In this scenario, both endpoints of the IP connection implement

IPsec, as required of hosts in [IPSECARCH]. Transport mode will
commonly be used with no inner IP header. A single pair of addresses
will be negotiated for packets to be protected by this SA. These
endpoints MAY implement application-layer access controls based on
the IPsec authenticated identities of the participants. This

scenario enables the end-to-end security that has been a guiding
principle for the Internet since [ARCHPRINC], [TRANSPARENCY], and a
method of limiting the inherent problems with complexity in networks
noted by [ARCHGUIDEPHIL]. Although this scenario may not be fully
applicable to the IPv4 Internet, it has been deployed successfully in
specific scenarios within intranets using IKEv1. It should be more
broadly enabled during the transition to IPv6 and with the adoption

of IKEv2.

It is possible in this scenario that one or both of the protected
endpoints will be behind a network address translation (NAT) node, in
which case the tunneled packets will have to be UDP encapsulated so
that port numbers in the UDP headers can be used to identify
individual endpoints "behind" the NAT (see Section 2.23).

1.1.3. Endpoint to Security Gateway in Tunnel Mode

+ot -ttt B
| | IPsec | | Protected
|Protected| tunnel [Tunnel | Subnet
|[Endpoint |< >|Endpoint |<--- and/or
| | | | Internet

+ot -ttt +ot ottt

Figure 3: Endpoint to Security Gateway Tunnel

In this scenario, a protected endpoint (typically a portable roaming
computer) connects back to its corporate network through an IPsec-
protected tunnel. It might use this tunnel only to access

information on the corporate network, or it might tunnel all of its
traffic back through the corporate network in order to take advantage

Kaufman, et al. Standards Track [Page 8]

RFC 7296 IKEv2bis October 2014

of protection provided by a corporate firewall against Internet-based
attacks. In either case, the protected endpoint will want an IP
address associated with the security gateway so that packets returned
to it will go to the security gateway and be tunneled back. This IP
address may be static or may be dynamically allocated by the security
gateway. In support of the latter case, IKEv2 includes a mechanism
(namely, configuration payloads) for the initiator to request an IP
address owned by the security gateway for use for the duration of

its SA.

In this scenario, packets will use tunnel mode. On each packet from
the protected endpoint, the outer IP header will contain the source
IP address associated with its current location (i.e., the address

that will get traffic routed to the endpoint directly), while the

inner IP header will contain the source IP address assigned by the
security gateway (i.e., the address that will get traffic routed to

the security gateway for forwarding to the endpoint). The outer
destination address will always be that of the security gateway,
while the inner destination address will be the ultimate destination
for the packet.

In this scenario, it is possible that the protected endpoint will be
behind a NAT. In that case, the IP address as seen by the security
gateway will not be the same as the IP address sent by the protected
endpoint, and packets will have to be UDP encapsulated in order to be
routed properly. Interaction with NATs is covered in detail in

Section 2.23.

1.1.4. Other Scenarios

Other scenarios are possible, as are nested combinations of the

above. One notable example combines aspects of Sections 1.1.1 and
1.1.3. A subnet may make all external accesses through a remote
security gateway using an IPsec tunnel, where the addresses on the
subnet are routed to the security gateway by the rest of the

Internet. An example would be someone’s home network being virtually
on the Internet with static IP addresses even though connectivity is
provided by an ISP that assigns a single dynamically assigned IP
address to the user’s security gateway (where the static IP addresses
and an IPsec relay are provided by a third party located elsewhere).

1.2. The Initial Exchanges

Communication using IKE always begins with IKE_SA_INIT and IKE_AUTH
exchanges (known in IKEv1 as Phase 1). These initial exchanges

normally consist of four messages, though in some scenarios that

number can grow. All communications using IKE consist of request/
response pairs. We’'ll describe the base exchange first, followed by

Kaufman, et al. Standards Track [Page 9]

RFC 7296 IKEv2bis October 2014

variations. The first pair of messages (IKE_SA_INIT) negotiate
cryptographic algorithms, exchange nonces, and do a Diffie-Hellman
exchange [DH].

The second pair of messages (IKE_AUTH) authenticate the previous
messages, exchange identities and certificates, and establish the

first Child SA. Parts of these messages are encrypted and integrity
protected with keys established through the IKE_SA_INIT exchange, so
the identities are hidden from eavesdroppers and all fields in all

the messages are authenticated. See Section 2.14 for information on
how the encryption keys are generated. (A man-in-the-middle attacker
who cannot complete the IKE_AUTH exchange can nonetheless see the
identity of the initiator.)

