
RFC 9810
Internet X.509 Public Key Infrastructure --
Certificate Management Protocol (CMP)

Abstract
This document describes the Internet X.509 Public Key Infrastructure (PKI) Certificate
Management Protocol (CMP). Protocol messages are defined for X.509v3 certificate creation and
management. CMP provides interactions between client systems and PKI components such as a
Registration Authority (RA) and a Certification Authority (CA).

This document adds support for management of certificates containing a Key Encapsulation
Mechanism (KEM) public key and uses EnvelopedData instead of EncryptedValue. This
document also includes the updates specified in Section 2 and Appendix A.2 of RFC 9480.

This document obsoletes RFC 4210, and together with RFC 9811, it also obsoletes RFC 9480.
Appendix F of this document updates Section 9 of RFC 5912.

Stream: Internet Engineering Task Force (IETF)
RFC: 9810
Obsoletes: 4210, 9480
Updates: 5912
Category: Standards Track
Published: July 2025
ISSN: 2070-1721
Authors: H. Brockhaus

Siemens
D. von Oheimb
Siemens

M. Ounsworth
Entrust

J. Gray
Entrust

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9810

Brockhaus, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9810
https://www.rfc-editor.org/rfc/rfc4210
https://www.rfc-editor.org/rfc/rfc9480
https://www.rfc-editor.org/rfc/rfc5912
https://www.rfc-editor.org/info/rfc9810

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Changes Made by RFC 4210

1.2. Updates Made by RFC 9480

1.3. Changes Made by This Document

2. Terminology and Abbreviations

3. PKI Management Overview

3.1. PKI Management Model

3.1.1. Definitions of PKI Entities

3.1.1.1. Subjects and End Entities

3.1.1.2. Certification Authority

3.1.1.3. Registration Authority

3.1.1.4. Key Generation Authority

3.1.2. PKI Management Requirements

3.1.3. PKI Management Operations

4. Assumptions and Restrictions

4.1. End Entity Initialization

4.2. Initial Registration/Certification

4.2.1. Criteria Used

4.2.1.1. Initiation of Registration/Certification

4.2.1.2. End Entity Message Origin Authentication

7

8

8

9

10

10

11

11

11

11

12

13

13

14

17

17

18

18

18

18

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

4.2.1.3. Location of Key Generation

4.2.1.4. Confirmation of Successful Certification

4.2.2. Initial Registration/Certification Schemes

4.2.2.1. Centralized Scheme

4.2.2.2. Basic Authenticated Scheme

4.3. POP of Private Key

4.3.1. Signature Keys

4.3.2. Encryption Keys

4.3.3. Key Agreement Keys

4.3.4. KEM Keys

4.4. Root CA Key Update

4.4.1. CA Operator Actions

4.4.2. Verifying Certificates

4.4.2.1. Verification in Cases 1 and 4

4.4.2.2. Verification in Case 2

4.4.2.3. Verification in Case 3

4.4.3. Revocation - Change of the CA Key

4.5. EKU for PKI Entities

5. Data Structures

5.1. Overall PKI Message

5.1.1. PKI Message Header

5.1.1.1. ImplicitConfirm

5.1.1.2. ConfirmWaitTime

5.1.1.3. OrigPKIMessage

5.1.1.4. CertProfile

5.1.1.5. KemCiphertextInfo

5.1.2. PKI Message Body

5.1.3. PKI Message Protection

5.1.3.1. Shared Secret Information

5.1.3.2. DH Key Pairs

19

19

19

20

20

21

22

22

22

23

23

24

25

25

25

26

27

27

28

28

28

31

31

31

31

32

33

33

34

35

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 3

5.1.3.3. Signature

5.1.3.4. Key Encapsulation

5.1.3.5. Multiple Protection

5.2. Common Data Structures

5.2.1. Requested Certificate Contents

5.2.2. Encrypted Values

5.2.3. Status Codes and Failure Information for PKI Messages

5.2.4. Certificate Identification

5.2.5. Out-of-Band Root CA Public Key

5.2.6. Archive Options

5.2.7. Publication Information

5.2.8. POP Structures

5.2.8.1. raVerified

5.2.8.2. POPOSigningKey Structure

5.2.8.3. POPOPrivKey Structure

5.2.8.4. Summary of POP Options

5.2.9. GeneralizedTime

5.3. Operation-Specific Data Structures

5.3.1. Initialization Request

5.3.2. Initialization Response

5.3.3. Certification Request

5.3.4. Certification Response

5.3.5. Key Update Request Content

5.3.6. Key Update Response Content

5.3.7. Key Recovery Request Content

5.3.8. Key Recovery Response Content

5.3.9. Revocation Request Content

5.3.10. Revocation Response Content

5.3.11. Cross-Certification Request Content

5.3.12. Cross-Certification Response Content

36

36

40

40

40

41

42

43

43

44

44

44

45

45

46

49

51

51

51

51

51

52

53

53

53

53

53

54

54

54

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 4

5.3.13. CA Key Update Announcement Content

5.3.14. Certificate Announcement

5.3.15. Revocation Announcement

5.3.16. CRL Announcement

5.3.17. PKI Confirmation Content

5.3.18. Certificate Confirmation Content

5.3.19. PKI General Message Content

5.3.19.1. CA Protocol Encryption Certificate

5.3.19.2. Signing Key Pair Types

5.3.19.3. Encryption / Key Agreement Key Pair Types

5.3.19.4. Preferred Symmetric Algorithm

5.3.19.5. Updated CA Key Pair

5.3.19.6. CRL

5.3.19.7. Unsupported Object Identifiers

5.3.19.8. Key Pair Parameters

5.3.19.9. Revocation Passphrase

5.3.19.10. ImplicitConfirm

5.3.19.11. ConfirmWaitTime

5.3.19.12. Original PKIMessage

5.3.19.13. Supported Language Tags

5.3.19.14. CA Certificates

5.3.19.15. Root CA Update

5.3.19.16. Certificate Request Template

5.3.19.17. CRL Update Retrieval

5.3.19.18. KEM Ciphertext

5.3.20. PKI General Response Content

5.3.21. Error Message Content

5.3.22. Polling Request and Response

6. Mandatory PKI Management Functions

6.1. Root CA Initialization

54

55

55

56

56

56

57

57

57

57

58

58

58

58

58

59

59

59

59

59

59

60

60

61

62

62

62

63

67

67

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 5

6.2. Root CA Key Update

6.3. Subordinate CA Initialization

6.4. CRL Production

6.5. PKI Information Request

6.6. Cross-Certification

6.6.1. One-Way Request-Response Scheme

6.7. End Entity Initialization

6.7.1. Acquisition of PKI Information

6.7.2. Out-of-Band Verification of the Root CA Key

6.8. Certificate Request

6.9. Key Update

7. Version Negotiation

7.1. Supporting RFC 2510 Implementations

7.1.1. Clients Talking to RFC 2510 Servers

7.1.2. Servers Receiving Version cmp1999 PKIMessages

8. Security Considerations

8.1. On the Necessity of POP

8.2. POP with a Decryption Key

8.3. POP by Exposing the Private Key

8.4. Attack Against DH Key Exchange

8.5. Perfect Forward Secrecy

8.6. Private Keys for Certificate Signing and CMP Message Protection

8.7. Entropy of Random Numbers, Key Pairs, and Shared Secret Information

8.8. Recurring Usage of KEM Keys for Message Protection

8.9. Trust Anchor Provisioning Using CMP Messages

8.10. Authorizing Requests for Certificates with Specific EKUs

8.11. Usage of CT Logs

9. IANA Considerations

10. References

10.1. Normative References

68

68

68

68

68

69

70

70

71

71

71

71

72

72

72

72

72

73

73

73

74

74

74

75

75

76

76

76

77

77

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 6

10.2. Informative References

Appendix A. Reasons for the Presence of RAs

Appendix B. The Use of Revocation Passphrase

Appendix C. PKI Management Message Profiles (REQUIRED)

C.1. General Rules for Interpretation of These Profiles

C.2. Algorithm Use Profile

C.3. POP Profile

C.4. Initial Registration/Certification (Basic Authenticated Scheme)

C.5. Certificate Request

C.6. Key Update Request

Appendix D. PKI Management Message Profiles (OPTIONAL)

D.1. General Rules for Interpretation of These Profiles

D.2. Algorithm Use Profile

D.3. Self-Signed Certificates

D.4. Root CA Key Update

D.5. PKI Information Request/Response

D.6. Cross-Certification Request/Response (1-way)

D.7. In-Band Initialization Using External Identity Certificate

Appendix E. Variants of Using KEM Keys for PKI Message Protection

Appendix F. Compilable ASN.1 Definitions

Acknowledgements

Authors' Addresses

78

81

82

83

84

84

85

85

91

91

92

92

92

93

93

94

95

99

99

102

115

115

1. Introduction
This document describes the Internet X.509 PKI CMP. Protocol messages are defined for
certificate creation and management. The term "certificate" in this document refers to an X.
509v3 certificate as defined in .[RFC5280]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 7

1.1. Changes Made by RFC 4210
 differs from in the following areas:

The PKI management message profile section is split to two appendices: the required profile
and the optional profile. Some of the formerly mandatory functionality is moved to the
optional profile.
The message confirmation mechanism has changed substantially.
A new polling mechanism is introduced, deprecating the old polling method at the CMP
transport level.
The CMP transport protocol issues are handled in a separate document , thus the
"Transports" section is removed.
A new implicit confirmation method is introduced to reduce the number of protocol
messages exchanged in a transaction.
The new specification contains some less prominent protocol enhancements and improved
explanatory text on several issues.

[RFC4210] [RFC2510]

•

•
•

• [RFC6712]

•

•

1.2. Updates Made by RFC 9480
CMP Updates and CMP Algorithms updated , supporting the PKI
management operations specified in the Lightweight CMP Profile , in the following
areas:

Added new extended key usages (EKUs) for various CMP server types, e.g., RA and CA, to
express the authorization of the certificate holder that acts as the indicated type of PKI
management entity.
Extended the description of multiple protection to cover additional use cases, e.g., batch
processing of messages.
Used the Cryptographic Message Syntax (CMS) type EnvelopedData as the
preferred choice instead of EncryptedValue to better support crypto agility in CMP.

For reasons of completeness and consistency, the type EncryptedValue has been exchanged
in all occurrences. This includes the protection of centrally generated private keys,
encryption of certificates, Proof-of-Possession (POP) methods, and protection of revocation
passphrases. To properly differentiate the support of EnvelopedData instead of
EncryptedValue, CMP version 3 is introduced in case a transaction is supposed to use
EnvelopedData.

Note: According to point 9 in , the use of the EncryptedValue
structure has been deprecated in favor of the EnvelopedData structure. offers the
EncryptedKey structure a choice of EncryptedValue and EnvelopedData for migration to
EnvelopedData.

[RFC9480] [RFC9481] [RFC4210]
[RFC9483]

•

•

• [RFC5652]

Section 2.1 of [RFC4211]
[RFC4211]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 8

https://rfc-editor.org/rfc/rfc4211#section-2.1

Offered an optional hashAlg field in CertStatus supporting cases when a certificate needs to
be confirmed, but the certificate was signed using a signature algorithm that does not
indicate a specific hash algorithm to use for computing the certHash. This is also in
preparation for upcoming post-quantum algorithms.
Added new general message types to request CA certificates, a root CA update, a certificate
request template, or Certificate Revocation List (CRL) updates.
Extended the use of polling to p10cr, certConf, rr, genm, and error messages.
Deleted the mandatory algorithm profile in Appendix C.2 and instead referred to

.
Added Sections 8.6, 8.7, 8.9, and 8.10 to the security considerations.

•

•

•
• Section 7

of [RFC9481]
•

1.3. Changes Made by This Document
This document obsoletes and .

Backward compatibility with CMP version 2 is maintained wherever possible. Updates to CMP
version 2 improve crypto agility, extend the polling mechanism, add new general message types,
and add EKUs to identify special CMP server authorizations. CMP version 3 is introduced for
changes to the ASN.1 syntax, which support EnvelopedData, certConf with hashAlg,
POPOPrivKey with agreeMAC, and RootCaKeyUpdateContent in ckuann messages.

The updates made in this document include the changes specified by Section 2 and
 as described in Section 1.2. Additionally, this document updates the content of

 in the following areas:

Added Section 3.1.1.4 introducing the Key Generation Authority (KGA).
Extended Section 3.1.2 regarding use of Certificate Transparency (CT) logs.
Updated Section 4.4 introducing RootCaKeyUpdateContent as an alternative to using a
repository to acquire new root CA certificates.
Added Section 5.1.1.3 containing a description of origPKIMessage content, moved here from
Section 5.1.3.4.
Added support for KEM keys for POP to Sections 4.3 and 5.2.8, for message protection to
Sections 5.1.1 and 5.1.3.4 and Appendix E, and for usage with CMS EnvelopedData to Section
5.2.2.
Deprecated CAKeyUpdAnnContent in favor of RootCaKeyUpdateContent.
Incorporated the request message behavioral clarifications from to
Section 5. The definition of altCertTemplate was incorporated into Section 5.2.1, and the
clarification on POPOSigningKey and on POPOPrivKey was incorporated into Section 5.2.8.
Added support for CMS EnvelopedData to different POP methods for transferring encrypted
private keys, certificates, and challenges to Section 5.2.8.
Added Sections 8.1, 8.5, 8.8, and 8.11 to the security considerations.

[RFC4210] [RFC9480]

Appendix A.2
of [RFC9480]
[RFC4210]

•
•
•

•

•

•
• Appendix C of [RFC4210]

•

•

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 9

https://rfc-editor.org/rfc/rfc9481#section-7
https://rfc-editor.org/rfc/rfc9480#section-2
https://rfc-editor.org/rfc/rfc9480#appendix-A.2
https://rfc-editor.org/rfc/rfc4210#appendix-C

CA:

CMP:

CMS:

CRL:

CRMF:

KEM:

KGA:

LRA:

MAC:

PKI:

POP:

RA:

TEE:

2. Terminology and Abbreviations
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

This document relies on the terminology defined in . The most important
abbreviations are listed below:

Certification Authority

Certificate Management Protocol

Cryptographic Message Syntax

Certificate Revocation List

Certificate Request Message Format

Key Encapsulation Mechanism

Key Generation Authority

Local Registration Authority

Message Authentication Code

Public Key Infrastructure

Proof-of-Possession

Registration Authority

Trusted Execution Environment

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC5280]

3. PKI Management Overview
The PKI must be structured to be consistent with the types of individuals who must administer
it. Providing such administrators with unbounded choices not only complicates the software
required but also increases the chances that a subtle mistake by an administrator or software
developer will result in broader compromise. Similarly, restricting administrators with
cumbersome mechanisms will cause them not to use the PKI.

Management protocols are to support online interactions between PKI components.
For example, a management protocol might be used between a CA and a client system with
which a key pair is associated or between two CAs that issue cross-certificates for each other.

REQUIRED

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 10

3.1. PKI Management Model
Before specifying particular message formats and procedures, we first define the entities
involved in PKI management and their interactions (in terms of the PKI management functions
required). We then group these functions in order to accommodate different identifiable types of
end entities.

3.1.1. Definitions of PKI Entities

The entities involved in PKI management include the end entity (i.e., the entity to whom the
certificate is issued) and the CA (i.e., the entity that issues the certificate). An RA might also be
involved in PKI management.

3.1.1.1. Subjects and End Entities
The term "subject" is used here to refer to the entity to whom the certificate is issued, typically
named in the subject or subjectAltName field of a certificate. When we wish to distinguish the
tools and/or software used by the subject (e.g., a local certificate management module), we will
use the term "subject equipment". In general, the term "end entity", rather than "subject", is
preferred in order to avoid confusion with the field name. It is important to note that the end
entities here will include not only human users of applications but also applications themselves
(e.g., for Internet Key Exchange Protocol (IKE) / IPsec) or devices (e.g., routers or industrial
control systems). This factor influences the protocols that the PKI management operations use;
for example, application software is far more likely to know exactly which certificate extensions
are required than are human users. PKI management entities are also end entities in the sense
that they are sometimes named in the subject or subjectAltName field of a certificate or cross-
certificate. Where appropriate, the term "end entity" will be used to refer to end entities who are
not PKI management entities.

All end entities require secure local access to some information -- at a minimum, their own name
and private key, the name of a CA that is directly trusted by this entity, and that CA's public key
(or a fingerprint of the public key where a self-certified version is available elsewhere).
Implementations use secure local storage for more than this minimum (e.g., the end entity's
own certificates or application-specific information). The form of storage will also vary -- from
files to tamper-resistant cryptographic tokens. The information stored in such local, trusted
storage is referred to here as the end entity's TEE, also known as Personal Security Environment
(PSE).

Though TEE formats are beyond the scope of this document (they are very dependent on
equipment, et cetera), a generic interchange format for TEEs is defined here: a certification
response message (see Section 5.3.4) be used.

MAY

MAY

3.1.1.2. Certification Authority
The CA may or may not actually be a real "third party" from the end entity's point of view. Quite
often, the CA will actually belong to the same organization as the end entities it supports.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 11

Again, we use the term "CA" to refer to the entity named in the issuer field of a certificate. When
it is necessary to distinguish the software or hardware tools used by the CA, we use the term "CA
equipment".

The CA equipment will often include both an "offline" component and an "online" component,
with the CA private key only available to the "offline" component. This is, however, a matter for
implementers (though it is also relevant as a policy issue).

We use the term "root CA" to indicate a CA that is directly trusted by an end entity; that is,
securely acquiring the value of a root CA public key requires some out-of-band step(s). This term
is not meant to imply that a root CA is necessarily at the top of any hierarchy, simply that the CA
in question is trusted directly. The "root CA" may provide its trust anchor information with or
without using a certificate. In some circumstances, such a certificate may be self-signed, but in
other circumstances, it may be cross-signed, signed by a peer, signed by a superior CA, or
unsigned.

Note that other documents like and use the term "trusted CA" or "trust
anchor" instead of "root CA". This document continues using "root CA" based on the above
definition because it is also present in the ASN.1 syntax that cannot be changed easily.

A "subordinate CA" is one that is not a root CA for the end entity in question. Often, a
subordinate CA will not be a root CA for any entity, but this is not mandatory.

[X509.2019] [RFC5280]

3.1.1.3. Registration Authority
In addition to end entities and CAs, many environments call for the existence of an RA separate
from the CA. The functions that the RA may carry out will vary from case to case but
include identity checking, token distribution, checking certificate requests and authentication of
their origin, revocation reporting, name assignment, archival of key pairs, et cetera.

This document views the RA as an component: When it is not present, the CA is
assumed to be able to carry out the RA's functions so that the PKI management protocols are the
same from the end entity's point of view.

Again, we distinguish, where necessary, between the RA and the tools used (the "RA equipment").

Note that an RA is itself an end entity. We further assume that all RAs are in fact certified end
entities and that RAs have private keys that are usable for signing. How a particular CA
equipment identifies some end entities as RAs is an implementation issue (i.e., this document
specifies no special RA certification operation). We do not mandate that the RA is certified by the
CA with which it is interacting at the moment (so one RA may work with more than one CA
whilst only being certified once).

In some circumstances, end entities will communicate directly with a CA even where an RA is
present. For example, for initial registration and/or certification, the end entity may use its RA
but communicate directly with the CA in order to refresh its certificate.

MAY

OPTIONAL

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 12

3.1.1.4. Key Generation Authority
A KGA is a PKI management entity generating key pairs on behalf of an end entity. As the KGA
generates the key pair, it knows the public and the private part.

This document views the KGA as an component. When it is not present and central
key generation is needed, the CA is assumed to be able to carry out the KGA's functions so that
the PKI management protocol messages are the same from the end entity's point of view. If
certain tasks of a CA are delegated to other components, this delegation needs authorization,
which can be indicated by EKUs (see Section 4.5).

Note: When doing central generation of key pairs, implementers should consider the
implications of server-side retention on the overall security of the system; in some cases,
retention is good, for example, for escrow reasons, but in other cases, the server should clear its
copy after delivery to the end entity.

Note: If the CA delegates key generation to a KGA, the KGA can be collocated with the RA.

OPTIONAL

3.1.2. PKI Management Requirements

The protocols given here meet the following requirements on PKI management

PKI management must conform to the ISO/IEC 9594-8/ITU-T X.509 standards, in particular
.

It must be possible to regularly update any key pair without affecting any other key pair.
The use of confidentiality in PKI management protocols must be kept to a minimum in order
to ease acceptance in environments where strong confidentiality might cause regulatory
problems.
PKI management protocols must allow the use of different industry-standard cryptographic
algorithms (see CMP Algorithms). This means that any given CA, RA, or end entity
may, in principle, use whichever algorithms suit it for its own key pair(s).
PKI management protocols must not preclude the generation of key pairs by the end entity
concerned, by a KGA, or by a CA. Key generation may also occur elsewhere, but for the
purposes of PKI management, we can regard key generation as occurring wherever the key
is first present at an end entity, KGA, or CA.
PKI management protocols must support the publication of certificates by the end entity
concerned, by an RA, or by a CA. Different implementations and different environments
may choose any of the above approaches.
PKI management protocols must support the production of Certificate Revocation Lists
(CRLs) by allowing certified end entities to make requests for the revocation of certificates.
This must be done in such a way that the denial-of-service attacks, which are possible, are
not made simpler.
PKI management protocols must be usable over a variety of "transport" mechanisms,
specifically including email, Hypertext Transfer Protocol (HTTP), Message Queuing
Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and various offline
and non-networked file transfer methods.

1.
[X509.2019]

2.
3.

4.
[RFC9481]

5.

6.

7.

8.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 13

Final authority for certification creation rests with the CA. No RA or end entity equipment
can assume that any certificate issued by a CA will contain what was requested; a CA may
alter certificate field values or may add, delete, or alter extensions according to its operating
policy. In other words, all PKI entities (end entities, RAs, KGAs, and CAs) must be capable of
handling responses to requests for certificates in which the actual certificate issued is
different from that requested (for example, a CA may shorten the validity period requested).
Note that policy may dictate that the CA must not publish or otherwise distribute the
certificate until the requesting entity has reviewed and accepted the newly created
certificate or the POP is completed. In case of publication of the certificate (when using
indirect POP, see Section 8.11) or a precertificate in a CT log , the certificate must
be revoked if it was not accepted by the end entity or the POP could not be completed.
A graceful, scheduled changeover from one non-compromised CA key pair to the next (CA
key update) must be supported (note that if the CA key is compromised, re-initialization
must be performed for all entities in the domain of that CA). An end entity whose TEE
contains the new CA public key (following a CA key update) may also need to be able to
verify certificates verifiable using the old public key. End entities who directly trust the old
CA key pair may also need to be able to verify certificates signed using the new CA private
key (required for situations where the old CA public key is "hardwired" into the end entity's
cryptographic equipment).
The functions of an RA may, in some implementations or environments, be carried out by
the CA itself. The protocols must be designed so that end entities will use the same protocol
regardless of whether the communication is with an RA or CA. Naturally, the end entity
must use the correct RA or CA public key to verify the protection of the communication.
Where an end entity requests a certificate containing a given public key value, the end entity
must be ready to demonstrate possession of the corresponding private key value. This may
be accomplished in various ways, depending on the type of certification request. See Section
4.3 for details of the in-band methods defined for the PKIX-CMP (i.e., CMP) messages.

9.

[RFC9162]

10.

11.

12.

3.1.3. PKI Management Operations

The following diagram shows the relationship between the entities defined above in terms of the
PKI management operations. The letters in the diagram indicate "protocols" in the sense that a
defined set of PKI management messages can be sent along each of the lettered lines.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 14

At a high level, the set of operations for which management messages are defined can be
grouped as follows.

CA establishment: When establishing a new CA, certain steps are required (e.g., production
of initial CRLs and export of CA public key).
End entity initialization: This includes importing a root CA public key and requesting
information about the options supported by a PKI management entity.
Certification: Various operations result in the creation of new certificates:

initial registration/certification: This is the process whereby an end entity first makes itself
known to a CA or RA, prior to the CA issuing a certificate or certificates for that end entity.

Figure 1: PKI Entities

cert. publish j
End Entity

C g "out-of-band"
e loading
r initial
t a b registration/

certification
/ key pair recovery

key pair update
C certificate update
R PKI "USERS" revocation request
L

PKI MANAGEMENT
ENTITIES a b a b

R
e g d
p RA
o cert.
s publish c
i
t
o g i
r CA
y h "out-of-band"

cert. publish publication
CRL publish

cross-certification
e f cross-certificate

update

CA-2

1.

2.