All messages following the initial exchange are cryptographically
protected using the cryptographic algorithms and keys negotiated in

the IKE_SA_INIT exchange. These subsequent messages use the syntax
of the Encrypted payload described in Section 3.14, encrypted with

keys that are derived as described in Section 2.14. All subsequent
messages include an Encrypted payload, even if they are referred to

in the text as "empty". For the CREATE_CHILD_SA, IKE_AUTH, or
INFORMATIONAL exchanges, the message following the header is
encrypted and the message including the header is integrity protected
using the cryptographic algorithms negotiated for the IKE SA.

Every IKE message contains a Message ID as part of its fixed header.
This Message ID is used to match up requests and responses, and to
identify retransmissions of messages.

In the following descriptions, the payloads contained in the message
are indicated by names as listed below.

Notation Payload

AUTH Authentication
CERT Certificate
CERTREQ Certificate Request

CP Configuration

D Delete

EAP Extensible Authentication
HDR IKE header (not a payload)
IDi Identification - Initiator

IDr Identification - Responder
KE Key Exchange

Ni, Nr Nonce

N Notify

SA Security Association

SK Encrypted and Authenticated

Kaufman, et al. Standards Track [Page 10]

RFC 7296 IKEv2bis October 2014

TSi Traffic Selector - Initiator
TSr Traffic Selector - Responder
\Y Vendor ID

The details of the contents of each payload are described in
Section 3. Payloads that may optionally appear will be shown in
brackets, such as [CERTREQ)]; this indicates that a Certificate
Request payload can optionally be included.

The initial exchanges are as follows:

Initiator Responder

HDR, SAi1, KEi, Ni -->

HDR contains the Security Parameter Indexes (SPIs), version numbers,
Exchange Type, Message ID, and flags of various sorts. The SAil
payload states the cryptographic algorithms the initiator supports

for the IKE SA. The KE payload sends the initiator's Diffie-Hellman
value. Ni is the initiator's nonce.

<-- HDR, SArl, KEr, Nr, [CERTREQ)]

The responder chooses a cryptographic suite from the initiator’s

offered choices and expresses that choice in the SArl payload,
completes the Diffie-Hellman exchange with the KEr payload, and sends
its nonce in the Nr payload.

At this point in the negotiation, each party can generate a quantity
called SKEYSEED (see Section 2.14), from which all keys are derived
for that IKE SA. The messages that follow are encrypted and
integrity protected in their entirety, with the exception of the
message headers. The keys used for the encryption and integrity
protection are derived from SKEYSEED and are known as SK_e
(encryption) and SK_a (authentication, a.k.a. integrity protection);
see Sections 2.13 and 2.14 for details on the key derivation. A
separate SK_e and SK_a is computed for each direction. In addition
to the keys SK_e and SK_a derived from the Diffie-Hellman value for
protection of the IKE SA, another quantity SK_d is derived and used
for derivation of further keying material for Child SAs. The

notation SK { ... } indicates that these payloads are encrypted and
integrity protected using that direction’s SK_e and SK_a.

HDR, SK {IDi, [CERT,] [CERTREQ),]

[IDr,] AUTH, SAi2,
TSi, TS} -->

Kaufman, et al. Standards Track [Page 11]

RFC 7296 IKEv2bis October 2014

The initiator asserts its identity with the IDi payload, proves
knowledge of the secret corresponding to IDi and integrity protects
the contents of the first message using the AUTH payload (see
Section 2.15). It might also send its certificate(s) in CERT
payload(s) and a list of its trust anchors in CERTREQ payload(s). If
any CERT payloads are included, the first certificate provided MUST
contain the public key used to verify the AUTH field.

The optional payload IDr enables the initiator to specify to which of
the responder’s identities it wants to talk. This is useful when the
machine on which the responder is running is hosting multiple
identities at the same IP address. If the IDr proposed by the
initiator is not acceptable to the responder, the responder might use
some other IDr to finish the exchange. If the initiator then does

not accept the fact that responder used an IDr different than the one
that was requested, the initiator can close the SA after noticing the
fact.

The Traffic Selectors (TSi and TSr) are discussed in Section 2.9.

The initiator begins negotiation of a Child SA using the SAi2
payload. The final fields (starting with SAi2) are described in the
description of the CREATE_CHILD_SA exchange.

<-- HDR, SK{IDr, [CERT,] AUTH,
SAr2, TSi, TSr}

The responder asserts its identity with the IDr payload, optionally

sends one or more certificates (again with the certificate containing

the public key used to verify AUTH listed first), authenticates its

identity and protects the integrity of the second message with the

AUTH payload, and completes negotiation of a Child SA with the
additional fields described below in the CREATE_CHILD_SA exchange.
Both parties in the IKE_AUTH exchange MUST verify that all signatures
and Message Authentication Codes (MACSs) are computed correctly. If
either side uses a shared secret for authentication, the names in the

ID payload MUST correspond to the key used to generate the AUTH
payload.

Because the initiator sends its Diffie-Hellman value in the

IKE_SA_INIT, it must guess the Diffie-Hellman group that the

responder will select from its list of supported groups. If the

initiator guesses wrong, the responder will respond with a Notify

payload of type INVALID_KE_PAYLOAD indicating the selected group. In
this case, the initiator MUST retry the IKE_SA_INIT with the

corrected Diffie-Hellman group. The initiator MUST again propose its

full set of acceptable cryptographic suites because the rejection

Kaufman, et al. Standards Track [Page 12]

RFC 7296 IKEv2bis October 2014

message was unauthenticated and otherwise an active attacker could
trick the endpoints into negotiating a weaker suite than a stronger
one that they both prefer.

If creating the Child SA during the IKE_AUTH exchange fails for some

reason, the IKE SA is still created as usual. The list of Notify

message types in the IKE_AUTH exchange that do not prevent an IKE SA

from being set up include at least the following: NO_PROPOSAL_CHOSEN,
TS_UNACCEPTABLE, SINGLE_PAIR_REQUIRED, INTERNAL_ADDRESS_FAILURE, and
FAILED_CP_REQUIRED.

If the failure is related to creating the IKE SA (for example, an
AUTHENTICATION_FAILED Notify error message is returned), the IKE SA
is not created. Note that although the IKE_AUTH messages are

encrypted and integrity protected, if the peer receiving this Notify

error message has not yet authenticated the other end (or if the peer

fails to authenticate the other end for some reason), the information

needs to be treated with caution. More precisely, assuming that the

MAC verifies correctly, the sender of the error Notify message is

known to be the responder of the IKE_SA_INIT exchange, but the
sender’s identity cannot be assured.

Note that IKE_AUTH messages do not contain KEi/KEr or Ni/Nr payloads.
Thus, the SA payloads in the IKE_AUTH exchange cannot contain
Transform Type 4 (Diffie-Hellman group) with any value other than
NONE. Implementations SHOULD omit the whole transform substructure
instead of sending value NONE.

1.3. The CREATE_CHILD_SA Exchange

The CREATE_CHILD_SA exchange is used to create new Child SAs and to
rekey both IKE SAs and Child SAs. This exchange consists of a single
request/response pair, and some of its function was referred to as a

Phase 2 exchange in IKEv1. It MAY be initiated by either end of the

IKE SA after the initial exchanges are completed.

An SA is rekeyed by creating a new SA and then deleting the old one.
This section describes the first part of rekeying, the creation of

new SAs; Section 2.8 covers the mechanics of rekeying, including
moving traffic from old to new SAs and the deletion of the old SAs.
The two sections must be read together to understand the entire
process of rekeying.

Either endpoint may initiate a CREATE_CHILD_SA exchange, so in this
section the term initiator refers to the endpoint initiating this

exchange. An implementation MAY refuse all CREATE_CHILD_SA requests
within an IKE SA.

Kaufman, et al. Standards Track [Page 13]

RFC 7296 IKEv2bis October 2014

The CREATE_CHILD_SA request MAY optionally contain a KE payload for
an additional Diffie-Hellman exchange to enable stronger guarantees

of forward secrecy for the Child SA. The keying material for the

Child SA is a function of SK_d established during the establishment

of the IKE SA, the nonces exchanged during the CREATE_CHILD_SA
exchange, and the Diffie-Hellman value (if KE payloads are included

in the CREATE_CHILD_SA exchange).