3.

a.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 15

Note 1:

Note 2:

Note 3:

The end result of this process (when it is successful) is that a CA issues a certificate for an
end entity's public key and returns that certificate to the end entity and/or posts that
certificate in a repository. This process may, and typically will, involve multiple "steps",
possibly including an initialization of the end entity's equipment. For example, the end
entity's equipment must be securely initialized with the public key of a CA, e.g., using zero-
touch methods like Bootstrapping Remote Secure Key Infrastructure (BRSKI) or
Secure Zero Touch Provisioning (SZTP) , to be used in validating certificate paths.
Furthermore, an end entity typically needs to be initialized with its own key pair(s).
key pair update: Every key pair needs to be updated regularly (i.e., replaced with a new
key pair), and a new certificate needs to be issued.
certificate update: As certificates expire, they may be "refreshed" if nothing relevant in the
environment has changed.
CA key pair update: As with end entities, CA key pairs need to be updated regularly;
however, different mechanisms are required.
cross-certification request: One CA requests issuance of a cross-certificate from another
CA. For the purposes of this standard, the following terms are defined. A "cross-certificate"
is a certificate in which the subject CA and the issuer CA are distinct and
SubjectPublicKeyInfo contains a verification key (i.e., the certificate has been issued for
the subject CA's signing key pair). When it is necessary to distinguish more finely, the
following terms may be used: A cross-certificate is called an "inter-domain cross-
certificate" if the subject and issuer CAs belong to different administrative domains; it is
called an "intra-domain cross-certificate" otherwise.

The above definition of "cross-certificate" aligns with the defined term "CA-
certificate" in X.509. Note that this term is not to be confused with the X.500
"cACertificate" attribute type, which is unrelated.

In many environments, the term "cross-certificate", unless further qualified, will
be understood to be synonymous with "inter-domain cross-certificate" as defined
above.

Issuance of cross-certificates may be, but is not necessarily, mutual; that is, two
CAs may issue cross-certificates for each other.

cross-certificate update: Similar to a normal certificate update but involving a cross-
certificate.

Certificate/CRL discovery operations: Some PKI management operations result in the
publication of certificates or CRLs:

certificate publication: Having gone to the trouble of producing a certificate, some means
for publishing may be needed. The "means" defined in PKIX involve the messages
specified in Sections 5.3.13 to 5.3.16 or involve other methods (for example,
Lightweight Directory Access Protocol (LDAP)) as described in or (the
"Operational Protocols" documents of the PKIX series of specifications).
CRL publication: As for certificate publication.

[RFC8995]
[RFC8572]

b.

c.

d.

e.

f.

4.

a.
MAY

MAY
[RFC4511] [RFC2585]

b.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 16

Recovery operations: Some PKI management operations are used when an end entity has
"lost" its TEE:

key pair recovery: As an option, user client key materials (e.g., a user's private key used
for decryption purposes) be backed up by a CA, an RA, or a key backup system
associated with a CA or RA. If an entity needs to recover these backed up key materials
(e.g., as a result of a forgotten password or a lost key chain file), a protocol exchange may
be needed to support such recovery.

Revocation operations: Some PKI management operations result in the creation of new CRL
entries and/or new CRLs:

revocation request: An authorized person advises a CA of an abnormal situation requiring
certificate revocation.

TEE operations: Whilst the definition of TEE operations (e.g., moving a TEE, changing a PIN,
etc.) are beyond the scope of this specification, we do define a PKIMessage (CertRepMessage)
that can form the basis of such operations.

Note that online protocols are not the only way of implementing the above operations. For all
operations, there are offline methods of achieving the same result, and this specification does
not mandate use of online protocols. For example, when hardware tokens are used, many of the
operations be achieved as part of the physical token delivery.

Later sections define a set of standard messages supporting the above operations. Transfer
protocols for conveying these exchanges in various environments (e.g., offline: file-based; online:
email, HTTP , MQTT, and CoAP) are beyond the scope of this document and
must be specified separately. Appropriate transfer protocols be capable of delivering the
CMP messages reliably.

CMP provides inbuilt integrity protection and authentication. The information communicated
unencrypted in CMP messages does not contain sensitive information endangering the security
of the PKI when intercepted. However, it might be possible for an eavesdropper to utilize the
available information to gather confidential technical or business-critical information.
Therefore, users should consider protection of confidentiality on lower levels of the protocol
stack, e.g., by using TLS , DTLS , or IPsec .

5.

a.
MAY

6.

a.

7.

MAY

[RFC9811] [RFC9482]
MUST

[RFC8446] [RFC9147] [RFC7296][RFC4303]

4. Assumptions and Restrictions

4.1. End Entity Initialization
The first step for an end entity in dealing with PKI management entities is to request
information about the PKI functions supported and to securely acquire a copy of the relevant
root CA public key(s).

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 17

4.2. Initial Registration/Certification
There are many schemes that can be used to achieve initial registration and certification of end
entities. No one method is suitable for all situations due to the range of policies that a CA may
implement and the variation in the types of end entity that can occur.

However, we can classify the initial registration/certification schemes that are supported by this
specification. Note that the word "initial", above, is crucial: We are dealing with the situation
where the end entity in question has had no previous contact with the PKI, except having
received the root CA certificate of that PKI by some zero-touch method like BRSKI

 or SZTP . In case the end entity already possesses certified keys, then some
simplifications/alternatives are possible.

Having classified the schemes that are supported by this specification, we can then specify some
as mandatory and some as optional. The goal is that the mandatory schemes cover a sufficient
number of the cases that will arise in real use, whilst the optional schemes are available for
special cases that arise less frequently. In this way, we achieve a balance between flexibility and
ease of implementation.

Further classification of mandatory and optional schemes addressing different environments is
available, e.g., in Appendices C and D of this specification on managing human user certificates
as well as in the Lightweight CMP Profile on fully automating certificate management
in a machine-to-machine and Internet of Things (IoT) environment. Industry standards such as

 for mobile networks and for railroad automation have
adopted CMP and defined a series of mandatory schemes for their use cases.

We will now describe the classification of initial registration/certification schemes.

[RFC8995]
[RFC9733] [RFC8572]

[RFC9483]

[ETSI-3GPP.33.310] [UNISIG.Subset-137]

4.2.1. Criteria Used

4.2.1.1. Initiation of Registration/Certification
In terms of the PKI messages that are produced, we can regard the initiation of the initial
registration/certification exchanges as occurring wherever the first PKI message relating to the
end entity is produced. Note that the real-world initiation of the registration/certification
procedure may occur elsewhere (e.g., a personnel department may telephone an RA operator or
use zero-touch methods like BRSKI or SZTP).

The possible locations are at the end entity, an RA, or a CA.

[RFC8995] [RFC8572]

4.2.1.2. End Entity Message Origin Authentication
The online messages produced by the end entity that requires a certificate may be authenticated
or not. The requirement here is to authenticate the origin of any messages from the end entity to
the PKI (CA/RA).

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 18

Note 1:

Note 2:

In this specification, such authentication is achieved by two different means:

symmetric: The PKI (CA/RA) issuing the end entity with a secret value (initial authentication
key) and reference value (used to identify the secret value) via some out-of-band means. The
initial authentication key can then be used to protect relevant PKI messages.
asymmetric: Using a private key and certificate issued by another PKI trusted for initial
authentication, e.g., an Initial Device Identifier (IDevID) .
The trust establishment in this external PKI is out of scope of this document.

Thus, we can classify the initial registration/certification scheme according to whether or not the
online 'end entity -> PKI management entity' messages are authenticated or not.

We do not discuss the authentication of the 'PKI management entity -> end entity'
messages here, as this is always . In any case, it can be achieved simply once the
root-CA public key has been installed at the end entity's equipment or it can be based on
the initial authentication key.

An initial registration/certification procedure can be secure where the messages from
the end entity are authenticated via some out-of-band means (e.g., a subsequent visit).

•

•
IEEE 802.1AR [IEEE.802.1AR-2018]

REQUIRED

4.2.1.3. Location of Key Generation
In this specification, "key generation" is regarded as occurring wherever either the public or
private component of a key pair first occurs in a PKIMessage. Note that this does not preclude a
centralized key generation service by a KGA; the actual key pair have been generated
elsewhere and transported to the end entity, RA, or CA using a (proprietary or standardized) key
generation request/response protocol (outside the scope of this specification).

Thus, there are three possibilities for the location of "key generation": the end entity, a KGA, or a
CA.

MAY

4.2.1.4. Confirmation of Successful Certification
Following the creation of a certificate for an end entity, additional assurance can be gained by
having the end entity explicitly confirm successful receipt of the message containing (or
indicating the creation of) the certificate. Naturally, this confirmation message must be protected
(based on the initial symmetric or asymmetric authentication key or other means).

This gives two further possibilities: confirmed or not.

4.2.2. Initial Registration/Certification Schemes

The criteria above allow for a large number of initial registration/certification schemes.
Examples of possible initial registration/certification schemes can be found in the following
subsections. An entity may support other schemes specified in profiles of PKIX-CMP, such as
Appendices C and D or .[RFC9483]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 19

4.2.2.1. Centralized Scheme
In terms of the classification above, this scheme is, in some ways, the simplest possible, where:

initiation occurs at the certifying CA;
no online message authentication is required;
"key generation" occurs at the certifying CA (see Section 4.2.1.3); and
no confirmation message is required.

In terms of message flow, this scheme means that the only message required is sent from the CA
to the end entity. The message must contain the entire TEE for the end entity. Some out-of-band
means must be provided to allow the end entity to authenticate the message received and to
decrypt any encrypted values.

•
•
•
•

4.2.2.2. Basic Authenticated Scheme
In terms of the classification above, this scheme is where:

initiation occurs at the end entity;
message authentication is required;
"key generation" occurs at the end entity (see Section 4.2.1.3); and
a confirmation message is recommended.

Note: An Initial Authentication Key (IAK) can be either a symmetric key or an asymmetric
private key with a certificate issued by another PKI trusted for this purpose. The establishment
of such trust is out of scope of this document.

In terms of message flow, the basic authenticated scheme is as follows:

•
•
•
•

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 20

Note: Where verification of the cert confirmation message fails, the RA/CA revoke the
newly issued certificate if it has been published or otherwise made available.

End Entity RA/CA

out-of-band distribution of Initial Authentication
Key (IAK) and reference value (RA/CA -> end entity)

Key generation
Creation of certification request
Protect request with IAK

certification request
verify request
process request
create response

certification response
handle response
create confirmation

cert conf message
verify confirmation
create response

conf ack (optional)
handle response

MUST

4.3. POP of Private Key
POP is where a PKI management entity (CA/RA) verifies if an end entity has access to the private
key corresponding to a given public key. The question of whether, and in what circumstances,
POPs add value to a PKI is a debate as old as PKI itself! See Section 8.1 for a further discussion on
the necessity of POP in PKI.

The PKI management operations specified here make it possible for an end entity to prove to a
CA/RA that it has possession of (i.e., is able to use) the private key corresponding to the public
key for which a certificate is requested (see Section 5.2.8 for different POP methods). A given CA/
RA is free to choose how to enforce POP (e.g., out-of-band procedural means versus PKIX-CMP in-
band messages) in its certification exchanges (i.e., this may be a policy issue). However, it is

 that CAs/RAs enforce POP by some means because there are currently many
non-PKIX operational protocols in use (various electronic mail protocols are one example) that
do not explicitly check the binding between the end entity and the private key. Until operational
protocols that do verify the binding (for signature, encryption, key agreement, and KEM key
pairs) exist, and are ubiquitous, this binding can only be assumed to have been verified by the
CA/RA. Therefore, if the binding is not verified by the CA/RA, certificates in the Internet PKI end
up being somewhat less meaningful.

REQUIRED MUST

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 21

POP is accomplished in different ways depending upon the type of key for which a certificate is
requested. If a key can be used for multiple purposes (e.g., an RSA key), then any appropriate
method be used (e.g., a key that may be used for signing, as well as other purposes,

 be sent to the CA/RA in order to prove possession unless archival of the private key is
explicitly desired).

This specification explicitly allows for cases where an end entity supplies the relevant proof to
an RA and the RA subsequently attests to the CA that the required proof has been received (and
validated!). For example, an end entity wishing to have a signing key certified could send the
appropriate signature to the RA, which then simply notifies the relevant CA that the end entity
has supplied the required proof. Of course, such a situation may be disallowed by some policies
(e.g., CAs may be the only entities permitted to verify POP during certification).

MAY MUST
NOT

4.3.1. Signature Keys

For signature keys, the end entity can sign a value to prove possession of the private key; see
Section 5.2.8.2.

4.3.2. Encryption Keys

For encryption keys, the end entity can provide the private key to the CA/RA (e.g., for archiving),
see Section 5.2.8.3.1, or can be required to decrypt a value in order to prove possession of the
private key. Decrypting a value can be achieved either directly (see Section 5.2.8.3.3) or
indirectly (see Section 5.2.8.3.2).

The direct method is for the RA/CA to issue a random challenge to which an immediate response
by the end entity is required.

The indirect method is to issue a certificate that is encrypted for the end entity (and have the
end entity demonstrate its ability to decrypt this certificate in the confirmation message). This
allows a CA to issue a certificate in a form that can only be used by the intended end entity.

This specification encourages use of the indirect method because it requires no extra messages
to be sent (i.e., the proof can be demonstrated using the {request, response, confirmation} triple
of messages).

4.3.3. Key Agreement Keys

For key agreement keys, the end entity and the PKI management entity (i.e., CA or RA) must
establish a shared secret key in order to prove that the end entity has possession of the private
key.

Note that this need not impose any restrictions on the keys that can be certified by a given CA. In
particular, for Diffie-Hellman (DH) keys, the end entity may freely choose its algorithm
parameters provided that the CA can generate a short-term (or one-time) key pair with the
appropriate parameters when necessary.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 22

4.3.4. KEM Keys

For KEM keys, the end entity can provide the private key to the CA/RA (e.g., for archiving), see
Section 5.2.8.3.1, or can be required to decrypt a value in order to prove possession of the private
key. Decrypting a value can be achieved either directly (see Section 5.2.8.3.3) or indirectly (see
Section 5.2.8.3.2).

Note: A definition of KEMs can be found in .

The direct method is for the RA/CA to issue a random challenge to which an immediate response
by the end entity is required.

The indirect method is to issue a certificate that is encrypted for the end entity using a shared
secret key derived from a key encapsulated using the public key (and have the end entity
demonstrate its ability to use its private key for decapsulation of the KEM ciphertext, derive the
shared secret key, decrypt this certificate, and provide a hash of the certificate in the
confirmation message). This allows a CA to issue a certificate in a form that can only be used by
the intended end entity.

This specification encourages use of the indirect method because it requires no extra messages
to be sent (i.e., the proof can be demonstrated using the {request, response, confirmation} triple
of messages).

A certification request message for a KEM certificate use POPOPrivKey by using the
keyEncipherment choice of ProofOfPossession (see Section 5.2.8) in the popo field of CertReqMsg
as long as no KEM-specific choice is available.

Section 1 of [RFC9629]

SHALL

4.4. Root CA Key Update
This discussion only applies to CAs that are directly trusted by some end entities. Recognizing
whether a self-signed or non-self-signed CA is supposed to be directly trusted for some end
entities is a matter of CA policy and end entity configuration. Thus, this is beyond the scope of
this document.

The basis of the procedure described here is that the CA protects its new public key using its
previous private key and vice versa. Thus, when a CA updates its key pair, it may generate two
link certificates: "old with new" and "new with old".

Note: The usage of link certificates has been shown to be very specific for each use case, and no
assumptions are done on this aspect. RootCaKeyUpdateContent is updated to specify these link
certificates as optional.

Note: When an LDAP directory is used to publish root CA updates, the old and new root CA
certificates together with the two link certificates are stored as cACertificate attribute values.

When a CA changes its key pair, those entities who have acquired the old CA public key via "out-
of-band" means are most affected. These end entities need to acquire the new CA public key in a
trusted way. This may be achieved "out-of-band" by using a repository or by using online

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 23

https://rfc-editor.org/rfc/rfc9629#section-1

messages also containing the link certificates "new with old". Once the end entity acquired and
properly verified the new CA public key, it must load the new trust anchor information into its
trusted store.

The data structure used to protect the new and old CA public keys is typically a standard X.509v3
certificate (which may also contain extensions). There are no new data structures required.

Note: Sometimes self-signed root CA certificates do not make use of X.509v3 extensions and may
be X.509v1 certificates. Therefore, a root CA key update must be able to work for version 1
certificates. The use of the X.509v3 KeyIdentifier extension is recommended for easier path
building.

Note: While the scheme could be generalized to cover cases where the CA updates its key pair
more than once during the validity period of one of its end entities' certificates, this
generalization seems of dubious value. Not having this generalization simply means that the
validity periods of certificates issued with the old CA key pair cannot exceed the end of the "old
with new" certificate validity period.

Note: This scheme offers a mechanism to ensures that end entities will acquire the new CA
public key, at the latest by the expiry of the last certificate they owned that was signed with the
old CA private key. Certificate and/or key update operations occurring at other times do not
necessarily require this (depending on the end entity's equipment).

Note: In practice, a new root CA may have a slightly different subject Distinguished Name (DN),
e.g., indicating a generation identifier like the year of issuance or a version number, for instance,
in an Organizational Unit (OU) element. How to bridge trust to the new root CA certificate in a
CA DN change or a cross-certificate scenario is out of scope for this document.

4.4.1. CA Operator Actions

To change the key of the CA, the CA operator does the following:

Generate a new key pair.
Create a certificate containing the new CA public key signed with the new private key or by
the private key of some other CA (the "new with new" certificate).
Optionally: Create a link certificate containing the new CA public key signed with the old
private key (the "new with old" certificate).
Optionally: Create a link certificate containing the old CA public key signed with the new
private key (the "old with new" certificate).
Publish these new certificates so that end entities may acquire it, e.g., using a repository or
RootCaKeyUpdateContent.

The old CA private key is then no longer required when the validity of the "old with old"
certificate ended. However, the old CA public key will remain in use for validating the "new with
old" link certificate until the new CA public key is loaded into the trusted store. The old CA public
key is no longer required (other than for non-repudiation) when all end entities of this CA have
securely acquired and stored the new CA public key.

1.
2.

3.

4.

5.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 24

The "new with new" certificate must have a validity period with a notBefore time that is before
the notAfter time of the "old with old" certificate and a notAfter time that is after the notBefore
time of the next update of this certificate.

The "new with old" certificate must have a validity period with the same notBefore time as the
"new with new" certificate and a notAfter time by which all end entities of this CA will securely
possess the new CA public key (at the latest, at the notAfter time of the "old with old" certificate).

The "old with new" certificate must have a validity period with the same notBefore and notAfter
time as the "old with old" certificate.

Note: Further operational considerations on transition from one root CA self-signed certificate to
the next is available in .Section 5 of [RFC8649]

4.4.2. Verifying Certificates

Normally when verifying a signature, the verifier verifies (among other things) the certificate
containing the public key of the signer. However, once a CA is allowed to update its key, there
are a range of new possibilities. These are shown in the table below.

Verifier's TEE contains
NEW public key

Verifier's TEE contains
OLD public key

Signer's certificate is
protected using NEW key
pair

Case 1: The verifier can
directly verify the
certificate.

Case 2: The verifier is
missing the NEW public key.

Signer's certificate is
protected using OLD key
pair

Case 3: The verifier is
missing the OLD public key.

Case 4: The verifier can
directly verify the
certificate.

Table 1

4.4.2.1. Verification in Cases 1 and 4
In these cases, the verifier has a local copy of the CA public key that can be used to verify the
certificate directly. This is the same as the situation where no key change has occurred.

4.4.2.2. Verification in Case 2
In case 2, the verifier must get access to the new public key of the CA. Case 2 will arise when the
CA operator has issued the verifier's certificate, then changed the CA's key, and then issued the
signer's certificate; so it is quite a typical case.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 25

https://rfc-editor.org/rfc/rfc8649#section-5

The verifier does the following:

Get the "new with new" and "new with old" certificates. The location of where to retrieve
these certificates may be available in the authority information access extension of the "old
with old" certificate (see the access method for caIssuers in), or
it may be locally configured.

If a repository is available, look up the certificates in the caCertificate attribute.
If an HTTP or FTP server is available, pick the certificates from the "certs-only" CMS
message.
If a CMP server is available, request the certificates using the root CA update the general
message (see Section 5.3.19.15).
Otherwise, get the certificates "out-of-band" using any trustworthy mechanism.

If the certificates are received, check that the validity periods and the subject and issuer
fields match. Verify the signatures using the old root CA key (which the verifier has locally).
If all checks are successful, securely store the new trust anchor information and validate the
signer's certificate.

1.

Section 4.2.2.1 of [RFC5280]

a.
b.

c.

d.

2.

3.

4.4.2.3. Verification in Case 3
In case 3, the verifier must get access to the old public key of the CA. Case 3 will arise when the
CA operator has issued the signer's certificate, then changed the key, and then issued the
verifier's certificate.

The verifier does the following:

Get the "old with new" certificate. The location of where to retrieve these certificates may be
available in the authority information access extension of the "new with new" certificate
(see caIssuers access method in), or it may be locally configured.

If a repository is available, look up the certificate in the caCertificate attribute.
If an HTTP or FTP server is available, pick the certificate from the "certs-only" CMS
message.
If a CMP server and an untrusted copy of the old root CA certificate are available (e.g., the
signer provided it in-band in the CMP extraCerts filed), request the certificate using the
root CA update the general message (see Section 5.3.19.15).
Otherwise, get the certificate "out-of-band" using any trustworthy mechanism.

If the certificate is received, check that the validity periods and the subject and issuer fields
match. Verify the signatures using the new root CA key (which the verifier has locally).
If all checks were successful, securely store the old trust anchor information and validate
the signer's certificate.

1.

Section 4.2.2.1 of [RFC5280]

a.
b.

c.

d.

2.

3.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 26

https://rfc-editor.org/rfc/rfc5280#section-4.2.2.1
https://rfc-editor.org/rfc/rfc5280#section-4.2.2.1

4.4.3. Revocation - Change of the CA Key

As we saw above, the verification of a certificate becomes more complex once the CA is allowed
to change its key. This is also true for revocation checks, as the CA may have signed the CRL
using a newer private key than the one within the user's TEE.

The analysis of the alternatives is the same as for certificate verification.

CMP KGA:

4.5. EKU for PKI Entities
The EKU extension indicates the purposes for which the certified key pair may be used.
Therefore, it restricts the use of a certificate to specific applications.

A CA may want to delegate parts of its duties to other PKI management entities. This section
provides a mechanism to both prove this delegation and enable automated means for checking
the authorization of this delegation. Such delegation may also be expressed by other means, e.g.,
explicit configuration.

To offer automatic validation for the delegation of a role by a CA to another entity, the
certificates used for CMP message protection or signed data for central key generation be
issued by the delegating CA and contain the respective EKUs. This proves that the
delegating CA authorized this entity to act in the given role, as described below.

The OIDs to be used for these EKUs are:

Note: specifies OIDs for a Certificate Management over CMS (CMC) CA
and a CMC RA. As the functionality of a CA and RA is not specific to any protocol used for
managing certificates (such as CMC or CMP), these EKUs are reused by CMP.

The meaning of the id-kp-cmKGA EKU is as follows:

CMP KGAs are CAs or are identified by the id-kp-cmKGA EKU. The CMP KGA knows
the private key it generated on behalf of the end entity. This is a very sensitive service and
needs specific authorization, which by default is with the CA certificate itself. The CA may

MUST
MUST

 id-kp-cmcCA OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) kp(3) 27 }

 id-kp-cmcRA OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) kp(3) 28 }

 id-kp-cmKGA OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) kp(3) 32 }

Section 2.10 of [RFC6402]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 27

https://rfc-editor.org/rfc/rfc6402#section-2.10

delegate its authorization by placing the id-kp-cmKGA EKU in the certificate used to
authenticate the origin of the generated private key. The authorization may also be
determined through local configuration of the end entity.

5. Data Structures
This section contains descriptions of the data structures required for PKI management messages.
Section 6 describes constraints on their values and the sequence of events for each of the
various PKI management operations.

5.1. Overall PKI Message
All of the messages used in this specification for the purposes of PKI management use the
following structure:

The PKIHeader contains information that is common to many PKI messages.

The PKIBody contains message-specific information.

The PKIProtection, when used, contains bits that protect the PKI message.

The extraCerts field can contain certificates that may be useful to the recipient. For example, this
can be used by a CA or RA to present an end entity with certificates that it needs to verify its own
new certificate (for example, if the CA that issued the end entity's certificate is not a root CA for
the end entity). Note that this field does not necessarily contain a certification path; the recipient
may have to sort, select from, or otherwise process the extra certificates in order to use them.

 PKIMessage ::= SEQUENCE {
 header PKIHeader,
 body PKIBody,
 protection [0] PKIProtection OPTIONAL,
 extraCerts [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
 OPTIONAL
 }

 PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage

5.1.1. PKI Message Header

All PKI messages require some header information for addressing and transaction identification.
Some of this information will also be present in a transport-specific envelope. However, if the
PKI message is protected, then this information is also protected (i.e., we make no assumption
about secure transport).

The following data structure is used to contain this information:

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 28

The usage of the protocol version number (pvno) is described in Section 7.

The sender field contains the name of the sender of the PKIMessage. This name (in conjunction
with senderKID, if supplied) should be sufficient to indicate the key to use to verify the
protection on the message. If nothing about the sender is known to the sending entity (e.g., in the
initial request message, where the end entity may not know its own DN, email name, IP address,
etc.), then the "sender" field contain a "NULL-DN" value in the directoryName choice. A
"NULL-DN" is a SEQUENCE OF relative DNs of zero length and is encoded as 0x3000. In such a
case, the senderKID field hold an identifier (i.e., a reference number) that indicates to the
receiver the appropriate shared secret information to use to verify the message.