If a CREATE_CHILD_SA exchange includes a KEi payload, at least one of
the SA offers MUST include the Diffie-Hellman group of the KEi. The
Diffie-Hellman group of the KEi MUST be an element of the group the
initiator expects the responder to accept (additional Diffie-Hellman

groups can be proposed). If the responder selects a proposal using a
different Diffie-Hellman group (other than NONE), the responder MUST
reject the request and indicate its preferred Diffie-Hellman group in

the INVALID_KE_PAYLOAD Notify payload. There are two octets of data
associated with this notification: the accepted Diffie-Hellman group
number in big endian order. In the case of such a rejection, the
CREATE_CHILD_SA exchange fails, and the initiator will probably retry
the exchange with a Diffie-Hellman proposal and KEi in the group that

the responder gave in the INVALID_KE_PAYLOAD Notify payload.

The responder sends a NO_ADDITIONAL_SAS notification to indicate that
a CREATE_CHILD_SA request is unacceptable because the responder is
unwilling to accept any more Child SAs on this IKE SA. This

notification can also be used to reject IKE SA rekey. Some minimal
implementations may only accept a single Child SA setup in the

context of an initial IKE exchange and reject any subsequent attempts

to add more.

1.3.1. Creating New Child SAs with the CREATE_CHILD_SA Exchange

A Child SA may be created by sending a CREATE_CHILD_SA request. The
CREATE_CHILD_SA request for creating a new Child SA is:

Initiator Responder

HDR, SK {SA, Ni, [KEi]
TSi, TS} -->

The initiator sends SA offer(s) in the SA payload, a nonce in the Ni
payload, optionally a Diffie-Hellman value in the KEi payload, and
the proposed Traffic Selectors for the proposed Child SA in the TSi
and TSr payloads.

The CREATE_CHILD_SA response for creating a new Child SA is:

<-- HDR, SK {SA, Nr, [KEr,]

Kaufman, et al. Standards Track [Page 14]

RFC 7296 IKEv2bis October 2014

TSi, TSr}

The responder replies (using the same Message ID to respond) with the
accepted offer in an SA payload, a nonce in the Nr payload, and a
Diffie-Hellman value in the KEr payload if KEi was included in the
request and the selected cryptographic suite includes that group.

The Traffic Selectors for traffic to be sent on that SA are specified
in the TS payloads in the response, which may be a subset of what the
initiator of the Child SA proposed.

The USE_TRANSPORT_MODE notification MAY be included in a request
message that also includes an SA payload requesting a Child SA. It
requests that the Child SA use transport mode rather than tunnel mode
for the SA created. If the request is accepted, the response MUST

also include a notification of type USE_TRANSPORT_MODE. If the
responder declines the request, the Child SA will be established in

tunnel mode. If this is unacceptable to the initiator, the initiator

MUST delete the SA. Note: Except when using this option to negotiate
transport mode, all Child SAs will use tunnel mode.

The ESP_TFC_PADDING_NOT_SUPPORTED notification asserts that the
sending endpoint will not accept packets that contain Traffic Flow
Confidentiality (TFC) padding over the Child SA being negotiated. If
neither endpoint accepts TFC padding, this natification is included

in both the request and the response. If this notification is

included in only one of the messages, TFC padding can still be sent

in the other direction.

The NON_FIRST_FRAGMENTS_ALSO notification is used for fragmentation
control. See [IPSECARCH] for a fuller explanation. Both parties

need to agree to sending non-first fragments before either party does

so. ltis enabled only if NON_FIRST_FRAGMENTS_ALSO notification is
included in both the request proposing an SA and the response

accepting it. If the responder does not want to send or receive

non-first fragments, it only omits NON_FIRST_FRAGMENTS_ALSO
notification from its response, but does not reject the whole Child

SA creation.

An IPCOMP_SUPPORTED notification, covered in Section 2.22, can also
be included in the exchange.

A failed attempt to create a Child SA SHOULD NOT tear down the IKE
SA: there is no reason to lose the work done to set up the IKE SA.
See Section 2.21 for a list of error messages that might occur if
creating a Child SA fails.

Kaufman, et al. Standards Track [Page 15]

RFC 7296 IKEv2bis October 2014

1.3.2. Rekeying IKE SAs with the CREATE_CHILD_SA Exchange
The CREATE_CHILD_SA request for rekeying an IKE SA is:

Initiator Responder

HDR, SK {SA, Ni, KEi} -->

The initiator sends SA offer(s) in the SA payload, a nonce in the Ni
payload, and a Diffie-Hellman value in the KEi payload. The KEi

payload MUST be included. A new initiator SPI is supplied in the SPI

field of the SA payload. Once a peer receives a request to rekey an

IKE SA or sends a request to rekey an IKE SA, it SHOULD NOT start any
new CREATE_CHILD_SA exchanges on the IKE SA that is being rekeyed.