The recipient field contains the name of the recipient of the PKIMessage. This name (in
conjunction with recipKID, if supplied) should be usable to verify the protection on the message.

The protectionAlg field specifies the algorithm used to protect the message. If no protection bits
are supplied (note that PKIProtection is), then this field be omitted; if protection
bits are supplied, then this field be supplied.

senderKID and recipKID are usable to indicate which keys have been used to protect the
message (recipKID will normally only be required where protection of the message uses DH or
Elliptic Curve Diffie-Hellman (ECDH) keys). These fields be used if required to uniquely
identify a key (e.g., if more than one key is associated with a given sender name). The senderKID

 be used in any case.

Note: The recommendation of using senderKID has changed since , where it was
recommended to be omitted if not needed to identify the protection key.

The transactionID field within the message header is to be used to allow the recipient of a
message to correlate this with an ongoing transaction. This is needed for all transactions that
consist of more than just a single request/response pair. For transactions that consist of a single

 PKIHeader ::= SEQUENCE {
 pvno INTEGER { cmp1999(1), cmp2000(2),
 cmp2021(3) },
 sender GeneralName,
 recipient GeneralName,
 messageTime [0] GeneralizedTime OPTIONAL,
 protectionAlg [1] AlgorithmIdentifier{ALGORITHM, {...}}
 OPTIONAL,
 senderKID [2] KeyIdentifier OPTIONAL,
 recipKID [3] KeyIdentifier OPTIONAL,
 transactionID [4] OCTET STRING OPTIONAL,
 senderNonce [5] OCTET STRING OPTIONAL,
 recipNonce [6] OCTET STRING OPTIONAL,
 freeText [7] PKIFreeText OPTIONAL,
 generalInfo [8] SEQUENCE SIZE (1..MAX) OF
 InfoTypeAndValue OPTIONAL
 }

 PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String

MUST

MUST

OPTIONAL MUST
MUST

MUST

SHOULD

[RFC4210]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 29

request/response pair, the rules are as follows. A client populate the transactionID field if
the message contains an infoValue of type KemCiphertextInfo (see Section 5.1.3.4). In all other
cases, the client populate the transactionID field of the request. If a server receives such a
request that has the transactionID field set, then it set the transactionID field of the
response to the same value. If a server receives such request with a missing transactionID field,
then it populate the transactionID field if the message contains a KemCiphertextInfo field.
In all other cases, the server set the transactionID field of the response.

For transactions that consist of more than just a single request/response pair, the rules are as
follows. If the message contains an infoValue of type KemCiphertextInfo, the client
generate a transactionID; otherwise, the client generate a transactionID for the first
request. If a server receives such a request that has the transactionID field set, then it set
the transactionID field of the response to the same value. If a server receives such request with a
missing transactionID field, then it populate the transactionID field of the response with a
server-generated ID. Subsequent requests and responses all set the transactionID field to
the thus established value. In all cases where a transactionID is being used, a given client

 have more than one transaction with the same transactionID in progress at any time (to a
given server). Servers are free to require uniqueness of the transactionID or not, as long as they
are able to correctly associate messages with the corresponding transaction. Typically, this
means that a server will require the {client, transactionID} tuple to be unique, or even the
transactionID alone to be unique, if it cannot distinguish clients based on any transport-level
information. A server receiving the first message of a transaction (which requires more than a
single request/response pair) that contains a transactionID that does not allow it to meet the
above constraints (typically because the transactionID is already in use) send back an
ErrorMsgContent with a PKIFailureInfo of transactionIdInUse. It is that the
clients fill the transactionID field with 128 bits of (pseudo-)random data for the start of a
transaction to reduce the probability of having the transactionID in use at the server.

The senderNonce and recipNonce fields protect the PKIMessage against replay attacks. The
senderNonce will typically be 128 bits of (pseudo-)random data generated by the sender,
whereas the recipNonce is copied from the senderNonce field of the previous message in the
transaction.

The messageTime field contains the time at which the sender created the message. This may be
useful to allow end entities to correct/check their local time for consistency with the time on a
central system.

The freeText field may be used to send a human-readable message to the recipient (in any
number of languages). Each UTF8String include a language tag to indicate the
language of the contained text. The first language used in this sequence indicates the desired
language for replies.

The generalInfo field may be used to send machine-processable additional data to the recipient.
The following generalInfo extensions are defined and be supported.

MUST

MAY
MUST

MUST
MAY

MUST
SHOULD

MUST

MUST
MUST

MUST
NOT

MUST
RECOMMENDED

MAY [RFC5646]

MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 30

5.1.1.1. ImplicitConfirm
This is used by the end entity to inform the CA or RA that it does not wish to send a certificate
confirmation for issued certificates.

If the CA grants the request to the end entity, it put the same extension in the PKIHeader of
the response. If the end entity does not find the extension in the response, it send the
certificate confirmation.

 id-it-implicitConfirm OBJECT IDENTIFIER ::= {id-it 13}
 ImplicitConfirmValue ::= NULL

MUST
MUST

5.1.1.2. ConfirmWaitTime
This is used by the CA or RA to inform the end entity how long it intends to wait for the
certificate confirmation before revoking the certificate and deleting the transaction.

 id-it-confirmWaitTime OBJECT IDENTIFIER ::= {id-it 14}
 ConfirmWaitTimeValue ::= GeneralizedTime

5.1.1.3. OrigPKIMessage
An RA include the original PKIMessage from the end entity in the generalInfo field of the
PKIHeader of a PKIMessage. This is used by the RA to inform the CA of the original PKIMessage
that it received from the end entity and modified in some way (e.g., added or modified particular
field values or added new extensions) before forwarding the new PKIMessage. This
accommodates, for example, cases in which the CA wishes to check the message origin, the POP,
or other information on the original end entity message.

Note: If the changes made by the RA to the original PKIMessage break the POP of a certificate
request, the RA can set the popo field of the new PKIMessage to raVerified (see Section 5.2.8.4).

Unless the OrigPKIMessage infoValue is in the header of a nested message, it contain
exactly one PKIMessage. The contents of OrigPKIMessage infoValue in the header of a nested
message contain multiple PKIMessage structures, which be in the same order as the
PKIMessage structures in PKIBody.

MAY

MUST

MAY MUST

 id-it-origPKIMessage OBJECT IDENTIFIER ::= {id-it 15}
 OrigPKIMessageValue ::= PKIMessages

5.1.1.4. CertProfile
This is used by the end entity to indicate specific certificate profiles, e.g., when requesting a new
certificate or a certificate request template (see Section 5.3.19.16).

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 31

When used in a p10cr message, the CertProfileValue sequence contain multiple
certificate profile names. When used in an ir/cr/kur/genm message, the CertProfileValue
sequence contain more certificate profile names than the number of CertReqMsg or
GenMsgContent InfoTypeAndValue elements contained in the message body.

The certificate profile names in the CertProfileValue sequence relate to the CertReqMsg or
GenMsgContent InfoTypeAndValue elements in the given order. An empty string means no
certificate profile name is associated with the respective CertReqMsg or GenMsgContent
InfoTypeAndValue element. If the CertProfileValue sequence contains less certificate profile
entries than CertReqMsg or GenMsgContent InfoTypeAndValue elements, the remaining
CertReqMsg or GenMsgContent InfoTypeAndValue elements have no profile name associated
with them.

 id-it-certProfile OBJECT IDENTIFIER ::= {id-it 21}
 CertProfileValue ::= SEQUENCE SIZE (1..MAX) OF UTF8String

MUST NOT

MUST NOT

5.1.1.5. KemCiphertextInfo
A PKI entity provide the KEM ciphertext for MAC-based message protection using KEM (see
Section 5.1.3.4) in the generalInfo field of a request message to a PKI management entity if it
knows that the PKI management entity uses a KEM key pair and has its public key.

For more details of KEM-based message protection, see Section 5.1.3.4. See Section 5.3.19.18 for
the definition of {id-it 24}.

MAY

 id-it-KemCiphertextInfo OBJECT IDENTIFIER ::= { id-it 24 }
 KemCiphertextInfoValue ::= KemCiphertextInfo

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 32

5.1.2. PKI Message Body

The specific types are described in Section 5.3 below.

 PKIBody ::= CHOICE {
 ir [0] CertReqMessages, --Initialization Req
 ip [1] CertRepMessage, --Initialization Resp
 cr [2] CertReqMessages, --Certification Req
 cp [3] CertRepMessage, --Certification Resp
 p10cr [4] CertificationRequest, --PKCS #10 Cert. Req.
 popdecc [5] POPODecKeyChallContent, --pop Challenge
 popdecr [6] POPODecKeyRespContent, --pop Response
 kur [7] CertReqMessages, --Key Update Request
 kup [8] CertRepMessage, --Key Update Response
 krr [9] CertReqMessages, --Key Recovery Req
 krp [10] KeyRecRepContent, --Key Recovery Resp
 rr [11] RevReqContent, --Revocation Request
 rp [12] RevRepContent, --Revocation Response
 ccr [13] CertReqMessages, --Cross-Cert. Request
 ccp [14] CertRepMessage, --Cross-Cert. Resp
 ckuann [15] CAKeyUpdContent, --CA Key Update Ann.
 cann [16] CertAnnContent, --Certificate Ann.
 rann [17] RevAnnContent, --Revocation Ann.
 crlann [18] CRLAnnContent, --CRL Announcement
 pkiconf [19] PKIConfirmContent, --Confirmation
 nested [20] NestedMessageContent, --Nested Message
 genm [21] GenMsgContent, --General Message
 genp [22] GenRepContent, --General Response
 error [23] ErrorMsgContent, --Error Message
 certConf [24] CertConfirmContent, --Certificate Confirm
 pollReq [25] PollReqContent, --Polling Request
 pollRep [26] PollRepContent --Polling Response
 }

5.1.3. PKI Message Protection

Some PKI messages will be protected for integrity.

Note: If an asymmetric algorithm is used to protect a message and the relevant public
component has been certified already, then the origin of the message can also be authenticated.
On the other hand, if the public component is uncertified, then the message origin cannot be
automatically authenticated but may be authenticated via out-of-band means.

When protection is applied, the following structure is used:

The input to the calculation of PKIProtection is the DER encoding of the following data structure:

 PKIProtection ::= BIT STRING

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 33

There be cases in which the PKIProtection BIT STRING is deliberately not used to protect a
message (i.e., this field is omitted) because other protection, external to PKIX, will be
applied instead. Such a choice is explicitly allowed in this specification. Examples of such
external protection include CMS and Security Multiparts encapsulation of
the PKIMessage (or simply the PKIBody (omitting the CHOICE tag), if the relevant PKIHeader
information is securely carried in the external mechanism). It is noted, however, that many such
external mechanisms require that the end entity already possesses a public-key certificate, a
unique DN, and/or other such infrastructure-related information. Thus, they may not be
appropriate for initial registration, key-recovery, or any other process with "bootstrapping"
characteristics. For those cases, it may be necessary that the PKIProtection parameter be used. In
the future, if/when external mechanisms are modified to accommodate bootstrapping scenarios,
the use of PKIProtection may become rare or non-existent.

Depending on the circumstances, the PKIProtection bits may contain a MAC or signature. Only
the following cases can occur:

 ProtectedPart ::= SEQUENCE {
 header PKIHeader,
 body PKIBody
 }

MAY
OPTIONAL

[RFC5652] [RFC1847]

5.1.3.1. Shared Secret Information
In this case, the sender and recipient share secret information with sufficient entropy
(established via out-of-band means). PKIProtection will contain a MAC value, and the
protectionAlg be one of the options described in .

The algorithm identifier id-PasswordBasedMac is defined in and
updated by . It is mentioned in for backward compatibility.
More modern alternatives are listed in .

The following text gives a method of key expansion to be used when the MAC algorithm requires
an input length that is larger than the size of the one-way function (OWF).

Note: and do not mention this key expansion method or give
an example using HMAC algorithms where key expansion is not needed. It is recognized that this
omission in can lead to confusion and possible incompatibility if key expansion

 is not used when needed. Therefore, when key expansion is required (when K > H),
the key expansion defined in the following text be used.

MAY Section 6.1 of CMP Algorithms [RFC9481]

Section 4.4 of [RFC4211]
[RFC9045] Section 6.1.1 of [RFC9481]

Section 6.1 of [RFC9481]

 id-PasswordBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 13}
 PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 owf AlgorithmIdentifier,
 iterationCount INTEGER,
 mac AlgorithmIdentifier
 }

Section 4.4 of [RFC4211] [RFC9045]

[RFC4211]
[RFC4210]

MUST

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 34

https://rfc-editor.org/rfc/rfc9481#section-6.1
https://rfc-editor.org/rfc/rfc4211#section-4.4
https://rfc-editor.org/rfc/rfc9481#section-6.1.1
https://rfc-editor.org/rfc/rfc9481#section-6.1
https://rfc-editor.org/rfc/rfc4211#section-4.4

In the above protectionAlg, the salt value is appended to the shared secret input. The OWF is
then applied iterationCount times, where the salted secret is the input to the first iteration and,
for each successive iteration, the input is set to be the output of the previous iteration. The
output of the final iteration (called "BASEKEY" for ease of reference, with a size of "H") is what is
used to form the symmetric key. If the MAC algorithm requires a K-bit key and K <= H, then the
most significant K bits of BASEKEY are used. If K > H, then all of BASEKEY is used for the most
significant H bits of the key, OWF("1" || BASEKEY) is used for the next most significant H bits of
the key, OWF("2" || BASEKEY) is used for the next most significant H bits of the key, and so on,
until all K bits have been derived. [Here "N" is the ASCII byte encoding the number N and "||"
represents concatenation.]

Note: It is that the fields of PBMParameter remain constant throughout the
messages of a single transaction (e.g., ir/ip/certConf/pkiConf) to reduce the overhead associated
with PasswordBasedMac computation.

RECOMMENDED

5.1.3.2. DH Key Pairs
Where the sender and receiver possess finite-field or elliptic-curve-based DH certificates with
compatible DH parameters in order to protect the message, the end entity must generate a
symmetric key based on its private DH key value and the DH public key of the recipient of the
PKI message. PKIProtection will contain a MAC value keyed with this derived symmetric key,
and the protectionAlg will be the following:

In the above protectionAlg, OWF is applied to the result of the DH computation. The OWF output
(called "BASEKEY" for ease of reference, with a size of "H") is what is used to form the symmetric
key. If the MAC algorithm requires a K-bit key and K <= H, then the most significant K bits of
BASEKEY are used. If K > H, then all of BASEKEY is used for the most significant H bits of the key,
OWF("1" || BASEKEY) is used for the next most significant H bits of the key, OWF("2" ||
BASEKEY) is used for the next most significant H bits of the key, and so on, until all K bits have
been derived. [Here "N" is the ASCII byte encoding the number N and "||" represents
concatenation.]

Note: Hash algorithms that can be used as OWFs are listed in
.

 id-DHBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 30}

 DHBMParameter ::= SEQUENCE {
 owf AlgorithmIdentifier,
 -- AlgId for an OWF
 mac AlgorithmIdentifier
 -- the MAC AlgId
 }

Section 2 of CMP Algorithms
[RFC9481]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 35

https://rfc-editor.org/rfc/rfc9481#section-2

5.1.3.3. Signature
In this case, the sender possesses a signature key pair and simply signs the PKI message.
PKIProtection will contain the signature value and the protectionAlg will be an
AlgorithmIdentifier for a digital signature, which be one of the options described in

.
MAY Section

3 of CMP Algorithms [RFC9481]

5.1.3.4. Key Encapsulation
In case the sender of a message has a KEM key pair, it can be used to establish a shared secret
key for MAC-based message protection. This can be used for message authentication.

This approach uses the definition of KEM algorithm functions in as
follows:

A KEM algorithm provides three functions:

KeyGen() -> (pk, sk): Generate a public key (pk) and a private (secret) key (sk).
Encapsulate(pk) -> (ct, ss): Given the public key (pk), produce a ciphertext (ct) and a shared
secret (ss).
Decapsulate(sk, ct) -> (ss): Given the private key (sk) and the ciphertext (ct), produce the
shared secret (ss).

To support a particular KEM algorithm, the PKI entity that possesses a KEM key pair and wishes
to use it for MAC-based message protection support the KEM Decapsulate() function. The
PKI entity that wishes to verify the MAC-based message protection support the KEM
Encapsulate() function. The respective public KEM key is usually carried in a certificate

.

Note: Both PKI entities send and receive messages in a PKI management operation. Both PKI
entities may independently wish to protect messages using their KEM key pairs. For ease of
explanation, we use the terms "Alice" to denote the PKI entity possessing the KEM key pair and
who wishes to provide MAC-based message protection and "Bob" to denote the PKI entity having
Alice's authentic public KEM key and who needs to verify the MAC-based protection provided by
Alice.

Assuming Bob has Alice's KEM public key, he generates the ciphertext using KEM encapsulation
and transfers it to Alice in an InfoTypeAndValue structure. Alice then retrieves the KEM shared
secret from the ciphertext using KEM decapsulation and the associated KEM private key. Using a
key derivation function (KDF), Alice derives a shared secret key from the KEM shared secret and
other data sent by Bob. PKIProtection will contain a MAC value calculated using that shared
secret key, and the protectionAlg will be the following:

Section 1 of [RFC9629]

1.
2.

3.

MUST
MUST

[ML-
KEM]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 36

https://rfc-editor.org/rfc/rfc9481#section-3
https://rfc-editor.org/rfc/rfc9481#section-3
https://rfc-editor.org/rfc/rfc9629#section-1

Note: The OID for id-KemBasedMac was assigned on the private-use arc { iso(1) member-body(2)
us(840) nortelnetworks(113533) entrust(7) } and not assigned on an IANA-owned arc because the
authors wished to place it on the same branch as the existing OIDs for id-PasswordBasedMac
and id-DHBasedMac.

kdf is the algorithm identifier of the chosen KDF, and any associated parameters, used to derive
the shared secret key.

kemContext be used to transfer additional algorithm-specific context information (see also
the definition of ukm in).

len is the output length of the KDF and be the desired size of the key to be used for MAC-
based message protection.

mac is the algorithm identifier of the chosen MAC algorithm, and any associated parameters,
used to calculate the MAC value.

The KDF and MAC algorithms be chosen from the options in CMP Algorithms .

The InfoTypeAndValue transferring the KEM ciphertext uses OID id-it-KemCiphertextInfo. It
contains a KemCiphertextInfo structure, as defined in Section 5.3.19.18.

Note: This InfoTypeAndValue can be carried in a genm/genp message body, as specified in
Section 5.3.19.18, or in the generalInfo field of PKIHeader in messages of other types (see Section
5.1.1.5).

In the following, a generic message flow for MAC-based protection using KEM is specified in
more detail. It is assumed that Bob possesses Alice's public KEM key. Alice can be the initiator of
a PKI management operation or the responder. For more detailed figures, see Appendix E.

Generic Message Flow:

 id-KemBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 16}

 KemBMParameter ::= SEQUENCE {
 kdf AlgorithmIdentifier{KEY-DERIVATION, {...}},
 kemContext [0] OCTET STRING OPTIONAL,
 len INTEGER (1..MAX),
 mac AlgorithmIdentifier{MAC-ALGORITHM, {...}}
 }

MAY
Section 3 of [RFC9629]

MUST

MAY [RFC9481]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 37

https://rfc-editor.org/rfc/rfc9629#section-3

Bob needs to possess Alice's authentic public KEM key (pk), for instance, contained in a KEM
certificate that was received and successfully validated by Bob beforehand.

Bob generates a shared secret (ss) and the associated ciphertext (ct) using the KEM
Encapsulate function with Alice's public KEM key (pk). Bob reuse the ss and ct for
other PKI management operations. From this data, Bob produces a KemCiphertextInfo
structure, including the KEM algorithm identifier and the ciphertext (ct) and sends it to Alice
in an InfoTypeAndValue structure, as defined in Section 5.3.19.18.

Encapsulate(pk) -> (ct, ss)

Alice decapsulates the shared secret (ss) from the ciphertext (ct) using the KEM Decapsulate
function and its private KEM key (sk).

Decapsulate(ct, sk) -> (ss)

If the decapsulation operation outputs an error, any failInfo field in an error response
message contain the value badMessageCheck and the PKI management operation

 be terminated.

Alice derives the shared secret key (ssk) using a KDF. The shared secret (ss) is used as input
key material for the KDF, and the value len is the desired output length of the KDF as
required by the MAC algorithm to be used for message protection. KDF, len, and MAC will be
transferred to Bob in the protectionAlg KemBMParameter. The DER-encoded KemOtherInfo
structure, as defined below, is used as context for the KDF.

KDF(ss, len, context)->(ssk)

The shared secret key (ssk) is used for MAC-based protection by Alice.

Bob derives the same shared secret key (ssk) using the KDF. Also here, the shared secret (ss)
is used as input key material for the KDF, the value len is the desired output length for the
KDF, and the DER-encoded KemOtherInfo structure constructed in the same way as on
Alice's side is used as context for the KDF.

KDF(ss, len, context)->(ssk)

Figure 2: Generic Message Flow When Alice Has a KEM Key Pair

Step# Alice Bob

1 perform KEM Encapsulate
KEM Ciphertext

2 perform KEM Decapsulate,
perform key derivation,
format message with
MAC-based protection

message
3 perform key derivation,

verify MAC-based
protection

Alice authenticated by Bob

1.

MUST NOT

2.

SHALL
SHALL

3.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 38

Bob uses the shared secret key (ssk) for verifying the MAC-based protection of the message
received and in this way authenticates Alice.

This shared secret key (ssk) can be reused by Alice for MAC-based protection of further messages
sent to Bob within the current PKI management operation.

This approach employs the notation of KDF(IKM, L, info) as described in
with the following changes:

IKM is the input key material. It is the symmetric secret called "ss" resulting from the KEM.
L is dependent of the MAC algorithm that is used with the shared secret key for CMP
message protection and is called "len" in this document.
info is an additional input to the KDF, is called "context" in this document, and contains the
DER-encoded KemOtherInfo structure defined as:

staticString be "CMP-KEM".

transactionID be the value from the message containing the ciphertext (ct) in
KemCiphertextInfo.

Note: The transactionID is used to ensure domain separation of the derived shared secret
key between different PKI management operations. For all PKI management operations with
more than one exchange, the transactionID be set anyway (see Section 5.1.1). In case
Bob provided an infoValue of type KemCiphertextInfo to Alice in the initial request message
(see Figure 4 of Appendix E), the transactionID be set by Bob.

kemContext contain additional algorithm-specific context information.

OKM is the output keying material of the KDF used for MAC-based message protection of
length len and is called "ssk" in this document.

There are various ways that Alice can request and Bob can provide the KEM ciphertext (see
Appendix E for details). The KemCiphertextInfo can be requested using PKI general messages, as
described in Section 5.3.19.18. Alternatively, the generalInfo field of the PKIHeader can be used
to convey the same request and response InfoTypeAndValue structures, as described in Section
5.1.1.5. The procedure also works without Alice explicitly requesting the KEM ciphertext in case
Bob knows one of Alice's KEM keys beforehand and can expect that she is ready to use it.

If both the initiator and responder in a PKI management operation have KEM key pairs, this
procedure can be applied by both entities independently, establishing and using different shared
secret keys for either direction.

Section 5 of [RFC9629]

•
•

•

 KemOtherInfo ::= SEQUENCE {
 staticString PKIFreeText,
 transactionID OCTET STRING,
 kemContext [0] OCTET STRING OPTIONAL
 }

MUST

MUST

MUST

MUST

MAY

•

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 39

https://rfc-editor.org/rfc/rfc9629#section-5

5.1.3.5. Multiple Protection
When receiving a protected PKI message, a PKI management entity, such as an RA, forward
that message adding its own protection. Additionally, multiple PKI messages be aggregated.
There are several use cases for such messages.

The RA confirms having validated and authorized a message and forwards the original
message unchanged.
A PKI management entity collects several messages that are to be forwarded in the same
direction and forwards them in a batch. Request messages can be transferred as a batch
upstream (towards the CA); response or announce messages can be transferred as a batch
downstream (towards an RA but not to the end entity). For instance, this can be used when
bridging an offline connection between two PKI management entities.

These use cases are accomplished by nesting the messages within a new PKI message. The
structure used is as follows:

In case an RA needs to modify a request message, it include the original PKIMessage in the
generalInfo field of the modified message, as described in Section 5.1.1.3.

MAY
MAY

•

•

 NestedMessageContent ::= PKIMessages

MAY

5.2. Common Data Structures
Before specifying the specific types that may be placed in a PKIBody, we define some data
structures that are used in more than one case.

5.2.1. Requested Certificate Contents

Various PKI management messages require that the originator of the message indicate some of
the fields that are required to be present in a certificate. The CertTemplate structure allows
entities requesting a certificate to specify the data fields that they want to be included. Typically,
they are required to provide at least the publicKey field. A CertTemplate structure is identical to
a TBSCertificate structure (see) but with all fields optional/situational.

Note: Even if the originator completely specifies the contents of a certificate it requires, a CA is
free to modify fields within the certificate actually issued. If the modified certificate is
unacceptable to the requester, the requester send back a certConf message that either
does not include this certificate (via a CertHash) or does include this certificate (via a CertHash)
along with a status of "rejected". See Section 5.3.18 for the definition and use of CertHash and the
certConf message.

Note: Before requesting a new certificate, an end entity can request a certTemplate structure as
a kind of certificate request blueprint in order to learn which data the CA expects to be present
in the certificate request (see Section 5.3.19.16).

See CRMF for CertTemplate syntax.

[RFC5280]

MUST

[RFC4211]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 40

If certTemplate is an empty SEQUENCE (i.e., all fields omitted), then the controls field in the
CertRequest structure contain the id-regCtrl-altCertTemplate control, specifying a template
for a certificate other than an X.509v3 public-key certificate. Conversely, if certTemplate is not
empty (i.e., at least one field is present), then controls contain id-regCtrl-
altCertTemplate. The new control is defined as follows:

Also see for more details on how to manage certificates in alternative formats using
CRMF syntax.

MAY

MUST NOT

 id-regCtrl-altCertTemplate OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) pkip(5) regCtrl(1) 7}

 AltCertTemplate ::= AttributeTypeAndValue

[RFC4212]
[RFC4211]

5.2.2. Encrypted Values

When encrypted data like a private key, certificate, POP challenge, or revocation passphrase is
sent in PKI messages, it is to use the EnvelopedData structure. In some cases, this
is accomplished by using the EncryptedKey data structure instead of EncryptedValue.

See Certificate Request Message Format (CRMF) for EncryptedKey and
EncryptedValue syntax and Cryptographic Message Syntax (CMS) for EnvelopedData
syntax. Using the EncryptedKey data structure offers the choice to either use EncryptedValue
(for backward compatibility only) or EnvelopedData. The use of the EncryptedValue structure
has been deprecated in favor of the EnvelopedData structure. Therefore, it is to
use EnvelopedData.

Note: The EncryptedKey structure defined in CRMF is used here, which makes the
update backward compatible. Using the new syntax with the untagged default choice
EncryptedValue is bits-on-the-wire compatible with the old syntax.

To indicate support for EnvelopedData, the pvno cmp2021 has been introduced. Details on the
usage of the protocol version number are described in Section 7.

The EnvelopedData structure is to be used in CMP to transport a private key,
certificate, POP challenge, or revocation passphrase in encrypted form as follows:

It contains only one RecipientInfo structure because the content is encrypted only for one
recipient.
It may contain a private key in the AsymmetricKeyPackage structure (which is placed in the
encryptedContentInfo field), as defined in , that is wrapped in a SignedData
structure, as specified in and , signed by the KGA or CA.

RECOMMENDED

 EncryptedKey ::= CHOICE {
 encryptedValue EncryptedValue, -- deprecated
 envelopedData [0] EnvelopedData }

[RFC4211]
[RFC5652]

RECOMMENDED

[RFC4211]

RECOMMENDED

•

•
[RFC5958]

Section 5 of [RFC5652] [RFC8933]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 41

https://rfc-editor.org/rfc/rfc5652#section-5

It may contain a certificate, POP challenge, or revocation passphrase directly in the
encryptedContent field.

The content of the EnvelopedData structure, as specified in , be
encrypted using a newly generated symmetric content-encryption key. This content-encryption
key be securely provided to the recipient using one of four key management techniques.

The choice of the key management technique to be used by the sender depends on the credential
available at the recipient:

recipient's certificate with an algorithm identifier and a public key that supports key
transport and where any given key usage extension allows keyEncipherment: The content-
encryption key will be protected using the key transport key management technique, as
specified in .
recipient's certificate with an algorithm identifier and a public key that supports key
agreement and where any given key usage extension allows keyAgreement: The content-
encryption key will be protected using the key agreement key management technique, as
specified in .
a password or shared secret: The content-encryption key will be protected using the
password-based key management technique, as specified in .
recipient's certificate with an algorithm identifier and a public key that supports KEM and
where any given key usage extension allows keyEncipherment: The content-encryption key
will be protected using the key management technique for KEM keys, as specified in

.

Note: There are cases where the algorithm identifier, the type of the public key, and the key
usage extension will not be sufficient to decide on the key management technique to use, e.g.,
when rsaEncryption is the algorithm identifier. In such cases, it is a matter of local policy to
decide.

•

Section 6 of [RFC5652] MUST

MUST

•

Section 6.2.1 of [RFC5652]
•

Section 6.2.2 of [RFC5652]
•

Section 6.2.4 of [RFC5652]
•

[RFC9629]

5.2.3. Status Codes and Failure Information for PKI Messages

All response messages will include some status information. The following values are defined.

Responders may use the following syntax to provide more information about failure cases.

 PKIStatus ::= INTEGER {
 accepted (0),
 grantedWithMods (1),
 rejection (2),
 waiting (3),
 revocationWarning (4),
 revocationNotification (5),
 keyUpdateWarning (6)
 }

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 42

https://rfc-editor.org/rfc/rfc5652#section-6
https://rfc-editor.org/rfc/rfc5652#section-6.2.1
https://rfc-editor.org/rfc/rfc5652#section-6.2.2
https://rfc-editor.org/rfc/rfc5652#section-6.2.4

 PKIFailureInfo ::= BIT STRING {
 badAlg (0),
 badMessageCheck (1),
 badRequest (2),
 badTime (3),
 badCertId (4),
 badDataFormat (5),
 wrongAuthority (6),
 incorrectData (7),
 missingTimeStamp (8),
 badPOP (9),
 certRevoked (10),
 certConfirmed (11),
 wrongIntegrity (12),
 badRecipientNonce (13),
 timeNotAvailable (14),
 unacceptedPolicy (15),
 unacceptedExtension (16),
 addInfoNotAvailable (17),
 badSenderNonce (18),
 badCertTemplate (19),
 signerNotTrusted (20),
 transactionIdInUse (21),
 unsupportedVersion (22),
 notAuthorized (23),
 systemUnavail (24),
 systemFailure (25),
 duplicateCertReq (26)
 }

 PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL
 }

5.2.4. Certificate Identification

In order to identify particular certificates, the CertId data structure is used.

See for CertId syntax.[RFC4211]

5.2.5. Out-of-Band Root CA Public Key

Each root CA that provides a self-signed certificate must be able to publish its current public key
via some "out-of-band" means or together with the respective link certificate using an online
mechanism. While such mechanisms are beyond the scope of this document, we define data
structures that can support such mechanisms.

There are generally two methods available: Either the CA directly publishes its self-signed
certificate, or this information is available via the directory (or equivalent) and the CA publishes
a hash of this value to allow verification of its integrity before use.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 43

Note: As an alternative to out-of-band distribution of root CA public keys, the CA can provide the
self-signed certificate together with link certificates, e.g., using RootCaKeyUpdateContent (Section
5.3.19.15).

The fields within this certificate are restricted as follows:

The certificate be self-signed (i.e., the signature must be verifiable using the
SubjectPublicKeyInfo field);
The subject and issuer fields be identical;
If the subject field contains a "NULL-DN", then both subjectAltNames and issuerAltNames
extensions be present and have exactly the same value; and
The values of all other extensions must be suitable for a self-signed certificate (e.g., key
identifiers for the subject and issuer must be the same).

The intention of the hash value is that anyone who has securely received the hash value (via the
out-of-band means) can verify a self-signed certificate for that CA.

 OOBCert ::= Certificate

• MUST

• MUST

•
MUST

•

 OOBCertHash ::= SEQUENCE {
 hashAlg [0] AlgorithmIdentifier OPTIONAL,
 certId [1] CertId OPTIONAL,
 hashVal BIT STRING
 }

5.2.6. Archive Options

Requesters may indicate that they wish the PKI to archive a private key value using the
PKIArchiveOptions structure.

See for PKIArchiveOptions syntax.[RFC4211]

5.2.7. Publication Information

Requesters may indicate that they wish the PKI to publish a certificate using the
PKIPublicationInfo structure.

See for PKIPublicationInfo syntax.[RFC4211]

5.2.8. POP Structures

The POP structure used is indicated in the popo field of type ProofOfPossession in the
CertReqMsg sequence (see).Section 4 of [RFC4211]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 44

https://rfc-editor.org/rfc/rfc4211#section-4

 ProofOfPossession ::= CHOICE {
 raVerified [0] NULL,
 signature [1] POPOSigningKey,
 keyEncipherment [2] POPOPrivKey,
 keyAgreement [3] POPOPrivKey
 }

5.2.8.1. raVerified
An end entity use raVerified. If an RA performs changes to a certification request
breaking the provided POP, or if the RA requests a certificate on behalf of an end entity and
cannot provide the POP itself, the RA use raVerified. Otherwise, it use
raVerified.

When introducing raVerified, the RA check the existing POP, or it ensure by other
means that the end entity is the holder of the private key. The RA provide the original
message containing the POP in the generalInfo field using the id-it-origPKIMessage (see Section
5.1.1.3) enabling the CA to verify it.

MUST NOT

MUST SHOULD NOT

MUST MUST
MAY

5.2.8.2. POPOSigningKey Structure
If the certification request is for a key pair that supports signing (i.e., a request for a verification
certificate), then the POP of the private key is demonstrated through use of the POPOSigningKey
structure; for details, see .

Note: For the purposes of this specification, the ASN.1 comment given in
pertains not only to certTemplate but also to the altCertTemplate control, as defined in Section
5.2.1.

Section 4.1 of [RFC4211]

 POPOSigningKey ::= SEQUENCE {
 poposkInput [0] POPOSigningKeyInput OPTIONAL,
 algorithmIdentifier AlgorithmIdentifier,
 signature BIT STRING
 }

 POPOSigningKeyInput ::= SEQUENCE {
 authInfo CHOICE {
 sender [0] GeneralName,
 publicKeyMAC PKMACValue
 },
 publicKey SubjectPublicKeyInfo
 }

 PKMACValue ::= SEQUENCE {
 algId AlgorithmIdentifier,
 value BIT STRING
 }

Appendix C of [RFC4211]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 45

https://rfc-editor.org/rfc/rfc4211#section-4.1
https://rfc-editor.org/rfc/rfc4211#appendix-C

If certTemplate (or the altCertTemplate control) contains the subject and publicKey values, then
poposkInput be omitted and the signature be computed on the DER-encoded value
of the certReq field of the CertReqMsg (or the DER-encoded value of AltCertTemplate). If
certTemplate/altCertTemplate does not contain both the subject and public key values (i.e., if it
contains only one of these or neither), then poposkInput be present and the signature

 be computed on the DER-encoded value of poposkInput (i.e., the "value" OCTETs of the
POPOSigningKeyInput DER).

In the special case that the CA/RA has a DH certificate that is known to the end entity and the
certification request is for a key agreement key pair, the end entity can also use the
POPOSigningKey structure (where the algorithmIdentifier field is DHBasedMAC and the
signature field is the MAC) for demonstrating POP.

MUST MUST

MUST
MUST

5.2.8.3. POPOPrivKey Structure
If the certification request is for a key pair that does not support signing (i.e., a request for an
encryption or key agreement certificate), then the POP of the private key is demonstrated
through use of the POPOPrivKey structure in one of the following three ways; for details see
Sections 4.2 and 4.3 in .

When using agreeMAC or encryptedKey choices, the pvno cmp2021(3) be used. Details on
the usage of the protocol version number are described in Section 7.

[RFC4211]

 POPOPrivKey ::= CHOICE {
 thisMessage [0] BIT STRING, -- deprecated
 subsequentMessage [1] SubsequentMessage,
 dhMAC [2] BIT STRING, -- deprecated
 agreeMAC [3] PKMACValue,
 encryptedKey [4] EnvelopedData
 }

 SubsequentMessage ::= INTEGER {
 encrCert (0),
 challengeResp (1)
 }

MUST

5.2.8.3.1. Inclusion of the Private Key
This method mentioned previously in Section 4.3 demonstrates POP of the private key by
including the encrypted private key in the CertRequest in the POPOPrivKey structure or in the
PKIArchiveOptions control structure. This method only be used if archival of the private
key is desired.

For a certification request message indicating cmp2021(3) in the pvno field of the PKIHeader, the
encrypted private key be transferred in the encryptedKey choice of POPOPrivKey (or
within the PKIArchiveOptions control) in a CMS EnvelopedData structure, as defined in Section
5.2.2.

SHALL

MUST

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 46

https://rfc-editor.org/rfc/rfc4211#section-4.2
https://rfc-editor.org/rfc/rfc4211#section-4.3

Note: The thisMessage choice has been deprecated in favor of encryptedKey. When using
cmp2000(2) in the certification request message header for backward compatibility, the
thisMessage choice of POPOPrivKey is used containing the encrypted private key in an
EncryptedValue structure wrapped in a BIT STRING. This allows the necessary conveyance and
protection of the private key while maintaining bits-on-the-wire compatibility with .[RFC4211]

5.2.8.3.2. Indirect Method - Encrypted Certificate
The indirect method mentioned previously in Section 4.3 demonstrates POP of the private key by
having the CA return the requested certificate in encrypted form (see Section 5.2.2). This method
is indicated in the CertRequest by requesting the encrCert option in the subsequentMessage
choice of POPOPrivKey.

The end entity proves knowledge of the private key to the CA by providing the correct CertHash
for this certificate in the certConf message. This demonstrates POP because the end entity can
only compute the correct CertHash if it is able to recover the encrypted certificate, and it can
only recover the certificate if it is able to obtain the symmetric key using the required private
key. Clearly, for this to work, the CA publish the certificate until the certConf message
arrives (when certHash is to be used to demonstrate POP). See Section 5.3.18 for further details,
and see Section 8.11 for security considerations regarding use of CT logs.

The recipient maintain a context of the PKI management operation, e.g., using
transactionID and certReqId, to identify the private key to use when decrypting the
EnvelopedData containing the newly issued certificate. The recipient may be unable to use the
RecipientInfo structure as it refers to the certificate that is still encrypted. The sender
populate the rid field as specified by CMS, and the client ignore it.

end entity RA/CA
req

rep (enc cert)
conf (cert hash)

ack

MUST NOT

SHOULD

MUST
MAY

5.2.8.3.3. Direct Method - Challenge-Response Protocol
The direct method mentioned previously in Section 4.3 demonstrates POP of the private key by
having the end entity engage in a challenge-response protocol (using the messages popdecc of
type POPODecKeyChall and popdecr of type POPODecKeyResp; see below) between
CertReqMessages and CertRepMessage. This method is indicated in the CertRequest by
requesting the challengeResp option in the subsequentMessage choice of POPOPrivKey.

Note: This method would typically be used in an environment in which an RA verifies POP and
then makes a certification request to the CA on behalf of the end entity. In such a scenario, the
CA trusts the RA to have done POP correctly before the RA requests a certificate for the end
entity.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 47

The complete protocol then looks as follows (note that req' does not necessarily encapsulate req
as a nested message):

This protocol is obviously much longer than the exchange given in Section 5.2.8.3.2 above but
allows a Local Registration Authority (LRA) to be involved and has the property that the
certificate itself is not actually created until the POP is complete. In some environments, a
different order of the above messages may be required, such as the following (this may be
determined by policy):

The challenge-response messages for POP of a private key are specified as follows (for
decryption keys, see , p.404 for details). This challenge-response exchange is associated
with the preceding certification request message (and subsequent certification response and
confirmation messages) by the transactionID used in the PKIHeader and by the protection
applied to the PKIMessage.

end entity RA CA
req
chall
resp

req'
rep
conf
ack

rep
conf
ack

end entity RA CA
req
chall
resp

req'
rep

rep
conf

conf
ack

ack

[MvOV97]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 48

More details on the fields in this syntax are available in Appendix F.

For a popdecc message indicating cmp2021(3) in the pvno field of the PKIHeader, the encryption
of Rand be transferred in the encryptedRand field in a CMS EnvelopedData structure as
defined in Section 5.2.2. The challenge field contain an empty OCTET STRING.

The recipient maintain a context of the PKI management operation, e.g., using
transactionID and certReqId, to identify the private key to use when decrypting encryptedRand.
The sender populate the rid field in the EnvelopedData sequence using the
issuerAndSerialNumber choice containing a NULL-DN as issuer and the certReqId as
serialNumber. The client ignore the rid field.

Note: The challenge field has been deprecated in favor of encryptedRand. When using
cmp2000(2) in the popdecc message header for backward compatibility, the challenge field
contain the encryption (involving the public key for which the certification request is being
made) of Rand and encryptedRand be omitted. Using challenge (omitting the optional
encryptedRand field) is bit-compatible with . Note that the size of Rand, when used
with challenge, needs to be appropriate for encryption, involving the public key of the requester.
If, in some environment, names are so long that they cannot fit (e.g., very long DNs), then
whatever portion will fit should be used (as long as it includes at least the common name, and as
long as the receiver is able to deal meaningfully with the abbreviation).

On receiving the popdecc message, the end entity decrypts all included challenges and responds
with a popdecr message containing the decrypted integer values in the same order.

 POPODecKeyChallContent ::= SEQUENCE OF Challenge

 Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier OPTIONAL,
 witness OCTET STRING,
 challenge OCTET STRING, -- deprecated
 encryptedRand [0] EnvelopedData OPTIONAL
 }

 Rand ::= SEQUENCE {
 int INTEGER,
 sender GeneralName
 }

MUST
MUST

SHOULD

MUST

MAY

MUST

MUST
[RFC4210]

 POPODecKeyRespContent ::= SEQUENCE OF INTEGER

5.2.8.4. Summary of POP Options
The text in this section provides several options with respect to POP techniques. Using "SK" for
"signing key", "EK" for "encryption key", "KAK" for "key agreement key", and "KEMK" for "key
encapsulation mechanism key", the techniques may be summarized as follows:

RAVerified;

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 49

SKPOP;

EKPOPThisMessage; -- deprecated

KAKPOPThisMessage; -- deprecated

EKPOPEncryptedKey;

KAKPOPEncryptedKey;

KEMKPOPEncryptedKey;

KAKPOPThisMessageDHMAC;

EKPOPEncryptedCert;

KAKPOPEncryptedCert;

KEMKPOPEncryptedCert;

EKPOPChallengeResp;

KAKPOPChallengeResp; and

KEMKPOPChallengeResp.

Given this array of options, it is natural to ask how an end entity can know what is supported by
the CA/RA (i.e., which options it may use when requesting certificates). The following guidelines
should clarify this situation for end entity implementers.

RAVerified: This is not an end entity decision; the RA uses this if and only if it has verified
POP before forwarding the request on to the CA, so it is not possible for the end entity to
choose this technique.
SKPOP: If the end entity has a signing key pair, this is the only POP method specified for use
in the request for a corresponding certificate.
EKPOPThisMessage (deprecated), KAKPOPThisMessage (deprecated), EKPOPEncryptedKey,
KAKPOPEncryptedKey, KEMKPOPEncryptedKey: Whether or not to give up its private key to
the CA/RA is an end entity decision. If the end entity decides to reveal its key, then these are
the only POP methods available in this specification to achieve this (and the key pair type
and protocol version used will determine which of these methods to use). The reason for
deprecating EKPOPThisMessage and KAKPOPThisMessage options has been given in Section
5.2.8.3.1.
KAKPOPThisMessageDHMAC: The end entity can only use this method if (1) the CA/RA has a
DH certificate available for this purpose and (2) the end entity already has a copy of this
certificate. If both these conditions hold, then this technique is clearly supported and may be
used by the end entity, if desired.
EKPOPEncryptedCert, KAKPOPEncryptedCert, KEMKPOPEncryptedCert,
EKPOPChallengeResp, KAKPOPChallengeResp, and KEMKPOPChallengeResp: The end entity
picks one of these (in the subsequentMessage field) in the request message, depending upon
preference and key pair type. The end entity is not doing POP at this point; it is simply
indicating which method it wants to use. Therefore, if the CA/RA replies with a "badPOP"
error, the end entity can re-request using the other POP method chosen in
subsequentMessage. Note, however, that this specification encourages the use of the

•

•

•

•

•

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 50

EncryptedCert choice and, furthermore, says that the challenge-response would typically be
used when an RA is involved and doing POP verification. Thus, the end entity should be able
to make an intelligent decision regarding which of these POP methods to choose in the
request message.

5.2.9. GeneralizedTime

GeneralizedTime is a standard ASN.1 type and be used as specified in
.

SHALL Section 4.1.2.5.2 of
[RFC5280]

5.3. Operation-Specific Data Structures

5.3.1. Initialization Request

An Initialization request message contains as the PKIBody a CertReqMessages data structure,
which specifies the requested certificate(s). Typically, SubjectPublicKeyInfo, KeyId, and Validity
are the template fields that may be supplied for each certificate requested (see the profiles
defined in and Appendices C.4 and D.7 for further information). This
message is intended to be used for entities when first initializing into the PKI.

See Section 5.2.1 and for CertReqMessages syntax.

Section 4.1.1 of [RFC9483]

[RFC4211]

5.3.2. Initialization Response

An Initialization response message contains as the PKIBody a CertRepMessage data structure,
which has for each certificate requested a PKIStatusInfo field, a subject certificate, and possibly
a private key (normally encrypted using EnvelopedData; see for
further information).

See Section 5.3.4 for CertRepMessage syntax. Note that if the PKI message protection is "shared
secret information" (see Section 5.1.3.1), then any certificate transported in the caPubs field may
be directly trusted as a root CA certificate by the initiator.

Section 4.1.6 of [RFC9483]

5.3.3. Certification Request

A Certification request message contains as the PKIBody a CertReqMessages data structure,
which specifies the requested certificates (see the profiles defined in
and Appendix C.2 for further information). This message is intended to be used for existing PKI
entities who wish to obtain additional certificates.

See Section 5.2.1 and for CertReqMessages syntax.

Alternatively, the PKIBody be a CertificationRequest (this structure is fully specified by the
ASN.1 structure CertificationRequest given in ; see the profiles defined in

 for further information). This structure may be required for certificate requests for
signing key pairs when interoperation with legacy systems is desired, but its use is strongly
discouraged whenever not absolutely necessary.

Section 4.1.2 of [RFC9483]

[RFC4211]

MAY
[RFC2986] Section 4.1.4

of [RFC9483]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 51

https://rfc-editor.org/rfc/rfc5280#section-4.1.2.5.2
https://rfc-editor.org/rfc/rfc9483#section-4.1.1
https://rfc-editor.org/rfc/rfc9483#section-4.1.6
https://rfc-editor.org/rfc/rfc9483#section-4.1.2
https://rfc-editor.org/rfc/rfc9483#section-4.1.4

5.3.4. Certification Response

A Certification response message contains as the PKIBody a CertRepMessage data structure,
which has a status value for each certificate requested and optionally has a CA public key,
failure information, a subject certificate, and an encrypted private key.

A p10cr message contains exactly one CertificationRequestInfo data structure, as specified in
PKCS #10 , but no certReqId. Therefore, the certReqId in the corresponding
Certification Response (cp) message be set to -1.

Only one of the failInfo (in PKIStatusInfo) and certificate (in CertifiedKeyPair) fields can be
present in each CertResponse (depending on the status). For some status values (e.g., waiting),
neither of the optional fields will be present.

Given an EncryptedCert and the relevant decryption key, the certificate may be obtained. The
purpose of this is to allow a CA to return the value of a certificate but with the constraint that
only the intended recipient can obtain the actual certificate. The benefit of this approach is that
a CA may reply with a certificate even in the absence of proof that the requester is the end entity
that can use the relevant private key (note that the proof is not obtained until the certConf
message is received by the CA). Thus, the CA will not have to revoke that certificate in the event
that something goes wrong with the POP (but do so anyway, depending upon policy).

The use of EncryptedKey is described in Section 5.2.2.

 CertRepMessage ::= SEQUENCE {
 caPubs [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
 OPTIONAL,
 response SEQUENCE OF CertResponse
 }

 CertResponse ::= SEQUENCE {
 certReqId INTEGER,
 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair OPTIONAL,
 rspInfo OCTET STRING OPTIONAL
 -- analogous to the id-regInfo-utf8Pairs string defined
 -- for regInfo in CertReqMsg [RFC4211]
 }

 CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedKey OPTIONAL,
 -- See [RFC4211] for comments on encoding.
 publicationInfo [1] PKIPublicationInfo OPTIONAL
 }

 CertOrEncCert ::= CHOICE {
 certificate [0] CMPCertificate,
 encryptedCert [1] EncryptedKey
 }

[RFC2986]
MUST

MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 52

Note: To indicate support for EnvelopedData, the pvno cmp2021 has been introduced. Details on
the usage of different protocol version numbers are described in Section 7.