The CREATE_CHILD_SA response for rekeying an IKE SA is:
<-- HDR, SK {SA, Nr, KEr}

The responder replies (using the same Message ID to respond) with the
accepted offer in an SA payload, a nonce in the Nr payload, and a
Diffie-Hellman value in the KEr payload if the selected cryptographic
suite includes that group. A new responder SPI is supplied in the

SPI field of the SA payload.

The new IKE SA has its message counters set to 0, regardless of what
they were in the earlier IKE SA. The first IKE requests from both

sides on the new IKE SA will have Message ID 0. The old IKE SA
retains its numbering, so any further requests (for example, to

delete the IKE SA) will have consecutive numbering. The new IKE SA
also has its window size reset to 1, and the initiator in this rekey
exchange is the new "original initiator" of the new IKE SA.

Section 2.18 also covers IKE SA rekeying in detail.
1.3.3. Rekeying Child SAs with the CREATE_CHILD_SA Exchange
The CREATE_CHILD_SA request for rekeying a Child SA is:

Initiator Responder

HDR, SK {N(REKEY_SA), SA, Ni, [KEi,]
TSi, TSr} -->

The initiator sends SA offer(s) in the SA payload, a nonce in the Ni
payload, optionally a Diffie-Hellman value in the KEi payload, and
the proposed Traffic Selectors for the proposed Child SA in the TSi
and TSr payloads.

Kaufman, et al. Standards Track [Page 16]

RFC 7296 IKEv2bis October 2014

The notifications described in Section 1.3.1 may also be sentin a

rekeying exchange. Usually, these will be the same notifications

that were used in the original exchange; for example, when rekeying a
transport mode SA, the USE_TRANSPORT_MODE notification will be used.

The REKEY_SA notification MUST be included in a CREATE_CHILD_SA
exchange if the purpose of the exchange is to replace an existing ESP

or AH SA. The SA being rekeyed is identified by the SPI field in the
Notify payload; this is the SPI the exchange initiator would expect

in inbound ESP or AH packets. There is no data associated with this
Notify message type. The Protocol ID field of the REKEY_SA

notification is set to match the protocol of the SA we are rekeying,

for example, 3 for ESP and 2 for AH.

The CREATE_CHILD_SA response for rekeying a Child SA is:

<-- HDR, SK {SA, Nr, [KET,]
TSi, TSt}

The responder replies (using the same Message ID to respond) with the
accepted offer in an SA payload, a nonce in the Nr payload, and a
Diffie-Hellman value in the KEr payload if KEi was included in the
request and the selected cryptographic suite includes that group.

The Traffic Selectors for traffic to be sent on that SA are specified
in the TS payloads in the response, which may be a subset of what the
initiator of the Child SA proposed.

1.4. The INFORMATIONAL Exchange

At various points during the operation of an IKE SA, peers may desire

to convey control messages to each other regarding errors or

notifications of certain events. To accomplish this, IKE defines an
INFORMATIONAL exchange. INFORMATIONAL exchanges MUST ONLY occur
after the initial exchanges and are cryptographically protected with

the negotiated keys. Note that some informational messages, not

exchanges, can be sent outside the context of an IKE SA.

Section 2.21 also covers error messages in great detail.

Control messages that pertain to an IKE SA MUST be sent under that
IKE SA. Control messages that pertain to Child SAs MUST be sent
under the protection of the IKE SA that generated them (or its
successor if the IKE SA was rekeyed).

Messages in an INFORMATIONAL exchange contain zero or more

Notification, Delete, and Configuration payloads. The recipient of

an INFORMATIONAL exchange request MUST send some response; otherwise,
the sender will assume the message was lost in the network and will

Kaufman, et al. Standards Track [Page 17]

RFC 7296 IKEv2bis October 2014

retransmit it. That response MAY be an empty message. The request
message in an INFORMATIONAL exchange MAY also contain no payloads.
This is the expected way an endpoint can ask the other endpoint to

verify that it is alive.

The INFORMATIONAL exchange is defined as:

Initiator Responder

HDR, SK {[N,] [D,]
[CP]..} -->
<-- HDR, SK {[N,] [D,]

The processing of an INFORMATIONAL exchange is determined by its
component payloads.