5.3.5. Key Update Request Content

For key update requests, the CertReqMessages syntax is used. Typically, SubjectPublicKeyInfo,
KeyId, and Validity are the template fields that may be supplied for each key to be updated (see
the profiles defined in and Appendix C.6 for further information). This
message is intended to be used to request updates to existing (non-revoked and non-expired)
certificates (therefore, it is sometimes referred to as a "Certificate Update" operation). An update
is a replacement certificate containing either a new subject public key or the current subject
public key (although the latter practice may not be appropriate for some environments).

See Section 5.2.1 and for CertReqMessages syntax.

Section 4.1.3 of [RFC9483]

[RFC4211]

5.3.6. Key Update Response Content

For key update responses, the CertRepMessage syntax is used. The response is identical to the
initialization response.

See Section 5.3.4 for CertRepMessage syntax.

5.3.7. Key Recovery Request Content

For key recovery requests, the syntax used is identical to the initialization request
CertReqMessages. Typically, SubjectPublicKeyInfo and KeyId are the template fields that may be
used to supply a signature public key for which a certificate is required.

See Section 5.2.1 and for CertReqMessages syntax. Note that if a key history is
required, the requester must supply a protocol encryption key control in the request message.

[RFC4211]

5.3.8. Key Recovery Response Content

For key recovery responses, the following syntax is used. For some status values (e.g., waiting),
none of the optional fields will be present.

 KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] Certificate OPTIONAL,
 caCerts [1] SEQUENCE SIZE (1..MAX) OF
 Certificate OPTIONAL,
 keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
 CertifiedKeyPair OPTIONAL
 }

5.3.9. Revocation Request Content

When requesting revocation of a certificate (or several certificates), the following data structure
is used (see the profiles defined in for further information). The name of
the requester is present in the PKIHeader structure.

Section 4.2 of [RFC9483]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 53

https://rfc-editor.org/rfc/rfc9483#section-4.1.3
https://rfc-editor.org/rfc/rfc9483#section-4.2

 RevReqContent ::= SEQUENCE OF RevDetails

 RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 crlEntryDetails Extensions OPTIONAL
 }

5.3.10. Revocation Response Content

The revocation response is the response to the above message. If produced, this is sent to the
requester of the revocation. (A separate revocation announcement message be sent to the
subject of the certificate for which revocation was requested.)

MAY

 RevRepContent ::= SEQUENCE {
 status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
 revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL,
 crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList
 OPTIONAL
 }

5.3.11. Cross-Certification Request Content

Cross-certification requests use the same syntax (CertReqMessages) as normal certification
requests, with the restriction that the key pair have been generated by the requesting CA
and the private key be sent to the responding CA (see the profiles defined in Appendix
D.6 for further information). This request also be used by subordinate CAs to get their
certificates signed by the parent CA.

See Section 5.2.1 and for CertReqMessages syntax.

MUST
MUST NOT

MAY

[RFC4211]

5.3.12. Cross-Certification Response Content

Cross-certification responses use the same syntax (CertRepMessage) as normal certification
responses, with the restriction that no encrypted private key can be sent.

See Section 5.3.4 for CertRepMessage syntax.

5.3.13. CA Key Update Announcement Content

When a CA updates its own key pair, the following data structure be used to announce this
event.

MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 54

When using RootCaKeyUpdateContent in the ckuann message, the pvno cmp2021 be used.
Details on the usage of the protocol version number are described in Section 7.

In contrast to CAKeyUpdAnnContent as supported with cmp2000, RootCaKeyUpdateContent
offers omitting newWithOld and oldWithNew, depending on the needs of the end entity.

 RootCaKeyUpdateContent ::= SEQUENCE {
 newWithNew CMPCertificate,
 newWithOld [0] CMPCertificate OPTIONAL,
 oldWithNew [1] CMPCertificate OPTIONAL
 }

CAKeyUpdContent ::= CHOICE {
 cAKeyUpdAnnV2 CAKeyUpdAnnContent, -- deprecated
 cAKeyUpdAnnV3 [0] RootCaKeyUpdateContent
}

MUST

5.3.14. Certificate Announcement

This structure be used to announce the existence of certificates.

Note that this message is intended to be used for those cases (if any) where there is no pre-
existing method for publication of certificates; it is not intended to be used where, for example,
X.500 is the method for publication of certificates.

MAY

 CertAnnContent ::= Certificate

5.3.15. Revocation Announcement

When a CA has revoked, or is about to revoke, a particular certificate, it issue an
announcement of this (possibly upcoming) event.

A CA use such an announcement to warn (or notify) a subject that its certificate is about to
be (or has been) revoked. This would typically be used where the request for revocation did not
come from the subject concerned.

The willBeRevokedAt field contains the time at which a new entry will be added to the relevant
CRLs.

MAY

 RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions OPTIONAL
 }

MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 55

5.3.16. CRL Announcement

When a CA issues a new CRL (or set of CRLs), the following data structure be used to
announce this event.

MAY

 CRLAnnContent ::= SEQUENCE OF CertificateList

5.3.17. PKI Confirmation Content

This data structure is used in the protocol exchange as the final PKIMessage. Its content is the
same in all cases -- actually, there is no content since the PKIHeader carries all the required
information.

Use of this message for certificate confirmation is ; certConf be
used instead. Upon receiving a pkiconf for a certificate response, the recipient treat it as a
certConf with all certificates being accepted.

 PKIConfirmContent ::= NULL

NOT RECOMMENDED SHOULD
MAY

5.3.18. Certificate Confirmation Content

This data structure is used by the client to send a confirmation to the CA/RA to accept or reject
certificates.

The hashAlg field be used only in exceptional cases where the signatureAlgorithm of the
certificate to be confirmed does not specify a hash algorithm in the OID or in the parameters or
no hash algorithm is specified for hashing certificates signed using the signatureAlgorithm. Note
that for EdDSA, a hash algorithm is specified in , such that the hashAlg
field is not needed for EdDSA. Otherwise, the certHash value be computed using the same
hash algorithm as used to create and verify the certificate signature or as specified for hashing
certificates signed using the signatureAlgorithm. If hashAlg is used, the CMP version indicated
by the certConf message header must be cmp2021(3).

For any particular CertStatus, omission of the statusInfo field indicates acceptance of the
specified certificate. Alternatively, explicit status details (with respect to acceptance or rejection)

 be provided in the statusInfo field, perhaps for auditing purposes at the CA/RA.

 CertConfirmContent ::= SEQUENCE OF CertStatus

 CertStatus ::= SEQUENCE {
 certHash OCTET STRING,
 certReqId INTEGER,
 statusInfo PKIStatusInfo OPTIONAL,
 hashAlg [0] AlgorithmIdentifier{DIGEST-ALGORITHM, {...}}
 OPTIONAL
 }

SHOULD

Section 3.3 of [RFC9481]
SHALL

MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 56

https://rfc-editor.org/rfc/rfc9481#section-3.3

Within CertConfirmContent, omission of a CertStatus structure corresponding to a certificate
supplied in the previous response message indicates rejection of the certificate. Thus, an empty
CertConfirmContent (a zero-length SEQUENCE) be used to indicate rejection of all supplied
certificates. See Section 5.2.8.3.2 for a discussion of the certHash field with respect to POP.

MAY

5.3.19. PKI General Message Content

 InfoTypeAndValue ::= SEQUENCE {
 infoType OBJECT IDENTIFIER,
 infoValue ANY DEFINED BY infoType OPTIONAL
 }

 -- where {id-it} = {id-pkix 4} = {1 3 6 1 5 5 7 4}
 GenMsgContent ::= SEQUENCE OF InfoTypeAndValue

5.3.19.1. CA Protocol Encryption Certificate
This be used by the end entity to get a certificate from the CA to use to protect sensitive
information during the protocol.

End entities ensure that the correct certificate is used for this purpose.

MAY

 GenMsg: {id-it 1}, < absent >
 GenRep: {id-it 1}, Certificate | < absent >

MUST

5.3.19.2. Signing Key Pair Types
This be used by the end entity to get the list of signature algorithms whose subject public
key values the CA is willing to certify.

Note: For the purposes of this exchange, rsaEncryption and sha256WithRSAEncryption, for
example, are considered to be equivalent; the question being asked is, "Is the CA willing to
certify an RSA public key?"

Note: In case several elliptic curves are supported, several id-ecPublicKey elements as defined in
 need to be given, one per named curve.

MAY

 GenMsg: {id-it 2}, < absent >
 GenRep: {id-it 2}, SEQUENCE SIZE (1..MAX) OF
 AlgorithmIdentifier

[RFC5480]

5.3.19.3. Encryption / Key Agreement Key Pair Types
This be used by the client to get the list of encryption / key agreement algorithms whose
subject public key values the CA is willing to certify.

MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 57

Note: In case several elliptic curves are supported, several id-ecPublicKey elements as defined in
 need to be given, one per named curve.

 GenMsg: {id-it 3}, < absent >
 GenRep: {id-it 3}, SEQUENCE SIZE (1..MAX) OF
 AlgorithmIdentifier

[RFC5480]

5.3.19.4. Preferred Symmetric Algorithm
This be used by the client to get the CA-preferred symmetric encryption algorithm for any
confidential information that needs to be exchanged between the end entity and the CA (for
example, if the end entity wants to send its private decryption key to the CA for archival
purposes).

MAY

 GenMsg: {id-it 4}, < absent >
 GenRep: {id-it 4}, AlgorithmIdentifier

5.3.19.5. Updated CA Key Pair
This be used by the CA to announce a CA key update event.

See Section 5.3.13 for details of CA key update announcements.

MAY

 GenMsg: {id-it 18}, RootCaKeyUpdateValue

5.3.19.6. CRL
This be used by the client to get a copy of the latest CRL.MAY

 GenMsg: {id-it 6}, < absent >
 GenRep: {id-it 6}, CertificateList

5.3.19.7. Unsupported Object Identifiers
This is used by the server to return a list of object identifiers that it does not recognize or
support from the list submitted by the client.

 GenRep: {id-it 7}, SEQUENCE SIZE (1..MAX) OF OBJECT IDENTIFIER

5.3.19.8. Key Pair Parameters
This be used by the end entity to request the domain parameters to use for generating the
key pair for certain public-key algorithms. It can be used, for example, to request the
appropriate P, Q, and G to generate the DH/DSA key or to request a set of well-known elliptic
curves.

MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 58

An absent infoValue in the GenRep indicates that the algorithm specified in GenMsg is not
supported.

End entities ensure that the parameters are acceptable to it and that the GenRep message
is authenticated (to avoid substitution attacks).

 GenMsg: {id-it 10}, OBJECT IDENTIFIER -- (Algorithm object-id)
 GenRep: {id-it 11}, AlgorithmIdentifier | < absent >

MUST

5.3.19.9. Revocation Passphrase
This be used by the end entity to send a passphrase to a CA/RA for the purpose of
authenticating a later revocation request (in the case that the appropriate signing private key is
no longer available to authenticate the request). See Appendix B for further details on the use of
this mechanism.

The use of EncryptedKey is described in Section 5.2.2.

MAY

 GenMsg: {id-it 12}, EncryptedKey
 GenRep: {id-it 12}, < absent >

5.3.19.10. ImplicitConfirm
See Section 5.1.1.1 for the definition and use of {id-it 13}.

5.3.19.11. ConfirmWaitTime
See Section 5.1.1.2 for the definition and use of {id-it 14}.

5.3.19.12. Original PKIMessage
See Section 5.1.1.3 for the definition and use of {id-it 15}.

5.3.19.13. Supported Language Tags
This be used to determine the appropriate language tag to use in subsequent
messages. The sender sends its list of supported languages (in order of most to least preferred);
the receiver returns the one it wishes to use. (Note: Each UTF8String include a language
tag.) If none of the offered tags are supported, an error be returned.

MAY [RFC5646]

MUST
MUST

 GenMsg: {id-it 16}, SEQUENCE SIZE (1..MAX) OF UTF8String
 GenRep: {id-it 16}, SEQUENCE SIZE (1) OF UTF8String

5.3.19.14. CA Certificates
This be used by the client to get CA certificates.MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 59

 GenMsg: {id-it 17}, < absent >
 GenRep: {id-it 17}, SEQUENCE SIZE (1..MAX) OF
 CMPCertificate | < absent >

5.3.19.15. Root CA Update
This be used by the client to get an update of a root CA certificate, which is provided in the
body of the request message. In contrast to the ckuann message, this approach follows the
request/response model.

The end entity reference its current trust anchor in RootCaCertValue in the request
body, giving the root CA certificate if available.

Note: In contrast to CAKeyUpdAnnContent (which was deprecated with pvno cmp2021),
RootCaKeyUpdateContent offers omitting newWithOld and oldWithNew, depending on the needs
of the end entity.

MAY

SHOULD

 GenMsg: {id-it 20}, RootCaCertValue | < absent >
 GenRep: {id-it 18}, RootCaKeyUpdateValue | < absent >

 RootCaCertValue ::= CMPCertificate

 RootCaKeyUpdateValue ::= RootCaKeyUpdateContent

 RootCaKeyUpdateContent ::= SEQUENCE {
 newWithNew CMPCertificate,
 newWithOld [0] CMPCertificate OPTIONAL,
 oldWithNew [1] CMPCertificate OPTIONAL
 }

5.3.19.16. Certificate Request Template
This be used by the client to get a template containing requirements for certificate request
attributes and extensions. The controls id-regCtrl-algId and id-regCtrl-rsaKeyLen contain
details on the types of subject public keys the CA is willing to certify.

The id-regCtrl-algId control be used to identify a cryptographic algorithm (see
) other than rsaEncryption. The algorithm field identify a cryptographic

algorithm. The contents of the optional parameters field will vary according to the algorithm
identified. For example, when the algorithm is set to id-ecPublicKey, the parameters identify the
elliptic curve to be used; see .

Note: The client may specify a profile name in the certProfile field (see Section 5.1.1.4).

The id-regCtrl-rsaKeyLen control be used for algorithm rsaEncryption and contain
the intended modulus bit length of the RSA key.

MAY
MAY

MAY Section 4.1.2.7
of [RFC5280] SHALL

[RFC5480]

SHALL SHALL

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 60

https://rfc-editor.org/rfc/rfc5280#section-4.1.2.7

The CertReqTemplateValue contains the prefilled certTemplate to be used for a future certificate
request. The publicKey field in the certTemplate be used. In case the PKI management
entity wishes to specify supported public-key algorithms, the keySpec field be used. One
AttributeTypeAndValue per supported algorithm or RSA key length be used.

Note: The controls for an ASN.1 type are defined in .

 GenMsg: {id-it 19}, < absent >
 GenRep: {id-it 19}, CertReqTemplateContent | < absent >

 CertReqTemplateValue ::= CertReqTemplateContent

 CertReqTemplateContent ::= SEQUENCE {
 certTemplate CertTemplate,
 keySpec Controls OPTIONAL }

 Controls ::= SEQUENCE SIZE (1..MAX) OF AttributeTypeAndValue

 id-regCtrl-algId OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) pkip(5) regCtrl(1) 11 }

 AlgIdCtrl ::= AlgorithmIdentifier{ALGORITHM, {...}}

 id-regCtrl-rsaKeyLen OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) pkip(5) regCtrl(1) 12 }

 RsaKeyLenCtrl ::= INTEGER (1..MAX)

MUST NOT
MUST

MUST

Section 6 of CRMF [RFC4211]

5.3.19.17. CRL Update Retrieval
This be used by the client to get new CRLs, specifying the source of the CRLs and the
thisUpdate value of the latest CRL it already has, if available. A CRL source is given either by a
DistributionPointName or the GeneralNames of the issuing CA. The DistributionPointName
should be treated as an internal pointer to identify a CRL that the server already has and not as
a way to ask the server to fetch CRLs from external locations. The server only provide
those CRLs that are more recent than the ones indicated by the client.

MAY

SHALL

 GenMsg: {id-it 22}, SEQUENCE SIZE (1..MAX) OF CRLStatus
 GenRep: {id-it 23}, SEQUENCE SIZE (1..MAX) OF
 CertificateList | < absent >

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 61

https://rfc-editor.org/rfc/rfc4211#section-6

 CRLSource ::= CHOICE {
 dpn [0] DistributionPointName,
 issuer [1] GeneralNames }

 CRLStatus ::= SEQUENCE {
 source CRLSource,
 thisUpdate Time OPTIONAL }

5.3.19.18. KEM Ciphertext
This be used by a PKI entity to get the KEM ciphertext for MAC-based message protection
using KEM (see Section 5.1.3.4).

The PKI entity that possesses a KEM key pair can request the ciphertext by sending an
InfoTypeAndValue structure of type KemCiphertextInfo where the infoValue is absent. The
ciphertext can be provided in the following genp message with an InfoTypeAndValue structure
of the same type.

kem is the algorithm identifier of the KEM algorithm, and any associated parameters, used to
generate the ciphertext (ct).

ct is the ciphertext output from the KEM Encapsulate function.

Note: These InfoTypeAndValue structures can also be transferred in the generalInfo field of the
PKIHeader in messages of other types (see Section 5.1.1.5).

MAY

 GenMsg: {id-it 24}, < absent >
 GenRep: {id-it 24}, KemCiphertextInfo

 KemCiphertextInfo ::= SEQUENCE {
 kem AlgorithmIdentifier{KEM-ALGORITHM, {...}},
 ct OCTET STRING
 }

5.3.20. PKI General Response Content

Examples of GenReps that be supported include those listed in the subsections of Section
5.3.19.

 GenRepContent ::= SEQUENCE OF InfoTypeAndValue

MAY

5.3.21. Error Message Content

This data structure be used by an end entity, CA, or RA to convey error information and by
a PKI management entity to initiate delayed delivery of responses.

MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 62

This message be generated at any time during a PKI transaction. If the client sends this
request, the server respond with a pkiconf response or another error message if any part
of the header is not valid.

In case a PKI management entity sends an error message to the end entity with the
pKIStatusInfo field containing the status "waiting", the end entity initiate polling as
described in Section 5.3.22. If the end entity does not initiate polling, both sides treat this
message as the end of the transaction (if a transaction is in progress).

If protection is desired on the message, the client protect it using the same technique (i.e.,
signature or MAC) as the starting message of the transaction. The CA always sign it with a
signature key.

 ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 errorDetails PKIFreeText OPTIONAL
 }

MAY
MUST

SHOULD
MUST

MUST
MUST

5.3.22. Polling Request and Response

This pair of messages is intended to handle scenarios in which the client needs to poll the server
to determine the status of an outstanding response (i.e., when the "waiting" PKIStatus has been
received).

Unless implicit confirmation has been requested and granted, in response to an ir, cr, p10cr, kur,
krr, or ccr request message, polling is initiated with an ip, cp, kup, krp, or ccp response message
containing status "waiting". For any type of request message, polling can be initiated with an
error response message with status "waiting". The following clauses describe how polling
messages are used. It is assumed that multiple certConf messages can be sent during
transactions. There will be one sent in response to each ip, cp, kup, krp, or ccp that contains a
CertStatus for an issued certificate.

In response to an ip, cp, kup, krp, or ccp message, an end entity will send a certConf for all
issued certificates and expect a pkiconf for each certConf. An end entity will send a pollReq
message in response to each CertResponse element of an ip, cp, or kup message with status
"waiting" and in response to an error message with status "waiting". Its certReqId be
either the index of a CertResponse data structure with status "waiting" or -1 referring to the
complete response.

 PollReqContent ::= SEQUENCE OF SEQUENCE {
 certReqId INTEGER }

 PollRepContent ::= SEQUENCE OF SEQUENCE {
 certReqId INTEGER,
 checkAfter INTEGER, -- time in seconds
 reason PKIFreeText OPTIONAL }

1.

MUST

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 63

In response to a pollReq, a CA/RA will return an ip, cp, kup, krp, or ccp if one or more of the
still pending requested certificates are ready or the final response to some other type of
request is available; otherwise, it will return a pollRep.
If the end entity receives a pollRep, it will wait for at least the number of seconds given in
the checkAfter field before sending another pollReq.

Note that the checkAfter value heavily depends on the certificate management
environment. There are different possible reasons for a delayed delivery of response
messages, e.g., high load on the server's backend, offline transfer of messages between two
PKI management entities, or required RA operator approval. Therefore, the checkAfter time
can vary greatly. This should also be considered by the transfer protocol.

If the end entity receives an ip, cp, kup, krp, or ccp, then it will be treated in the same way as
the initial response; if it receives any other response, then this will be treated as the final
response to the original request.

The following client-side state machine describes polling for individual CertResponse elements
at the example of an ir request message.

In the following exchange, the end entity is enrolling for two certificates in one request.

2.

3.

4.

START

Send ir
ip

Check status
of returned

certs

(issued) (waiting)
Add to Check CertResponse Add to

conf list for each certificate pending list

(empty conf list)
(conf list)

ip

(empty pending list) pollRep
END Send certConf Send pollReq Wait

(pending list)

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 64

The following client-side state machine describes polling for a complete response message.

Step# End entity PKI

1 format ir
2 ir
3 handle ir
4 manual intervention is

required for both certs
5 ip
6 process ip
7 format pollReq
8 pollReq
9 check status of cert requests,

certificates not ready
10 format pollRep
11 pollRep
12 wait
13 format pollReq
14 pollReq
15 check status of cert requests,

one certificate is ready
16 format ip
17 ip
18 handle ip
19 format certConf
20 certConf
21 handle certConf
22 format ack
23 pkiconf
24 format pollReq
25 pollReq
26 check status of certificate,

certificate is ready
27 format ip
28 ip
29 handle ip
30 format certConf
31 certConf
32 handle certConf
33 format ack
34 pkiconf

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 65

In the following exchange, the end entity is sending a general message request, and the response
is delayed by the server.

Start

Send request

Receive response

ip/cp/kup/krp/ccp/error with other
status "waiting" response

Polling

Send pollReq
Receive response

pollRep other response

Handle response

End

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 66

Step# End entity PKI

1 format genm
2 genm
3 handle genm
4 delay in response is necessary
5 format error message "waiting"

with certReqId set to -1
6 error
7 process error
8 format pollReq
9 pollReq

10 check status of original request,
general message response not
ready

11 format pollRep
12 pollRep
13 wait
14 format pollReq
15 pollReq
16 check status of original request,

general message response is
ready

17 format genp
18 genp
19 handle genp

6. Mandatory PKI Management Functions
Some of the PKI management functions outlined in Section 3.1 are described in this section.

This section deals with functions that are "mandatory" in the sense that all end entity and CA/RA
implementations be able to provide the functionality described. This part is effectively the
profile of the PKI management functionality that be supported. Note, however, that the
management functions described in this section do not need to be accomplished using the PKI
messages defined in Section 5 if alternate means are suitable for a given environment. See

 and Appendix C for profiles of the PKIMessage structures that be
supported for specific use cases.

MUST
MUST

Section 7 of [RFC9483] MUST

6.1. Root CA Initialization
[See Section 3.1.1.2 for this document's definition of "root CA".]

If a newly created root CA is at the top of a PKI hierarchy, it usually produces a "self-certificate",
which is a certificate structure with the profile defined for the "newWithNew" certificate issued
following a root CA key update.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 67

https://rfc-editor.org/rfc/rfc9483#section-7

In order to make the CA's self-certificate useful to end entities that do not acquire the self-
certificate via "out-of-band" means, the CA must also produce a fingerprint for its certificate. End
entities that acquire this fingerprint securely via some "out-of-band" means can then verify the
CA's self-certificate and, hence, the other attributes contained therein.

The data structure used to carry the fingerprint may be the OOBCertHash (see Section 5.2.5).

6.2. Root CA Key Update
CA keys (as all other keys) have a finite lifetime and will have to be updated on a periodic basis.
The certificates NewWithNew, NewWithOld, and OldWithNew (see Section 4.4.1) be issued
by the CA to aid existing end entities who hold the current root CA certificate (OldWithOld) to
transition securely to the new root CA certificate (NewWithNew) and to aid new end entities
who will hold NewWithNew to acquire OldWithOld securely for verification of existing data.

MAY

6.3. Subordinate CA Initialization
[See Section 3.1.1.2 for this document's definition of "subordinate CA".]

From the perspective of PKI management protocols, the initialization of a subordinate CA is the
same as the initialization of an end entity. The only difference is that the subordinate CA must
also produce an initial revocation list.

6.4. CRL Production
Before issuing any certificates, a newly established CA (which issues CRLs) must produce
"empty" versions of each CRL, which are to be periodically produced.

6.5. PKI Information Request
When a PKI entity (CA, RA, or end entity) wishes to acquire information about the current status
of a CA, it send that CA a request for such information.

The CA respond to the request by providing (at least) all of the information requested by
the requester. If some of the information cannot be provided, then an error must be conveyed to
the requester.

If PKIMessages are used to request and supply this PKI information, then the request be
the GenMsg message, the response be the GenRep message, and the error be the
Error message. These messages are protected using a MAC based on shared secret information
(e.g., password-based MAC; see) or using any
asymmetric authentication means such as a signature (if the end entity has an existing
certificate).

MAY

MUST

MUST
MUST MUST

Section 6.1 of "CMP Algorithms" [RFC9481]

6.6. Cross-Certification
The requester CA is the CA that will become the subject of the cross-certificate; the responder CA
will become the issuer of the cross-certificate.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 68

https://rfc-editor.org/rfc/rfc9481#section-6.1

The requester CA must be "up and running" before initiating the cross-certification operation.

6.6.1. One-Way Request-Response Scheme

The cross-certification scheme is essentially a one-way operation; that is, when successful, this
operation results in the creation of one new cross-certificate. If the requirement is that cross-
certificates be created in "both directions", then each CA, in turn, must initiate a cross-
certification operation (or use another scheme).

This scheme is suitable where the two CAs in question can already verify each other's signatures
(they have some common points of trust) or where there is an out-of-band verification of the
origin of the certification request.

Detailed Description:

Cross-certification is initiated at one CA known as the responder. The CA administrator for
the responder identifies the CA it wants to cross-certify and the responder CA equipment
generates an authorization code. The responder CA administrator passes this authorization
code by out-of-band means to the requester CA administrator. The requester CA
administrator enters the authorization code at the requester CA in order to initiate the online
exchange.

The authorization code is used for authentication and integrity purposes. This is done by
generating a symmetric key based on the authorization code and using the symmetric key for
generating MACs on all messages exchanged. (Authentication may alternatively be done
using signatures instead of MACs, if the CAs are able to retrieve and validate the required
public keys by some means, such as an out-of-band hash comparison.)

The requester CA initiates the exchange by generating a cross-certification request (ccr) with
a fresh random number (requester random number). The requester CA then sends the ccr
message to the responder CA. The fields in this message are protected from modification with
a MAC based on the authorization code.

Upon receipt of the ccr message, the responder CA validates the message and the MAC, saves
the requester random number, and generates its own random number (responder random
number). It then generates (and archives, if desired) a new requester certificate that contains
the requester CA public key and is signed with the responder CA signature private key. The
responder CA responds with the cross-certification response (ccp) message. The fields in this
message are protected from modification with a MAC based on the authorization code.

Upon receipt of the ccp message, the requester CA validates the message (including the
received random numbers) and the MAC. The requester CA responds with the certConf
message. The fields in this message are protected from modification with a MAC based on the
authorization code. The requester CA write the requester certificate to the Repository as
an aid to later certificate path construction.

MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 69

Upon receipt of the certConf message, the responder CA validates the message and the MAC
and sends back an acknowledgement using the pkiconf message. It also publish the
requester certificate as an aid to later path construction.

Notes:

The ccr message must contain a "complete" certification request; that is, all fields except the
serial number (including, e.g., a BasicConstraints extension) must be specified by the
requester CA.
The ccp message contain the verification certificate of the responder CA; if present,
the requester CA must then verify this certificate (for example, via the "out-of-band"
mechanism).

(A simpler, non-interactive model of cross-certification may also be envisioned, in which the
issuing CA acquires the subject CA's public key from some repository, verifies it via some out-of-
band mechanism, and creates and publishes the cross-certificate without the subject CA's explicit
involvement. This model may be perfectly legitimate for many environments, but since it does
not require any protocol message exchanges, its detailed description is outside the scope of this
specification.)

MAY

1.

2. SHOULD

6.7. End Entity Initialization
As with CAs, end entities must be initialized. Initialization of end entities requires at least two
steps:

acquisition of PKI information
out-of-band verification of one root-CA public key

(Other possible steps include the retrieval of trust condition information and/or out-of-band
verification of other CA public keys.)

•
•

6.7.1. Acquisition of PKI Information

The information is:

the current root-CA public key
(if the certifying CA is not a root-CA) the certification path from the root CA to the certifying
CA together with appropriate revocation lists
the algorithms and algorithm parameters that the certifying CA supports for each relevant
usage

Additional information could be required (e.g., supported extensions or CA policy information)
in order to produce a certification request that will be successful. However, for simplicity, we do
not mandate that the end entity acquires this information via the PKI messages. The end result is
simply that some certification requests may fail (e.g., if the end entity wants to generate its own
encryption key, but the CA doesn't allow that).

The required information be acquired as described in Section 6.5.

REQUIRED

•
•

•

MAY

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 70

6.7.2. Out-of-Band Verification of the Root CA Key

An end entity must securely possess the public key of its root CA. One method to achieve this is
to provide the end entity with the CA's self-certificate fingerprint via some secure "out-of-band"
means. The end entity can then securely use the CA's self-certificate.

See Section 6.1 for further details.

6.8. Certificate Request
An initialized end entity request an additional certificate at any time (for any purpose). This
request will be made using the certification request (cr) message. If the end entity already
possesses a signing key pair (with a corresponding verification certificate), then this cr message
will typically be protected by the entity's digital signature. The CA returns the new certificate (if
the request is successful) in a CertRepMessage.

MAY

6.9. Key Update
When a key pair is due to expire, the relevant end entity request a key update; that is, it
request that the CA issue a new certificate for a new key pair (or, in certain circumstances, a
new certificate for the same key pair). The request is made using a key update request (kur)
message (referred to, in some environments, as a "Certificate Update" operation). If the end
entity already possesses a signing key pair (with a corresponding verification certificate), then
this message will typically be protected by the entity's digital signature. The CA returns the new
certificate (if the request is successful) in a key update response (kup) message, which is
syntactically identical to a CertRepMessage.

MAY MAY

7. Version Negotiation
This section defines the version negotiation used to support older protocols between clients and
servers.

If a client knows the protocol version(s) supported by the server (e.g., from a previous
PKIMessage exchange or via some out-of-band means), then it send a PKIMessage with the
highest version supported by both it and the server. If a client does not know what version(s) the
server supports, then it send a PKIMessage using the highest version it supports with the
following exception: Version cmp2021 only be used if cmp2021 syntax is needed for the
request being sent or for the expected response.

Note: Using cmp2000 as the default pvno value is done to avoid extra message exchanges for
version negotiation and to foster compatibility with cmp2000 implementations. Version
cmp2021 syntax is only needed if a message exchange uses EnvelopedData, hashAlg (in
CertStatus), POPOPrivKey with agreeMAC, or ckuann with RootCaKeyUpdateContent.

If a server receives a message with a version that it supports, then the version of the response
message be the same as the received version. If a server receives a message with a version
higher or lower than it supports, then it send back an ErrorMsg with the

MUST

MUST
SHOULD

MUST
MUST

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 71

unsupportedVersion bit set (in the failureInfo field of the pKIStatusInfo). If the received version
is higher than the highest supported version, then the version in the error message be the
highest version the server supports; if the received version is lower than the lowest supported
version, then the version in the error message be the lowest version the server supports.

If a client gets back an ErrorMsgContent with the unsupportedVersion bit set and a version it
supports, then it retry the request with that version.

MUST

MUST

MAY

7.1. Supporting RFC 2510 Implementations
 did not specify the behavior of implementations receiving versions they did not

understand since there was only one version in existence. With the introduction of the revision
in , the following versioning behavior is recommended.

[RFC2510]

[RFC4210]

7.1.1. Clients Talking to RFC 2510 Servers

If, after sending a message with a pvno value higher than cmp1999, a client receives an
ErrorMsgContent with a version of cmp1999, then it abort the current transaction.

If a client receives a non-error PKIMessage with a version of cmp1999, then it decide to
continue the transaction (if the transaction hasn't finished) using the semantics described in

. If it does not choose to do so and the transaction is not finished, then it abort
the transaction and send an ErrorMsgContent with a version of cmp1999.

MUST

MAY

[RFC2510] MUST

7.1.2. Servers Receiving Version cmp1999 PKIMessages

If a server receives a version cmp1999 message, it revert to the behavior described in
 and respond with version cmp1999 messages. If it does not choose to do so, then it

 send back an ErrorMsgContent as described above in Section 7.

MAY
[RFC2510]
MUST

8. Security Considerations

8.1. On the Necessity of POP
It is well established that the role of a CA is to verify that the name and public key belong to the
end entity prior to issuing a certificate. If an entity holding a private key obtains a certificate
containing the corresponding public key issued for a different entity, it can authenticate as the
entity named in the certificate. This facilitates masquerading. It is not entirely clear what
security guarantees are lost if an end entity is able to obtain a certificate containing a public key
that they do not possess the corresponding private key for. There are some scenarios, described
as "forwarding attacks" in Appendix A of , in which this can lead to protocol attacks
against a naively implemented sign-then-encrypt protocol, but in general, it merely results in the
end entity obtaining a certificate that they cannot use.

[Gueneysu]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 72

8.2. POP with a Decryption Key
Some cryptographic considerations are worth explicitly spelling out. In the protocols specified
above, when an end entity is required to prove possession of a decryption key, it is effectively
challenged to decrypt something (its own certificate). This scheme (and many others!) could be
vulnerable to an attack if the possessor of the decryption key in question could be fooled into
decrypting an arbitrary challenge and returning the cleartext to an attacker. Although in this
specification a number of other failures in security are required in order for this attack to
succeed, it is conceivable that some future services (e.g., notary, trusted time) could potentially
be vulnerable to such attacks. For this reason, we reiterate the general rule that
implementations should be very careful about decrypting arbitrary "ciphertext" and revealing
recovered "plaintext" since such a practice can lead to serious security vulnerabilities.

The client return the decrypted values only if they match the expected content type. In an
indirect method, the decrypted value be a valid certificate, and in a direct method, the
decrypted value be a Rand as defined in Section 5.2.8.3.3.

MUST
MUST

MUST

8.3. POP by Exposing the Private Key
Note also that exposing a private key to the CA/RA as a POP technique can carry some security
risks (depending upon whether or not the CA/RA can be trusted to handle such material
appropriately). Implementers are advised to:

Exercise caution in selecting and using this particular POP mechanism.
Only use this POP mechanism if archival of the private key is desired.
When appropriate, have the user of the application explicitly state that they are willing to
trust the CA/RA to have a copy of their private key before proceeding to reveal the private
key.

•
•
•

8.4. Attack Against DH Key Exchange
A small subgroup attack during a DH key exchange may be carried out as follows. A malicious
end entity may deliberately choose DH parameters that enable it to derive (a significant number
of bits of) the DH private key of the CA during a key archival or key recovery operation. Armed
with this knowledge, the end entity would then be able to retrieve the decryption private key of
another unsuspecting end entity, EE2, during EE2's legitimate key archival or key recovery
operation with that CA. In order to avoid the possibility of such an attack, two courses of action
are available. (1) The CA may generate a fresh DH key pair to be used as a protocol encryption
key pair for each end entity with which it interacts. (2) The CA may enter into a key validation
protocol (not specified in this document) with each requesting end entity to ensure that the end
entity's protocol encryption key pair will not facilitate this attack. Option (1) is clearly simpler
(requiring no extra protocol exchanges from either party) and is therefore .RECOMMENDED

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 73

8.5. Perfect Forward Secrecy
Long-term security typically requires perfect forward secrecy (pfs). When transferring
encrypted long-term confidential values such as centrally generated private keys or revocation
passphrases, pfs is likely important. Yet, it is not needed for CMP message protection providing
integrity and authenticity because transfer of PKI messages is usually completed in very limited
time. For the same reason, it is not typically required for the indirect method to provide a POP
(Section 5.2.8.3.2) delivering the newly issued certificate in encrypted form.

Encrypted values (Section 5.2.2) are transferred using CMS EnvelopedData , which
does not offer pfs. In cases where long-term security is needed, CMP messages be
transferred over a mechanism that provides pfs, such as TLS with appropriate cipher suites
selected.

[RFC5652]
SHOULD

8.6. Private Keys for Certificate Signing and CMP Message Protection
A CA should not reuse its certificate signing key for other purposes, such as protecting CMP
responses and TLS connections. This way, exposure to other parts of the system and the number
of uses of this particularly critical key are reduced to a minimum.

8.7. Entropy of Random Numbers, Key Pairs, and Shared Secret
Information
Implementations must generate nonces and private keys from random input. The use of
inadequate pseudorandom number generators (PRNGs) to generate cryptographic keys can
result in little or no security. An attacker may find it much easier to reproduce the PRNG
environment that produced the keys and to search the resulting small set of possibilities than
brute-force searching the whole key space. As an example of predictable random numbers, see

; consequences of low-entropy random numbers are discussed in
. The generation of quality random numbers is difficult.

, , ,
and other specifications offer valuable guidance in this area.

If shared secret information is generated by a cryptographically secure random number
generator (CSRNG), it is safe to assume that the entropy of the shared secret information equals
its bit length. If no CSRNG is used, the entropy of shared secret information depends on the
details of the generation process and cannot be measured securely after it has been generated. If
user-generated passwords are used as shared secret information, their entropy cannot be
measured. Passwords generated from user-supplied entropy are typically insufficient for
protected delivery of centrally generated keys or trust anchors.

If the entropy of shared secret information protecting the delivery of a centrally generated key
pair is known, it should not be less than the security strength of that key pair; if the shared
secret information is reused for different key pairs, the security of the shared secret information
should exceed the security strength of each individual key pair.

[CVE-2008-0166] Mining Your
Ps and Qs [MiningPsQs] ISO/IEC
20543:2019 [ISO.20543-2019] NIST SP 800-90A Rev.1 [NIST.SP.800_90Ar1] BSI AIS 31 V2.0 [AIS31]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 74

For the case of a PKI management operation that delivers a new trust anchor (e.g., a root CA
certificate), using caPubs or genp that is (a) not concluded in a timely manner or (b) where the
shared secret information is reused for several key management operations, the entropy of the
shared secret information, if known, should not be less than the security strength of the trust
anchor being managed by the operation. The shared secret information should have an entropy
that at least matches the security strength of the key material being managed by the operation.
Certain use cases may require shared secret information that may be of a low security strength,
e.g., a human-generated password. It is that such secret information be limited
to a single PKI management operation.

Importantly for this section, further information about algorithm use profiles and their security
strength is available in .

RECOMMENDED

Section 7 of CMP Algorithms [RFC9481]

8.8. Recurring Usage of KEM Keys for Message Protection
For each PKI management operation using MAC-based message protection involving KEM (see
Section 5.1.3.4), the KEM Encapsulate() function, providing a fresh KEM ciphertext (ct) and
shared secret (ss), be invoked.

It is assumed that the overall data size of the CMP messages in a PKI management operation
protected by a single shared secret key is small enough not to introduce extra security risks.

To be appropriate for use with this specification, the KEM algorithm explicitly be designed
to be secure when the public key is used many times. For example, a KEM algorithm with a
single-use public key is not appropriate because the public key is expected to be carried in a long-
lived certificate and used over and over. Thus, KEM algorithms that offer
indistinguishability under adaptive chosen ciphertext attack (IND-CCA2) security are
appropriate. A common design pattern for obtaining IND-CCA2 security with public key reuse is
to apply the Fujisaki-Okamoto (FO) transform or a variant of the FO transform

.

Therefore, given a long-term public key using an IND-CCA2-secure KEM algorithm, there is no
limit to the number of CMP messages that can be authenticated using KEM keys for MAC-based
message protection.

MUST

MUST

[RFC5280]

[Fujisaki]
[Hofheinz]

8.9. Trust Anchor Provisioning Using CMP Messages
A provider of trust anchors, which may be an RA involved in configuration management of its
clients, include to-be-trusted CA certificates in a CMP message unless the specific
deployment scenario can ensure that it is adequate that the receiving end entity trusts these
certificates, e.g., by loading them into its trust store.

Whenever an end entity receives in a CMP message a CA certificate to be used as a trust anchor
(for example, in the caPubs field of a certificate response or in a general response), it
properly authenticate the message sender with existing trust anchors without requiring new
trust anchor information included in the message.

MUST NOT

MUST

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 75

https://rfc-editor.org/rfc/rfc9481#section-7

Additionally, the end entity verify that the sender is an authorized source of trust anchors.
This authorization is governed by local policy and typically indicated using shared secret
information or with a signature-based message protection using a certificate issued by a PKI that
is explicitly authorized for this purpose.

MUST

8.10. Authorizing Requests for Certificates with Specific EKUs
When a CA issues a certificate containing EKU extensions as defined in Section 4.5, this
expresses delegation of an authorization that originally is only with the CA certificate itself. Such
delegation is a very sensitive action in a PKI, and therefore, special care must be taken when
approving such certificate requests to ensure that only legitimate entities receive a certificate
containing such an EKU.

8.11. Usage of CT Logs
CAs that support indirect POP also publish final certificates to CT logs
before having received the certConf message containing the certHash of that certificate to
complete the POP. The risk is that a malicious actor could fetch the final certificate from the CT
log and use that to spoof a response to the implicit POP challenge via a certConf response. This
risk does not apply to CT precertificates, so those are OK to publish.

If a certificate or its precertificate was published in a CT log, it must be revoked if a required
certConf message could not be verified, especially when the implicit POP was used.

MUST NOT [RFC9162]

Decimal:
Description:
Reference:

9. IANA Considerations
This document updates the ASN.1 modules in . The OID
116 (id-mod-cmp2023-02) was registered in the "SMI Security for PKIX Module Identifier"
registry to identify the updated ASN.1 module.

IANA has added the following entry in the "SMI Security for PKIX CMP Information Types"
registry within the SMI Numbers registry group (see

) :

24
id-it-KemCiphertextInfo

RFC 9810

Note that the new OID 1.2.840.113533.7.66.16 was registered by Entrust, and not by IANA, for id-
KemBasedMac in the arc 1.2.840.113533.7.66. This was done to match the previous registrations
for id-PasswordBasedMac and id-DHBasedMac, which are also on the Entrust private arc.

All existing references to , , and at
 except those in the "SMI Security for PKIX Module Identifier"

registry have been replaced with references to this document.

Appendix A.2 of CMP Updates [RFC9480]

<https://www.iana.org/assignments/smi-
numbers> [RFC7299]

[RFC2510] [RFC4210] [RFC9480] <https://www.iana.org/
assignments/smi-numbers>

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 76

https://rfc-editor.org/rfc/rfc9480#appendix-A.2
https://www.iana.org/assignments/smi-numbers
https://www.iana.org/assignments/smi-numbers
https://www.iana.org/assignments/smi-numbers
https://www.iana.org/assignments/smi-numbers

10. References

[MvOV97]

[RFC2119]

[RFC2985]

[RFC2986]

[RFC3629]

[RFC4211]

[RFC5280]

[RFC5480]

[RFC5646]

[RFC5652]

[RFC5958]

10.1. Normative References

, , and ,
, , 1996,

.

, , ,
, , March 1997,
.

 and ,
, , , November 2000,

.

 and ,
, , , November 2000,

.

, , , ,
, November 2003,

.

,
, , , September 2005,

.

, , , , , and ,

, , , May 2008,
.

, , , , and ,
, , ,

March 2009, .

 and , , ,
, , September 2009,

.

, , , ,
, September 2009, .

, , , , August
2010, .

Menezes, A. van Oorschot, P. S. Vanstone "Handbook of Applied
Cryptography" CRC Press ISBN 0-8493-8523-7 <https://cacr.uwaterloo.ca/
hac/>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Nystrom, M. B. Kaliski "PKCS #9: Selected Object Classes and Attribute
Types Version 2.0" RFC 2985 DOI 10.17487/RFC2985 <https://
www.rfc-editor.org/info/rfc2985>

Nystrom, M. B. Kaliski "PKCS #10: Certification Request Syntax
Specification Version 1.7" RFC 2986 DOI 10.17487/RFC2986
<https://www.rfc-editor.org/info/rfc2986>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Schaad, J. "Internet X.509 Public Key Infrastructure Certificate Request Message
Format (CRMF)" RFC 4211 DOI 10.17487/RFC4211 <https://
www.rfc-editor.org/info/rfc4211>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Turner, S. Brown, D. Yiu, K. Housley, R. T. Polk "Elliptic Curve
Cryptography Subject Public Key Information" RFC 5480 DOI 10.17487/RFC5480

<https://www.rfc-editor.org/info/rfc5480>

Phillips, A., Ed. M. Davis, Ed. "Tags for Identifying Languages" BCP 47 RFC
5646 DOI 10.17487/RFC5646 <https://www.rfc-editor.org/info/
rfc5646>

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI
10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Turner, S. "Asymmetric Key Packages" RFC 5958 DOI 10.17487/RFC5958
<https://www.rfc-editor.org/info/rfc5958>

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 77

https://cacr.uwaterloo.ca/hac/
https://cacr.uwaterloo.ca/hac/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2985
https://www.rfc-editor.org/info/rfc2985
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc4211
https://www.rfc-editor.org/info/rfc4211
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5480
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5958

[RFC6402]

[RFC8174]

[RFC8933]

[RFC9045]

[RFC9481]

[RFC9629]

, , ,
, November 2011, .

, ,
, , , May 2017,

.

,
, , , October 2020,

.

,
, ,

, June 2021, .

, , , and ,
, , ,

November 2023, .

, , and ,
, ,

, August 2024, .

Schaad, J. "Certificate Management over CMS (CMC) Updates" RFC 6402 DOI
10.17487/RFC6402 <https://www.rfc-editor.org/info/rfc6402>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Housley, R. "Update to the Cryptographic Message Syntax (CMS) for Algorithm
Identifier Protection" RFC 8933 DOI 10.17487/RFC8933 <https://
www.rfc-editor.org/info/rfc8933>

Housley, R. "Algorithm Requirements Update to the Internet X.509 Public Key
Infrastructure Certificate Request Message Format (CRMF)" RFC 9045 DOI
10.17487/RFC9045 <https://www.rfc-editor.org/info/rfc9045>

Brockhaus, H. Aschauer, H. Ounsworth, M. J. Gray "Certificate
Management Protocol (CMP) Algorithms" RFC 9481 DOI 10.17487/RFC9481

<https://www.rfc-editor.org/info/rfc9481>

Housley, R. Gray, J. T. Okubo "Using Key Encapsulation Mechanism (KEM)
Algorithms in the Cryptographic Message Syntax (CMS)" RFC 9629 DOI
10.17487/RFC9629 <https://www.rfc-editor.org/info/rfc9629>

[AIS31]

[CVE-2008-0166]

[ETSI-3GPP.33.310]

[Fujisaki]

[Gueneysu]

10.2. Informative References

 and ,
,

, September 2011,

.

,
, May 2008,

.

, ,
, December 2020,

.

 and ,
, ,

, December 2011,
.

, , , , , and ,
,

, 2022,
.

Killmann, W. W. Schindler "A proposal for: Functionality classes for
random number generators - Version 2.0" Federal Office for Information
Security (BSI) <https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Zertifizierung/Interpretationen/
AIS_31_Functionality_classes_for_random_number_generators_e.pdf>

National Institute of Science and Technology (NIST) "National Vulnerability
Database - CVE-2008-0166" <https://nvd.nist.gov/vuln/detail/
CVE-2008-0166>

3GPP "Network Domain Security (NDS); Authentication Framework (AF)"
3GPP TS 33.310 16.6.0 <http://www.3gpp.org/ftp/Specs/html-
info/33310.htm>

Fujisaki, E. T. Okamoto "Secure Integration of Asymmetric and Symmetric
Encryption Schemes" Journal of Cryptology, vol. 26, no. 1, pp. 80-101 DOI
10.1007/s00145-011-9114-1 <https://doi.org/10.1007/
s00145-011-9114-1>

Gueneysu, T. Hodges, P. Land, G. Ounsworth, M. Stebila, D. G. Zaverucha
"Proof-of-possession for KEM certificates using verifiable generation"
Cryptology ePrint Archive, Paper 2022/703 <https://eprint.iacr.org/
2022/703>

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 78

https://www.rfc-editor.org/info/rfc6402
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8933
https://www.rfc-editor.org/info/rfc8933
https://www.rfc-editor.org/info/rfc9045
https://www.rfc-editor.org/info/rfc9481
https://www.rfc-editor.org/info/rfc9629
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
https://nvd.nist.gov/vuln/detail/CVE-2008-0166
https://nvd.nist.gov/vuln/detail/CVE-2008-0166
http://www.3gpp.org/ftp/Specs/html-info/33310.htm
http://www.3gpp.org/ftp/Specs/html-info/33310.htm
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://eprint.iacr.org/2022/703
https://eprint.iacr.org/2022/703

[Hofheinz]

[IEEE.802.1AR-2018]

[ISO.20543-2019]

[MiningPsQs]

[ML-KEM]

[NIST.SP.800_90Ar1]

[RFC1847]

[RFC2510]

[RFC2585]

[RFC4210]

[RFC4212]

, , and ,
,

, ,
November 2017, .

,
, , ,

August 2018, .

,
,

, October 2019, .

, , , and ,
,

, August 2012,

.

, , , and ,

, ,
, 22 July 2025,

.

 and ,
, ,

, June 2015,
.

, , , and ,
, , ,

October 1995, .

 and ,
, , , March 1999,

.

 and ,
, , , May

1999, .

, , , and ,
, ,

, September 2005, .

 and ,
, ,

, October 2005, .