1.4.1. Deleting an SA with INFORMATIONAL Exchanges

ESP and AH SAs always exist in pairs, with one SA in each direction.
When an SA is closed, both members of the pair MUST be closed (that
is, deleted). Each endpoint MUST close its incoming SAs and allow
the other endpoint to close the other SA in each pair. To delete an

SA, an INFORMATIONAL exchange with one or more Delete payloads is
sent listing the SPIs (as they would be expected in the headers of
inbound packets) of the SAs to be deleted. The recipient MUST close
the designated SAs. Note that one never sends Delete payloads for
the two sides of an SA in a single message. If there are many SAs to
delete at the same time, one includes Delete payloads for the inbound
half of each SA pair in the INFORMATIONAL exchange.

Normally, the response in the INFORMATIONAL exchange will contain
Delete payloads for the paired SAs going in the other direction.

There is one exception. If, by chance, both ends of a set of SAs
independently decide to close them, each may send a Delete payload
and the two requests may cross in the network. If a node receives a
delete request for SAs for which it has already issued a delete

request, it MUST delete the outgoing SAs while processing the request
and the incoming SAs while processing the response. In that case,
the responses MUST NOT include Delete payloads for the deleted SAs,
since that would result in duplicate deletion and could in theory

delete the wrong SA.

Similar to ESP and AH SAs, IKE SAs are also deleted by sending an
INFORMATIONAL exchange. Deleting an IKE SA implicitly closes any
remaining Child SAs negotiated under it. The response to a request
that deletes the IKE SA is an empty INFORMATIONAL response.

Kaufman, et al. Standards Track [Page 18]

RFC 7296 IKEv2bis October 2014

Half-closed ESP or AH connections are anomalous, and a node with
auditing capability should probably audit their existence if they

persist. Note that this specification does not specify time periods,

so it is up to individual endpoints to decide how long to wait. A

node MAY refuse to accept incoming data on half-closed connections
but MUST NOT unilaterally close them and reuse the SPIs. If
connection state becomes sufficiently messed up, a node MAY close the
IKE SA, as described above. It can then rebuild the SAs it needs on

a clean base under a new IKE SA.

1.5. Informational Messages outside of an IKE SA

There are some cases in which a node receives a packet that it cannot
process, but it may want to notify the sender about this situation.

o If an ESP or AH packet arrives with an unrecognized SPI. This
might be due to the receiving node having recently crashed and
lost state, or because of some other system malfunction or attack.

o If an encrypted IKE request packet arrives on port 500 or 4500
with an unrecognized IKE SPI. This might be due to the receiving
node having recently crashed and lost state, or because of some
other system malfunction or attack.

o If an IKE request packet arrives with a higher major version
number than the implementation supports.

In the first case, if the receiving node has an active IKE SA to the

IP address from whence the packet came, it MAY send an INVALID_SPI
notification of the wayward packet over that IKE SA in an
INFORMATIONAL exchange. The Notification Data contains the SPI of
the invalid packet. The recipient of this notification cannot tell

whether the SPI is for AH or ESP, but this is not important because

in many cases the SPIs will be different for the two. If no suitable

IKE SA exists, the node MAY send an informational message without
cryptographic protection to the source IP address, using the source
UDP port as the destination port if the packet was UDP (UDP-
encapsulated ESP or AH). In this case, it should only be used by the
recipient as a hint that something might be wrong (because it could
easily be forged). This message is not part of an INFORMATIONAL
exchange, and the receiving node MUST NOT respond to it because doing
so could cause a message loop. The message is constructed as
follows: there are no IKE SPI values that would be meaningful to the
recipient of such a notification; using zero values or random values

are both acceptable, this being the exception to the rule in

Section 3.1 that prohibits zero IKE Initiator SPIs. The Initiator

Kaufman, et al. Standards Track [Page 19]

RFC 7296 IKEv2bis October 2014

flag is set to 1, the Response flag is set to 0, and the version
flags are set in the normal fashion; these flags are described in
Section 3.1.

In the second and third cases, the message is always sent without
cryptographic protection (outside of an IKE SA), and includes either

an INVALID_IKE_SPI or an INVALID_MAJOR_VERSION notification (with no
notification data). The message is a response message, and thus it

is sent to the IP address and port from whence it came with the same

IKE SPIs and the Message ID and Exchange Type are copied from the
request. The Response flag is set to 1, and the version flags are

set in the normal fashion.