Hofheinz, D. Hövelmanns, K. E. Kiltz "A Modular Analysis of the Fujisaki-
Okamoto Transformation" Theory of Cryptography (TCC 2017), Lecture Notes in
Computer Science, vol. 10677, pp. 341-371 DOI 10.1007/978-3-319-70500-2_12

<https://doi.org/10.1007/978-3-319-70500-2_12>

IEEE "IEEE Standard for Local and Metropolitan Area Networks - Secure
Device Identity" IEEE Std 802.1AR-2018 DOI 10.1109/ieeestd.2018.8423794

<https://doi.org/10.1109/ieeestd.2018.8423794>

ISO/IEC "Information technology -- Security techniques -- Test and analysis
methods for random bit generators within ISO/IEC 19790 and ISO/IEC 15408"
ISO/IEC 20543:2019 <https://www.iso.org/standard/68296.html>

Heninger, N. Durumeric, Z. Wustrow, E. J. A. Halderman "Mining Your Ps
and Qs: Detection of Widespread Weak Keys in Network Devices" 21st USENIX
Security Symposium (USENIX Security 12) <https://
www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/
heninger>

Turner, S. Kampanakis, P. Massimo, J. B. Westerbaan "Internet X.509
Public Key Infrastructure - Algorithm Identifiers for the Module-Lattice-Based
Key-Encapsulation Mechanism (ML-KEM)" Work in Progress Internet-Draft,
draft-ietf-lamps-kyber-certificates-11 <https://datatracker.ietf.org/
doc/html/draft-ietf-lamps-kyber-certificates-11>

Barker, E. B. J. M. Kelsey "Recommendation for Random Number
Generation Using Deterministic Random Bit Generators" NIST SP 800-90Ar1
DOI 10.6028/NIST.SP.800-90Ar1 <https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-90Ar1.pdf>

Galvin, J. Murphy, S. Crocker, S. N. Freed "Security Multiparts for MIME:
Multipart/Signed and Multipart/Encrypted" RFC 1847 DOI 10.17487/RFC1847

<https://www.rfc-editor.org/info/rfc1847>

Adams, C. S. Farrell "Internet X.509 Public Key Infrastructure Certificate
Management Protocols" RFC 2510 DOI 10.17487/RFC2510 <https://
www.rfc-editor.org/info/rfc2510>

Housley, R. P. Hoffman "Internet X.509 Public Key Infrastructure
Operational Protocols: FTP and HTTP" RFC 2585 DOI 10.17487/RFC2585

<https://www.rfc-editor.org/info/rfc2585>

Adams, C. Farrell, S. Kause, T. T. Mononen "Internet X.509 Public Key
Infrastructure Certificate Management Protocol (CMP)" RFC 4210 DOI 10.17487/
RFC4210 <https://www.rfc-editor.org/info/rfc4210>

Blinov, M. C. Adams "Alternative Certificate Formats for the Public-Key
Infrastructure Using X.509 (PKIX) Certificate Management Protocols" RFC 4212
DOI 10.17487/RFC4212 <https://www.rfc-editor.org/info/rfc4212>

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 79

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1109/ieeestd.2018.8423794
https://www.iso.org/standard/68296.html
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-kyber-certificates-11
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-kyber-certificates-11
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://www.rfc-editor.org/info/rfc1847
https://www.rfc-editor.org/info/rfc2510
https://www.rfc-editor.org/info/rfc2510
https://www.rfc-editor.org/info/rfc2585
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4212

[RFC4303]

[RFC4511]

[RFC5912]

[RFC6268]

[RFC6712]

[RFC7296]

[RFC7299]

[RFC8446]

[RFC8572]

[RFC8649]

[RFC8995]

[RFC9147]

[RFC9162]

, , ,
, December 2005, .

,
, , , June 2006,

.

 and ,
, , , June 2010,

.

 and ,
,

, , July 2011,
.

 and ,
, ,

, September 2012, .

, , , , and ,
, , , ,

October 2014, .

, , ,
, July 2014, .

, , ,
, August 2018, .

, , and ,
, , , April 2019,

.

, , ,
, August 2019, .

, , , , and ,
, ,

, May 2021, .

, , and ,
, , , April

2022, .

, , and , ,
, , December 2021,

.

Kent, S. "IP Encapsulating Security Payload (ESP)" RFC 4303 DOI 10.17487/
RFC4303 <https://www.rfc-editor.org/info/rfc4303>

Sermersheim, J., Ed. "Lightweight Directory Access Protocol (LDAP): The
Protocol" RFC 4511 DOI 10.17487/RFC4511 <https://www.rfc-
editor.org/info/rfc4511>

Hoffman, P. J. Schaad "New ASN.1 Modules for the Public Key
Infrastructure Using X.509 (PKIX)" RFC 5912 DOI 10.17487/RFC5912
<https://www.rfc-editor.org/info/rfc5912>

Schaad, J. S. Turner "Additional New ASN.1 Modules for the Cryptographic
Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)"
RFC 6268 DOI 10.17487/RFC6268 <https://www.rfc-editor.org/info/
rfc6268>

Kause, T. M. Peylo "Internet X.509 Public Key Infrastructure -- HTTP
Transfer for the Certificate Management Protocol (CMP)" RFC 6712 DOI
10.17487/RFC6712 <https://www.rfc-editor.org/info/rfc6712>

Kaufman, C. Hoffman, P. Nir, Y. Eronen, P. T. Kivinen "Internet Key
Exchange Protocol Version 2 (IKEv2)" STD 79 RFC 7296 DOI 10.17487/RFC7296

<https://www.rfc-editor.org/info/rfc7296>

Housley, R. "Object Identifier Registry for the PKIX Working Group" RFC 7299
DOI 10.17487/RFC7299 <https://www.rfc-editor.org/info/rfc7299>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Watsen, K. Farrer, I. M. Abrahamsson "Secure Zero Touch Provisioning
(SZTP)" RFC 8572 DOI 10.17487/RFC8572 <https://www.rfc-
editor.org/info/rfc8572>

Housley, R. "Hash Of Root Key Certificate Extension" RFC 8649 DOI 10.17487/
RFC8649 <https://www.rfc-editor.org/info/rfc8649>

Pritikin, M. Richardson, M. Eckert, T. Behringer, M. K. Watsen
"Bootstrapping Remote Secure Key Infrastructure (BRSKI)" RFC 8995 DOI
10.17487/RFC8995 <https://www.rfc-editor.org/info/rfc8995>

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Laurie, B. Messeri, E. R. Stradling "Certificate Transparency Version 2.0"
RFC 9162 DOI 10.17487/RFC9162 <https://www.rfc-editor.org/
info/rfc9162>

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 80

https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4511
https://www.rfc-editor.org/info/rfc4511
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc6268
https://www.rfc-editor.org/info/rfc6268
https://www.rfc-editor.org/info/rfc6712
https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc7299
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8649
https://www.rfc-editor.org/info/rfc8995
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9162
https://www.rfc-editor.org/info/rfc9162

[RFC9480]

[RFC9482]

[RFC9483]

[RFC9733]

[RFC9811]

[UNISIG.Subset-137]

[X509.2019]

, , and ,
, , , November 2023,

.

 and ,
, ,

, November 2023, .

, , and ,
, , ,

November 2023, .

, , and ,
, , , March 2025,

.

, , , and ,

, , July 2025, .

, ,
, December 2015,

.

,
,

, October 2019, .

Brockhaus, H. von Oheimb, D. J. Gray "Certificate Management Protocol
(CMP) Updates" RFC 9480 DOI 10.17487/RFC9480 <https://
www.rfc-editor.org/info/rfc9480>

Sahni, M., Ed. S. Tripathi, Ed. "Constrained Application Protocol (CoAP)
Transfer for the Certificate Management Protocol" RFC 9482 DOI 10.17487/
RFC9482 <https://www.rfc-editor.org/info/rfc9482>

Brockhaus, H. von Oheimb, D. S. Fries "Lightweight Certificate
Management Protocol (CMP) Profile" RFC 9483 DOI 10.17487/RFC9483

<https://www.rfc-editor.org/info/rfc9483>

von Oheimb, D., Ed. Fries, S. H. Brockhaus "BRSKI with Alternative
Enrollment (BRSKI-AE)" RFC 9733 DOI 10.17487/RFC9733 <https://
www.rfc-editor.org/info/rfc9733>

Brockhaus, H. von Oheimb, D. Ounsworth, M. J. Gray "Internet X.509
Public Key Infrastructure -- HTTP Transfer for the Certificate Management
Protocol (CMP)" RFC 9811 <https://www.rfc-editor.org/info/rfc9811>

UNISIG "ERTMS/ETCS On-line Key Management FFFIS" Subset-137,
V1.0.0 <https://www.era.europa.eu/system/files/2023-01/
sos3_index083_-_subset-137_v100.pdf>

ITU-T "Information technology - Open Systems Interconnection - The Directory:
Public-key and attribute certificate frameworks" ITU-T Recommendation X.509
(10/2019) <https://handle.itu.int/11.1002/1000/14033>

Appendix A. Reasons for the Presence of RAs
The reasons that justify the presence of an RA can be split into those that are due to technical
factors and those that are organizational in nature. Technical reasons include the following.

If hardware tokens are in use, then not all end entities will have the equipment needed to
initialize these; the RA equipment can include the necessary functionality (this may also be
a matter of policy).
Some end entities may not have the capability to publish certificates; again, the RA may be
suitably placed for this.
The RA will be able to issue signed revocation requests on behalf of end entities associated
with it, whereas the end entity may not be able to do this (if the key pair is completely lost).

Some of the organizational reasons that argue for the presence of an RA are the following.

It may be more cost effective to concentrate functionality in the RA equipment than to
supply functionality to all end entities (especially if special token initialization equipment is
to be used).
Establishing RAs within an organization can reduce the number of CAs required, which is
sometimes desirable.

•

•

•

•

•

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 81

https://www.rfc-editor.org/info/rfc9480
https://www.rfc-editor.org/info/rfc9480
https://www.rfc-editor.org/info/rfc9482
https://www.rfc-editor.org/info/rfc9483
https://www.rfc-editor.org/info/rfc9733
https://www.rfc-editor.org/info/rfc9733
https://www.rfc-editor.org/info/rfc9811
https://www.era.europa.eu/system/files/2023-01/sos3_index083_-_subset-137_v100.pdf
https://www.era.europa.eu/system/files/2023-01/sos3_index083_-_subset-137_v100.pdf
https://handle.itu.int/11.1002/1000/14033

RAs may be better placed to identify people with their "electronic" names, especially if the
CA is physically remote from the end entity.
For many applications, there will already be some administrative structure in place so that
candidates for the role of RA are easy to find (which may not be true of the CA).

Further reasons relevant for automated machine-to-machine certificate lifecycle management
are available in the Lightweight CMP Profile .

•

•

[RFC9483]

Appendix B. The Use of Revocation Passphrase
A revocation request must incorporate suitable security mechanisms, including proper
authentication, in order to reduce the probability of successful denial-of-service attacks. A digital
signature or DH/KEM-based message protection on the request -- to support within
this specification depending on the key type used if revocation requests are supported -- can
provide the authentication required, but there are circumstances under which an alternative
mechanism may be desirable (e.g., when the private key is no longer accessible and the entity
wishes to request a revocation prior to re-certification of another key pair). In order to
accommodate such circumstances, a password-based MAC (see

) on the request is also to support within this specification (subject to local
security policy for a given environment) if revocation requests are supported and if shared
secret information can be established between the requester and the responder prior to the
need for revocation.

A mechanism that has seen use in some environments is "revocation passphrase", in which a
value of sufficient entropy (i.e., a relatively long passphrase rather than a short password) is
shared between (only) the entity and the CA/RA at some point prior to revocation; this value is
later used to authenticate the revocation request.

In this specification, the following technique to establish shared secret information (i.e., a
revocation passphrase) is to support. Its precise use in CMP messages is as follows.

The OID and value specified in Section 5.3.19.9 be sent in a GenMsg message at any
time or be sent in the generalInfo field of the PKIHeader of any PKIMessage at any
time. (In particular, the EncryptedKey structure as described in Section 5.2.2 may be sent in
the header of the certConf message that confirms acceptance of certificates requested in an
initialization request or certificate request message.) This conveys a revocation passphrase
chosen by the entity to the relevant CA/RA. When EnvelopedData is used, this is in the
decrypted bytes of the encryptedContent field. When EncryptedValue is used, this is in the
decrypted bytes of the encValue field. Furthermore, the transfer is accomplished with
appropriate confidentiality characteristics.
If a CA/RA receives the revocation passphrase (OID and value specified in Section 5.3.19.9) in
a GenMsg, it construct and send a GenRep message that includes the OID (with absent
value) specified in Section 5.3.19.9. If the CA/RA receives the revocation passphrase in the
generalInfo field of a PKIHeader of any PKIMessage, it include the OID (with absent

REQUIRED

Section 6.1 of CMP Algorithms
[RFC9481] REQUIRED

OPTIONAL

• MAY
MAY

•
MUST

MUST

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 82

https://rfc-editor.org/rfc/rfc9481#section-6.1

value) in the generalInfo field of the PKIHeader of the corresponding response PKIMessage.
If the CA/RA is unable to return the appropriate response message for any reason, it
send an error message with a status of "rejection" and, optionally, a failInfo reason set.
Either the localKeyId attribute of EnvelopedData as specified in or the valueHint
field of EncryptedValue contain a key identifier (chosen by the entity, along with the
passphrase itself) to assist in later retrieval of the correct passphrase (e.g., when the
revocation request is constructed by the end entity and received by the CA/RA).
The revocation request message is protected by a password-based MAC (see

) with the revocation passphrase as the key. If appropriate, the
senderKID field in the PKIHeader contain the value previously transmitted in
localKeyId or valueHint.

Note: For a message transferring a revocation passphrase indicating cmp2021(3) in the pvno
field of the PKIHeader, the encrypted passphrase be transferred in the envelopedData
choice of EncryptedKey as defined in Section 5.2.2. When using cmp2000(2) in the message
header for backward compatibility, the encryptedValue is used. This allows the necessary
conveyance and protection of the passphrase while maintaining bits-on-the-wire compatibility
with . The encryptedValue choice has been deprecated in favor of encryptedData.

Using the technique specified above, the revocation passphrase may be initially established and
updated at any time without requiring extra messages or out-of-band exchanges. For example,
the revocation request message itself (protected and authenticated through a MAC that uses the
revocation passphrase as a key) may contain, in the PKIHeader, a new revocation passphrase to
be used for authenticating future revocation requests for any of the entity's other certificates. In
some environments, this may be preferable to mechanisms that reveal the passphrase in the
revocation request message, since this can allow a denial-of-service attack in which the revealed
passphrase is used by an unauthorized third party to authenticate revocation requests on the
entity's other certificates. However, because the passphrase is not revealed in the request
message, there is no requirement that the passphrase must always be updated when a
revocation request is made (that is, the same passphrase be used by an entity to
authenticate revocation requests for different certificates at different times).

Furthermore, the above technique can provide strong cryptographic protection over the entire
revocation request message even when a digital signature is not used. Techniques that do
authentication of the revocation request by simply revealing the revocation passphrase typically
do not provide cryptographic protection over the fields of the request message (so that a request
for revocation of one certificate may be modified by an unauthorized third party to a request for
revocation of another certificate for that entity).

MUST

• [RFC2985]
MAY

• Section 6.1 of
"CMP Algorithms" [RFC9481]

MAY

MUST

[RFC4210]

MAY

Appendix C. PKI Management Message Profiles ()
This appendix contains detailed profiles for those PKIMessages that be supported by
conforming implementations (see Section 6).

REQUIRED
MUST

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 83

https://rfc-editor.org/rfc/rfc9481#section-6.1

Note: Appendices C and D focus on PKI management operations managing certificates for
human end entities. In contrast, the Lightweight CMP Profile focuses on typical use
cases of industrial and IoT scenarios supporting highly automated certificate lifecycle
management scenarios.

Profiles for the PKIMessages used in the following PKI management operations are provided:

initial registration/certification
basic authenticated scheme
certificate request
key update

[RFC9483]

•
•
•
•

C.1. General Rules for Interpretation of These Profiles
Where or DEFAULT fields are not mentioned in individual profiles, they
be absent from the relevant message (i.e., a receiver can validly reject a message containing
such fields as being syntactically incorrect). Mandatory fields are not mentioned if they have
an obvious value. The protocol version number be set as specified in Section 7).
Where structures occur in more than one message, they are separately profiled as
appropriate.
The algorithmIdentifiers from PKIMessage structures are profiled separately.
A "special" X.500 DN is called the "NULL-DN"; this means a DN containing a zero-length
SEQUENCE OF RelativeDistinguishedNames (its DER encoding is then '3000'H).
Where a GeneralName is required for a field, but no suitable value is available (e.g., an end
entity produces a request before knowing its name), then the GeneralName is to be an X.500
NULL-DN (i.e., the Name field of the CHOICE is to contain a NULL-DN).
Where a profile omits to specify the value for a GeneralName, then the NULL-DN value is to
be present in the relevant PKIMessage field. This occurs with the sender field of the
PKIHeader for some messages.
Where any ambiguity arises due to naming of fields, the profile names these using a "dot"
notation (e.g., "certTemplate.subject" means the subject field within a field called
certTemplate).
Where a "SEQUENCE OF types" is part of a message, a zero-based array notation is used to
describe fields within the SEQUENCE OF (e.g., crm[0].certReq.certTemplate.subject refers to
a subfield of the first CertReqMsg contained in a request message).
All PKI message exchanges in Appendices C.4 to C.6 require a certConf message to be sent by
the initiating entity and a pkiconf message to be sent by the responding entity. The pkiconf is
not included in some of the profiles given since its body is NULL and its header contents are
clear from the context. Any authenticated means can be used for the protectionAlg (e.g.,
password-based MAC, if shared secret information is known, or signature).

1. OPTIONAL SHOULD

MUST

2.

3.
4.

5.

6.

7.

8.

9.

C.2. Algorithm Use Profile
For specifications of algorithm identifiers and respective conventions for conforming
implementations, please refer to .Section 7.1 of CMP Algorithms [RFC9481]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 84

https://rfc-editor.org/rfc/rfc9481#section-7.1

C.3. POP Profile
The table below describes the POP fields for use (in signature field of pop field of
ProofOfPossession structure) when proving possession of a private signing key that corresponds
to a public verification key for which a certificate has been requested.

Field Value Comment

algorithmIdentifier MSG_SIG_ALG only signature protection is allowed for this proof

signature present bits calculated using MSG_SIG_ALG

Table 2

Note: For examples of MSG_SIG_ALG OIDs, see .

POP of a private decryption key that corresponds to a public encryption key for which a
certificate has been requested does not use this profile; the CertHash field of the certConf
message is used instead.

Not every CA/RA will do POP (of signing key, decryption key, or key agreement key) in the PKIX-
CMP in-band certification request protocol (how POP is done ultimately be a policy issue
that is made explicit for any given CA in its publicized Policy OID and Certification Practice
Statement). However, this specification mandates that CA/RA entities do POP (by some
means) as part of the certification process. All end entities be prepared to provide POP
(i.e., these components of the PKIX-CMP protocol be supported).

Section 3 of CMP Algorithms [RFC9481]

MAY

MUST
MUST

MUST

C.4. Initial Registration/Certification (Basic Authenticated Scheme)
An (uninitialized) end entity requests a (first) certificate from a CA. When the CA responds with
a message containing a certificate, the end entity replies with a certificate confirmation. The CA
sends a pkiconf message back, closing the transaction. All messages are authenticated.

This scheme allows the end entity to request certification of a locally generated public key
(typically a signature key). The end entity also choose to request the centralized generation
and certification of another key pair (typically an encryption key pair).

Certification may only be requested for one locally generated public key (for more, use separate
PKIMessages).

The end entity support POP of the private key associated with the locally generated public
key.

Preconditions:

The end entity can authenticate the CA's signature based on out-of-band means.
The end entity and the CA share a symmetric MACing key.

MAY

MUST

1.
2.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 85

https://rfc-editor.org/rfc/rfc9481#section-3

Message Flow:

For this profile, we mandate that the end entity include all (i.e., one or two) CertReqMsg in
a single PKIMessage and that the PKI (CA) produce a single response PKIMessage that
contains the complete response (i.e., including the second key pair, if it was requested
and if centralized key generation is supported). For simplicity, we also mandate that this message

 be the final one (i.e., no use of "waiting" status value).

The end entity has an out-of-band interaction with the CA/RA. This transaction established the
shared secret, the referenceNumber, and optionally the DN used for both the sender and subject
name in the certificate template. See Section 8.7 for security considerations on quality of shared
secret information.

Initialization Request -- ir

Step# End entity PKI

1 format ir
2 ir
3 handle ir
4 format ip
5 ip
6 handle ip
7 format certConf
8 certConf
9 handle certConf

10 format pkiconf
11 pkiconf
12 handle pkiconf

MUST
MUST

OPTIONAL

MUST

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 86

Field Value

recipient CA name
 -- the name of the CA who is being asked to produce a certificate
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this request, based
 -- on initial authentication key
senderKID referenceNum
 -- the reference number that the CA has previously issued
 -- to the end entity (together with the MACing key)
transactionID present
 -- implementation-specific value, meaningful to end
 -- entity.
 -- [If already in use at the CA, then a rejection message MUST
 -- be produced by the CA]

senderNonce present
 -- 128 (pseudo-)random bits
freeText any valid value
body ir (CertReqMessages)
 only one or two CertReqMsg
 are allowed
 -- if more certificates are required, requests MUST be
 -- packaged in separate PKIMessages

CertReqMsg one or two present
 -- see below for details, note: crm[0] means the first
 -- (which MUST be present), crm[1] means the second (which
 -- is OPTIONAL, and used to ask for a centrally generated key)

crm[0].certReq. fixed value of zero
 certReqId
 -- this is the index of the template within the message
crm[0].certReq present
 certTemplate
 -- MUST include subject public key value, otherwise unconstrained
crm[0].pop... optionally present if public key
 POPOSigningKey from crm[0].certReq.certTemplate is
 a signing key
 -- POP MAY be required in this exchange
 -- (see Appendix D.3 for details)
crm[0].certReq. optionally present
 controls.archiveOptions
 -- the end entity MAY request that the locally generated
 -- private key be archived

crm[0].certReq. optionally present
 controls.publicationInfo
 -- the end entity MAY ask for publication of resulting cert.

crm[1].certReq fixed value of one
 certReqId
 -- the index of the template within the message
 crm[1].certReq present
 certTemplate
 -- MUST NOT include actual public key bits, otherwise
 -- unconstrained (e.g., the names need not be the same as in

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 87

Initialization Response -- ip

 -- crm[0]). Note that subjectPublicKeyInfo MAY be present
 -- and contain an AlgorithmIdentifier followed by a
 -- zero-length BIT STRING for the subjectPublicKey if it is
 -- desired to inform the CA/RA of algorithm and parameter
 -- preferences regarding the to-be-generated key pair.

 crm[1].certReq. present [object identifier MUST be
 PROT_ENC_ALG]

 controls.protocolEncrKey
 -- if centralized key generation is supported by this CA,
 -- this short-term asymmetric encryption key (generated by
 -- the end entity) will be used by the CA to encrypt (a
 -- symmetric key used to encrypt) a private key generated by
 -- the CA on behalf of the end entity

crm[1].certReq. optionally present
 controls.archiveOptions
crm[1].certReq. optionally present
 controls.publicationInfo
protection present
 -- bits calculated using MSG_MAC_ALG

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 88

Field Value

sender CA name
 -- the name of the CA who produced the message
messageTime present
 -- time at which CA produced message
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this response
senderKID referenceNum
 -- the reference number that the CA has previously issued to the
 -- end entity (together with the MACing key)
transactionID present
 -- value from corresponding ir message
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
 -- value from senderNonce in corresponding ir message
freeText any valid value
body ip (CertRepMessage)
 contains exactly one response
 for each request
 -- The PKI (CA) responds to either one or two requests as
 -- appropriate. crc[0] denotes the first (always present);
 -- crc[1] denotes the second (only present if the ir message
 -- contained two requests and if the CA supports centralized
 -- key generation).
crc[0]. fixed value of zero
 certReqId
 -- MUST contain the response to the first request in the
 -- corresponding ir message
crc[0].status. present, positive values allowed:
 status "accepted", "grantedWithMods"
 negative values allowed:
 "rejection"
crc[0].status. present if and only if
 failInfo crc[0].status.status is "rejection"
crc[0]. present if and only if
 certifiedKeyPair crc[0].status.status is
 "accepted" or "grantedWithMods"
certificate present unless end entity's public
 key is an encryption key and POP
 is done in this in-band exchange
encryptedCert present if and only if end entity's
 public key is an encryption key and
 POP done in this in-band exchange
publicationInfo optionally present

 -- indicates where certificate has been published (present
 -- at discretion of CA)

crc[1]. fixed value of one
 certReqId
 -- MUST contain the response to the second request in the
 -- corresponding ir message
crc[1].status. present, positive values allowed:
 status "accepted", "grantedWithMods"
 negative values allowed:

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 89

Certificate confirm -- certConf

Confirmation -- pkiconf

 "rejection"
crc[1].status. present if and only if
 failInfo crc[0].status.status is "rejection"
crc[1]. present if and only if
 certifiedKeyPair crc[0].status.status is "accepted"
 or "grantedWithMods"
certificate present
privateKey present
 -- Use EnvelopedData; if backward compatibility is required,
 -- use EncryptedValue, see Section 5.2.2
publicationInfo optionally present
 -- indicates where certificate has been published (present
 -- at discretion of CA)

protection present
 -- bits calculated using MSG_MAC_ALG
extraCerts optionally present
 -- the CA MAY provide additional certificates to the end
 -- entity

Field Value

sender present
 -- same as in ir
recipient CA name
 -- the name of the CA who was asked to produce a certificate
transactionID present
 -- value from corresponding ir and ip messages
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
 -- value from senderNonce in corresponding ip message
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this message. The
 -- MAC is based on the initial authentication key shared
 -- between the end entity and the CA.

senderKID referenceNum
 -- the reference number that the CA has previously issued
 -- to the end entity (together with the MACing key)

body certConf
 -- see Section 5.3.18, "PKI Confirmation Content", for the
 -- contents of the certConf fields.
 -- Note: two CertStatus structures are required if both an
 -- encryption and a signing certificate were sent.

protection present
 -- bits calculated using MSG_MAC_ALG

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 90

Field Value

sender present
 -- same as in ip
recipient present
 -- sender name from certConf
transactionID present
 -- value from certConf message
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
 -- value from senderNonce from certConf message
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this message.
senderKID referenceNum
body pkiconf
protection present
 -- bits calculated using MSG_MAC_ALG

C.5. Certificate Request
An (initialized) end entity requests a certificate from a CA (for any reason). When the CA
responds with a message containing a certificate, the end entity replies with a certificate
confirmation. The CA replies with a pkiconf message to close the transaction. All messages are
authenticated.