1.6. Requirements Terminology

Definitions of the primitive terms in this document (such as Security
Association or SA) can be found in [IPSECARCH]. It should be noted
that parts of IKEv2 rely on some of the processing rules in
[[IPSECARCH], as described in various sections of this document.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [MUSTSHOULD].

1.7. Significant Differences between RFC 4306 and RFC 5996

This document contains clarifications and amplifications to IKEv2
[IKEV2]. Many of the clarifications are based on [Clarif]. The
changes listed in that document were discussed in the IPsec Working
Group and, after the Working Group was disbanded, on the IPsec
mailing list. That document contains detailed explanations of areas
that were unclear in IKEv2, and is thus useful to implementers of
IKEV2.

The protocol described in this document retains the same major
version number (2) and minor version number (0) as was used in

RFC 4306. That is, the version number is *not* changed from

RFC 4306. The small number of technical changes listed here are not
expected to affect RFC 4306 implementations that have already been
deployed at the time of publication of this document.

This document makes the figures and references a bit more consistent
than they were in [IKEVZ2].

IKEv2 developers have noted that the SHOULD-level requirements in
RFC 4306 are often unclear in that they don’t say when it is OK to

not obey the requirements. They also have noted that there are MUST-
level requirements that are not related to interoperability. This

Kaufman, et al. Standards Track [Page 20]

RFC 7296 IKEv2bis October 2014

document has more explanation of some of these requirements. All
non-capitalized uses of the words SHOULD and MUST now mean their
normal English sense, not the interoperability sense of [MUSTSHOULD].

IKEv2 (and IKEv1) developers have noted that there is a great deal of
material in the tables of codes in Section 3.10.1 in RFC 4306. This
leads to implementers not having all the needed information in the
main body of the document. Much of the material from those tables
has been moved into the associated parts of the main body of the
document.

This document removes discussion of nesting AH and ESP. This was a
mistake in RFC 4306 caused by the lag between finishing RFC 4306 and
RFC 4301. Basically, IKEv2 is based on RFC 4301, which does not
include "SA bundles" that were part of RFC 2401. While a single

packet can go through IPsec processing multiple times, each of these
passes uses a separate SA, and the passes are coordinated by the
forwarding tables. In IKEv2, each of these SAs has to be created

using a separate CREATE_CHILD_SA exchange.

This document removes discussion of the INTERNAL_ADDRESS_EXPIRY
configuration attribute because its implementation was very

problematic. Implementations that conform to this document MUST

ignore proposals that have configuration attribute type 5, the old

value for INTERNAL_ADDRESS EXPIRY. This document also removed
INTERNAL_IP6_NBNS as a configuration attribute.

This document removes the allowance for rejecting messages in which
the payloads were not in the "right" order; now implementations

MUST NOT reject them. This is due to the lack of clarity where the
orders for the payloads are described.

The lists of items from RFC 4306 that ended up in the IANA registry
were trimmed to only include items that were actually defined in

RFC 4306. Also, many of those lists are now preceded with the very
important instruction to developers that they really should look at

the IANA registry at the time of development because new items have
been added since RFC 4306.

This document adds clarification on when notifications are and are
not sent encrypted, depending on the state of the negotiation at the
time.

This document discusses more about how to negotiate combined-mode
ciphers.

Kaufman, et al. Standards Track [Page 21]

RFC 7296 IKEv2bis October 2014

In Section 1.3.2, "The KEi payload SHOULD be included" was changed to
be "The KEi payload MUST be included". This also led to changes in
Section 2.18.

In Section 2.1, there is new material covering how the initiator’s
SPI and/or IP is used to differentiate if this is a "half-open" IKE
SA or a new request.

This document clarifies the use of the critical flag in Section 2.5.

In Section 2.8, "Note that, when rekeying, the new Child SA MAY have
different Traffic Selectors and algorithms than the old one" was
changed to "Note that, when rekeying, the new Child SA SHOULD NOT
have different Traffic Selectors and algorithms than the old one".

The new Section 2.8.2 covers simultaneous IKE SA rekeying.

This document adds the restriction in Section 2.13 that all
pseudorandom functions (PRFs) used with IKEv2 MUST take variable-
sized keys. This should not affect any implementations because there
were no standardized PRFs that have fixed-size keys.

Section 2.18 requires