The profile for this exchange is identical to that given in Appendix C.4, with the following
exceptions:

sender name be present;
protectionAlg of MSG_SIG_ALG be supported (MSG_MAC_ALG also be supported)
in request, response, certConf, and pkiconf messages;
senderKID and recipKID are only present if required for message verification;
body is cr or cp;
body may contain one or two CertReqMsg structures, but either CertReqMsg may be used to
request certification of a locally generated public key or a centrally generated public key
(i.e., the position-dependence requirement of Appendix C.4 is removed); and
protection bits are calculated according to the protectionAlg field.

• SHOULD

• MUST MAY

•
•
•

•

C.6. Key Update Request
An (initialized) end entity requests a certificate from a CA (to update the key pair and/or
corresponding certificate that it already possesses). When the CA responds with a message
containing a certificate, the end entity replies with a certificate confirmation. The CA replies
with a PKIConfirm to close the transaction. All messages are authenticated.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 91

The profile for this exchange is identical to that given in Appendix C.4, with the following
exceptions:

sender name be present;
protectionAlg of MSG_SIG_ALG be supported (MSG_MAC_ALG also be supported)
in request, response, certConfirm, and PKIConfirm messages;
senderKID and recipKID are only present if required for message verification;
body is kur or kup;
body may contain one or two CertReqMsg structures, but either CertReqMsg may be used to
request certification of a locally generated public key or a centrally generated public key
(i.e.,the position-dependence requirement of Appendix C.4 is removed);
protection bits are calculated according to the protectionAlg field; and
regCtrl OldCertId be used (unless it is clear to both the sender and receiver -- by
means not specified in this document -- that it is not needed).

• SHOULD

• MUST MAY

•
•
•

•
• SHOULD

Appendix D. PKI Management Message Profiles ()
This appendix contains detailed profiles for those PKIMessages that be supported by
implementations.

Profiles for the PKIMessages used in the following PKI management operations are provided:

root CA key update
information request/response
cross-certification request/response (1-way)
in-band initialization using external identity certificate

Future versions of this document may extend the above to include profiles for the operations
listed below (along with other operations, if desired).

revocation request
certificate publication
CRL publication

OPTIONAL
MAY

•
•
•
•

•
•
•

D.1. General Rules for Interpretation of These Profiles
Identical to Appendix C.1.

D.2. Algorithm Use Profile
Identical to Appendix C.2.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 92

D.3. Self-Signed Certificates
The table below is a profile of how a certificate structure may be "self-signed". These structures
are used for distribution of new root CA public keys. This can occur in one of three ways (see
Section 4.4 above for a description of the use of these structures):

Type Function

newWithNew a "self-signed" certificate; the contained public key be usable to verify
the signature (though this provides only integrity and no authentication
whatsoever)

oldWithNew previous root CA public key signed with new private key

newWithOld new root CA public key signed with previous private key

Table 3

A newWithNew certificate (including relevant extensions) must contain "sensible" values for all
fields. For example, when present, subjectAltName be identical to issuerAltName, and,
when present, keyIdentifiers must contain appropriate values, et cetera.

MUST

MUST

D.4. Root CA Key Update
A root CA updates its key pair. It then produces a CA key update announcement message that
can be made available (via some transport mechanism) to the relevant entities. A confirmation
message is not required from the end entities.

ckuann message:

Field Value Comment

sender CA name CA name

body ckuann(RootCaKeyUpdateContent)

newWithNew optionally present see Appendix D.3 above

newWithOld optionally present see Appendix D.3 above

oldWithNew optionally present see Appendix D.3 above

extraCerts optionally present can be used to "publish" certificates
(e.g., certificates signed using the new
private key)

Table 4

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 93

D.5. PKI Information Request/Response
The end entity sends a general message to the PKI requesting details that will be required for
later PKI management operations. The RA/CA responds with a general response. If an RA
generates the response, then it will simply forward the equivalent message that it previously
received from the CA, with the possible addition of certificates to the extraCerts fields of the
PKIMessage. A confirmation message is not required from the end entity.

Message Flows:

genM:

genP:

Step# End entity PKI

1 format genm
2 genm
3 handle genm
4 produce genp
5 genp
6 handle genp

Field Value

recipient CA name
 -- the name of the CA as contained in issuerAltName
 -- extensions or issuer fields within certificates
protectionAlg MSG_MAC_ALG or MSG_SIG_ALG
 -- any authenticated protection alg.
SenderKID present if required
 -- must be present if required for verification of message
 -- protection
freeText any valid value
body genr (GenReqContent)
GenMsgContent empty SEQUENCE
 -- all relevant information requested
protection present
 -- bits calculated using MSG_MAC_ALG or MSG_SIG_ALG

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 94

Field Value

sender CA name
 -- name of the CA that produced the message
protectionAlg MSG_MAC_ALG or MSG_SIG_ALG
 -- any authenticated protection alg.
senderKID present if required
 -- must be present if required for verification of message
 -- protection
body genp (GenRepContent)
CAProtEncCert present (object identifier one
 of PROT_ENC_ALG), with relevant
 value
 -- to be used if end entity needs to encrypt information for
 -- the CA (e.g., private key for recovery purposes)

SignKeyPairTypes present, with relevant value
 -- the set of signature algorithm identifiers that this CA will
 -- certify for subject public keys
EncKeyPairTypes present, with relevant value
 -- the set of encryption / key agreement algorithm identifiers that
 -- this CA will certify for subject public keys
PreferredSymmAlg present (object identifier one
 of PROT_SYM_ALG) , with relevant
 value
 -- the symmetric algorithm that this CA expects to be used
 -- in later PKI messages (for encryption)
RootCaKeyUpdate optionally present, with
 relevant value
 -- Use RootCaKeyUpdate; if backward compatibility with cmp2000 is
 -- required, use CAKeyUpdateInfo.
 -- The CA MAY provide information about a relevant root CA
 -- key pair using this field (note that this does not imply
 -- that the responding CA is the root CA in question)
CurrentCRL optionally present, with relevant value
 -- the CA MAY provide a copy of a complete CRL (i.e.,
 -- fullest possible one)
protection present
 -- bits calculated using MSG_MAC_ALG or MSG_SIG_ALG
extraCerts optionally present
 -- can be used to send some certificates to the end
 -- entity. An RA MAY add its certificate here.

D.6. Cross-Certification Request/Response (1-way)
This section describes the creation of a single cross-certificate (i.e., not two at once). The
requesting CA choose who is responsible for publication of the cross-certificate created by
the responding CA through use of the PKIPublicationInfo control.

Preconditions:

Responding CA can verify the origin of the request (possibly requiring out-of-band means)
before processing the request.

MAY

1.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 95

Requesting CA can authenticate the authenticity of the origin of the response (possibly
requiring out-of-band means) before processing the response.

The use of certificate confirmation and the corresponding server confirmation is determined by
the generalInfo field in the PKIHeader (see Section 5.1.1). The following profile does not mandate
support for either confirmation.

Message Flows:

ccr:

2.

Step# Requesting CA Responding CA

1 format ccr
2 ccr
3 handle ccr
4 produce ccp
5 ccp
6 handle ccp

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 96

ccp:

Field Value

sender Requesting CA name
 -- the name of the CA who produced the message
recipient Responding CA name
 -- the name of the CA who is being asked to produce a certificate
messageTime time of production of message
 -- current time at requesting CA
protectionAlg MSG_SIG_ALG
 -- only signature protection is allowed for this request
senderKID present if required
 -- must be present if required for verification of message
 -- protection
recipKID present if required
 -- must be present if required for verification of message
 -- protection
transactionID present
 -- implementation-specific value, meaningful to requesting CA.
 -- [If already in use at responding CA, then a rejection message
 -- MUST be produced by responding CA]
senderNonce present
 -- 128 (pseudo-)random bits
freeText any valid value
body ccr (CertReqMessages)
 only one CertReqMsg
 allowed
 -- if multiple cross-certificates are required, they MUST be
 -- packaged in separate PKIMessages
certTemplate present
 -- details follow
version v1 or v3
 -- v3 STRONGLY RECOMMENDED
signingAlg present
 -- the requesting CA must know in advance with which algorithm it
 -- wishes the certificate to be signed

subject present
 -- may be NULL-DN only if subjectAltNames extension value proposed
validity present
 -- MUST be completely specified (i.e., both fields present)
issuer present
 -- may be NULL-DN only if issuerAltNames extension value proposed
publicKey present
 -- the key to be certified (which must be for a signing algorithm)
extensions optionally present
 -- a requesting CA must propose values for all extensions
 -- that it requires to be in the cross-certificate
POPOSigningKey present
 -- see Appendix C.3: POP Profile
protection present
 -- bits calculated using MSG_SIG_ALG
extraCerts optionally present
 -- MAY contain any additional certificates that requester wishes
 -- to include

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 97

Field Value

sender Responding CA name
 -- the name of the CA who produced the message
recipient Requesting CA name
 -- the name of the CA who asked for production of a certificate
messageTime time of production of message
 -- current time at responding CA
protectionAlg MSG_SIG_ALG
 -- only signature protection is allowed for this message
senderKID present if required
 -- must be present if required for verification of message
 -- protection
recipKID present if required
transactionID present
 -- value from corresponding ccr message
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
-- senderNonce from corresponding ccr message
freeText any valid value
body ccp (CertRepMessage)
 only one CertResponse allowed
 -- if multiple cross-certificates are required, they MUST be
 -- packaged in separate PKIMessages
response present
status present

PKIStatusInfo.status present
 -- if PKIStatusInfo.status is one of:
 -- accepted, or
 -- grantedWithMods,
 -- then certifiedKeyPair MUST be present and failInfo MUST
 -- be absent

failInfo present depending on
 PKIStatusInfo.status
 -- if PKIStatusInfo.status is:
 -- rejection,
 -- then certifiedKeyPair MUST be absent and failInfo MUST be
 -- present and contain appropriate bit settings

certifiedKeyPair present depending on
 PKIStatusInfo.status
certificate present depending on
 certifiedKeyPair
 -- content of actual certificate must be examined by requesting CA
 -- before publication
protection present
 -- bits calculated using MSG_SIG_ALG
extraCerts optionally present
 -- MAY contain any additional certificates that responder wishes
 -- to include

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 98

D.7. In-Band Initialization Using External Identity Certificate
An (uninitialized) end entity wishes to initialize into the PKI with a CA, CA-1. It uses, for
authentication purposes, a pre-existing identity certificate issued by another (external) CA, CA-X.
A trust relationship must already have been established between CA-1 and CA-X so that CA-1 can
validate the end entity identity certificate signed by CA-X. Furthermore, some mechanism must
already have been established within the TEE, also known as PSE, of the end entity that would
allow it to authenticate and verify PKIMessages signed by CA-1 (as one example, the TEE may
contain a certificate issued for the public key of CA-1, signed by another CA that the end entity
trusts on the basis of out-of-band authentication techniques).

The end entity sends an initialization request to start the transaction. When CA-1 responds with
a message containing the new certificate, the end entity replies with a certificate confirmation.
CA-1 replies with a pkiconf message to close the transaction. All messages are signed (the end
entity messages are signed using the private key that corresponds to the public key in its
external identity certificate; the CA-1 messages are signed using the private key that corresponds
to the public key in a certificate that can be chained to a trust anchor in the end entity's TEE).

The profile for this exchange is identical to that given in Appendix C.4, with the following
exceptions:

the end entity and CA-1 do not share a symmetric MACing key (i.e., there is no out-of-band
shared secret information between these entities);
sender name in ir be present (and identical to the subject name present in the
external identity certificate);
protectionAlg of MSG_SIG_ALG be used in all messages;
external identity certificate be carried in ir extraCerts field
senderKID and recipKID are not used;
body is ir or ip; and
protection bits are calculated according to the protectionAlg field.

•

• MUST

• MUST

• MUST

•
•
•

Appendix E. Variants of Using KEM Keys for PKI Message
Protection
As described in Section 5.1.3.4, any party in a PKI management operation may wish to use a KEM
key pair for message protection. Possible cases are described below.

For any PKI management operation started by a PKI entity with any type of request message, the
following message flows describe the use of a KEM key. There are two cases to distinguish,
namely whether the PKI entity or the PKI management entity owns a KEM key pair. If both sides
own KEM key pairs, the flows need to be combined such that for each direction a shared secret
key is established.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 99

In the following message flows, Alice indicates the PKI entity that uses a KEM key pair for
message authentication and Bob provides the KEM ciphertext using Alice's public KEM key, as
described in Section 5.1.3.4.

Figure 3: Message Flow When the PKI Entity Has a KEM Key Pair and Certificate

Step# PKI entity PKI management entity
(Alice) (Bob)

1 format unprotected genm
of type
KemCiphertextInfo
without value, and
KEM certificate in
extraCerts

2 genm
3 validate KEM certificate
4 perform KEM Encapsulate
5 format unprotected genp

of type
KemCiphertextInfo
providing KEM ciphertext

6 genp
7 perform KEM Decapsulate
8 perform key derivation

to get ssk
9 format request with

MAC-based protection
10 request
11 perform key derivation

to get ssk
12 verify MAC-based

protection

PKI entity authenticated by PKI management entity

13 format response with
protection depending on
available key material

14 response
15 verify protection

provided by the
PKI management entity

16 Further messages of this PKI management operation
can be exchanged with MAC-based protection by the PKI
entity using the established shared secret key (ssk)

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 100

Note: Figure 4 describes the situation where KEM-based message protection may not require
more than one message exchange. In this case, the transactionID also be used by the PKI
entity (Bob) to ensure domain separation between different PKI management operations.

Figure 4: Message Flow When the PKI Entity Knows That the PKI Management Entity Uses a KEM
Key Pair and Has the Authentic Public Key

Step# PKI entity PKI management entity
(Bob) (Alice)

1 perform KEM Encapsulate
2 format request providing

KEM ciphertext in
generalInfo of type
KemCiphertextInfo,
and with protection
depending on available
key material

3 request
4 perform KEM Decapsulate
5 perform key derivation

to get ssk
6 format response with

MAC-based protection
7 response
8 perform key derivation

to get ssk
9 verify MAC-based

protection

PKI management entity authenticated by PKI entity

10 Further messages of this PKI management operation
can be exchanged with MAC-based protection by the

PKI management entity using the established
shared secret key (ssk)

MUST

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 101

Figure 5: Message Flow When the PKI Entity Does Not Know That the PKI Management Entity Uses
a KEM Key Pair

Step# PKI entity PKI management entity
(Bob) (Alice)

1 format request with
protection depending
on available key
material

2 request
3 format unprotected error

with status "rejection"
and failInfo
"wrongIntegrity" and KEM
certificate in
extraCerts

4 error
5 validate KEM certificate

6 proceed as shown in the figure before

Appendix F. Compilable ASN.1 Definitions
This section contains the updated 2002 ASN.1 module from , which was updated in

. This module replaces the module in . The module contains
those changes to the normative ASN.1 module from that were specified
in , as well as changes made in this document. This module makes reference to ASN.1
structures defined in , as well as the UTF-8 encoding defined in .

[RFC5912]
[RFC9480] Section 9 of [RFC5912]

Appendix F of [RFC4210]
[RFC9480]

[RFC6268] [RFC3629]

PKIXCMP-2023
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-cmp2023-02(116) }
DEFINITIONS EXPLICIT TAGS ::=
BEGIN
IMPORTS

AttributeSet{}, SingleAttribute{}, Extensions{}, EXTENSION, ATTRIBUTE
FROM PKIX-CommonTypes-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkixCommon-02(57)}

AlgorithmIdentifier{}, SIGNATURE-ALGORITHM, ALGORITHM,
 DIGEST-ALGORITHM, MAC-ALGORITHM, KEY-DERIVATION
FROM AlgorithmInformation-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58)}

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 102

https://rfc-editor.org/rfc/rfc5912#section-9
https://rfc-editor.org/rfc/rfc4210#appendix-F

Certificate, CertificateList, Time, id-kp
FROM PKIX1Explicit-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-explicit-02(51)}

DistributionPointName, GeneralNames, GeneralName, KeyIdentifier
FROM PKIX1Implicit-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-implicit-02(59)}

CertTemplate, PKIPublicationInfo, EncryptedKey, CertId,
 CertReqMessages, Controls, RegControlSet, id-regCtrl
FROM PKIXCRMF-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-crmf2005-02(55) }
 -- The import of EncryptedKey is added due to the updates made
 -- in [RFC9480]. EncryptedValue does not need to be imported
 -- anymore and is therefore removed here.

CertificationRequest
FROM PKCS-10
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkcs10-2009(69)}
-- (specified in [RFC2986] with 1993 ASN.1 syntax and IMPLICIT
-- tags). Alternatively, implementers may directly include
-- the syntax of [RFC2986] in this module.

localKeyId
FROM PKCS-9
 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 modules(0) pkcs-9(1)}
 -- The import of localKeyId is added due to the updates made in
 -- [RFC9480]

EnvelopedData, SignedData
FROM CryptographicMessageSyntax-2010
 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-2009(58)}
 -- The import of EnvelopedData and SignedData from [RFC6268] is
 -- added due to the updates made in CMP Updates [RFC9480]

KEM-ALGORITHM
FROM KEMAlgorithmInformation-2023 -- [RFC9629]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-kemAlgorithmInformation-2023(109) }
 -- The import of KEM-ALGORITHM was added due to the updates made
 -- in [RFC9810]
;

-- History of the PKIXCMP ASN.1 modules
-- [RFC2510]
-- 1988 Syntax, PKIXCMP, 1.3.6.1.5.5.7.0.9 (id-mod-cmp)
-- Obsoleted by RFC 4210 PKIXCMP, 1.3.6.1.5.5.7.0.16
-- (id-mod-cmp2000)
-- [RFC4210]
-- 1988 Syntax, PKIXCMP, 1.3.6.1.5.5.7.0.16 (id-mod-cmp2000)

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 103

-- Replaced by RFC 9480 PKIXCMP, 1.3.6.1.5.5.7.0.99
-- (id-mod-cmp2021-88)
-- [RFC5912]
-- 2002 Syntax, PKIXCMP-2009, 1.3.6.1.5.5.7.0.50
-- (id-mod-cmp2000-02)
-- Replaced by RFC 9480 PKIXCMP-2021, 1.3.6.1.5.5.7.0.100
-- (id-mod-cmp2021-02)
-- [RFC9480]
-- 1988 Syntax, PKIXCMP, 1.3.6.1.5.5.7.0.99 (id-mod-cmp2021-88)
-- 2002 Syntax, PKIXCMP-2021, 1.3.6.1.5.5.7.0.100
-- (id-mod-cmp2021-02)
-- Obsoleted by [RFC9810] PKIXCMP-2023, 1.3.6.1.5.5.7.0.116
-- (id-mod-cmp2023-02)
-- [RFC9810]
-- 2002 Syntax, PKIXCMP-2023, 1.3.6.1.5.5.7.0.116
-- (id-mod-cmp2023-02)

-- The rest of the module contains locally defined OIDs and
-- constructs:

CMPCertificate ::= CHOICE { x509v3PKCert Certificate, ... }
-- This syntax, while bits-on-the-wire compatible with the
-- standard X.509 definition of "Certificate", allows the
-- possibility of future certificate types (such as X.509
-- attribute certificates, card-verifiable certificates, or other
-- kinds of certificates) within this Certificate Management
-- Protocol, should a need ever arise to support such generality.
-- Those implementations that do not foresee a need to ever support
-- other certificate types MAY, if they wish, comment out the
-- above structure and "uncomment" the following one prior to
-- compiling this ASN.1 module. (Note that interoperability
-- with implementations that don't do this will be unaffected by
-- this change.)

-- CMPCertificate ::= Certificate

PKIMessage ::= SEQUENCE {
 header PKIHeader,
 body PKIBody,
 protection [0] PKIProtection OPTIONAL,
 extraCerts [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
 OPTIONAL }

PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage

PKIHeader ::= SEQUENCE {
 pvno INTEGER { cmp1999(1), cmp2000(2),
 cmp2021(3) },
 sender GeneralName,
 -- identifies the sender
 recipient GeneralName,
 -- identifies the intended recipient
 messageTime [0] GeneralizedTime OPTIONAL,
 -- time of production of this message (used when sender
 -- believes that the transport will be "suitable", i.e.,
 -- that the time will still be meaningful upon receipt)
 protectionAlg [1] AlgorithmIdentifier{ALGORITHM, {...}}

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 104

 OPTIONAL,
 -- algorithm used for calculation of protection bits
 senderKID [2] KeyIdentifier OPTIONAL,
 recipKID [3] KeyIdentifier OPTIONAL,
 -- to identify specific keys used for protection
 transactionID [4] OCTET STRING OPTIONAL,
 -- identifies the transaction, i.e., this will be the same in
 -- corresponding request, response, certConf, and pkiconf
 -- messages
 senderNonce [5] OCTET STRING OPTIONAL,
 recipNonce [6] OCTET STRING OPTIONAL,
 -- nonces used to provide replay protection, senderNonce
 -- is inserted by the creator of this message; recipNonce
 -- is a nonce previously inserted in a related message by
 -- the intended recipient of this message.
 freeText [7] PKIFreeText OPTIONAL,
 -- this may be used to indicate context-specific instructions
 -- (this field is intended for human consumption)
 generalInfo [8] SEQUENCE SIZE (1..MAX) OF
 InfoTypeAndValue OPTIONAL
 -- this may be used to convey context-specific information
 -- (this field is not primarily intended for human consumption)
}

PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String
 -- text encoded as UTF-8 string [RFC3629]

PKIBody ::= CHOICE { -- message-specific body elements
 ir [0] CertReqMessages, --Initialization Request
 ip [1] CertRepMessage, --Initialization Response
 cr [2] CertReqMessages, --Certification Request
 cp [3] CertRepMessage, --Certification Response
 p10cr [4] CertificationRequest, --imported from [RFC2986]
 popdecc [5] POPODecKeyChallContent, --pop Challenge
 popdecr [6] POPODecKeyRespContent, --pop Response
 kur [7] CertReqMessages, --Key Update Request
 kup [8] CertRepMessage, --Key Update Response
 krr [9] CertReqMessages, --Key Recovery Request
 krp [10] KeyRecRepContent, --Key Recovery Response
 rr [11] RevReqContent, --Revocation Request
 rp [12] RevRepContent, --Revocation Response
 ccr [13] CertReqMessages, --Cross-Cert. Request
 ccp [14] CertRepMessage, --Cross-Cert. Response
 ckuann [15] CAKeyUpdContent, --CA Key Update Ann.
 cann [16] CertAnnContent, --Certificate Ann.
 rann [17] RevAnnContent, --Revocation Ann.
 crlann [18] CRLAnnContent, --CRL Announcement
 pkiconf [19] PKIConfirmContent, --Confirmation
 nested [20] NestedMessageContent, --Nested Message
 genm [21] GenMsgContent, --General Message
 genp [22] GenRepContent, --General Response
 error [23] ErrorMsgContent, --Error Message
 certConf [24] CertConfirmContent, --Certificate Confirm
 pollReq [25] PollReqContent, --Polling Request
 pollRep [26] PollRepContent --Polling Response
}

PKIProtection ::= BIT STRING

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 105

ProtectedPart ::= SEQUENCE {
 header PKIHeader,
 body PKIBody }

id-PasswordBasedMac OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 usa(840) nt(113533) nsn(7) algorithms(66) 13 }
PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 -- Note: Implementations MAY wish to limit acceptable sizes
 -- of this string to values appropriate for their environment
 -- in order to reduce the risk of denial-of-service attacks.
 owf AlgorithmIdentifier{DIGEST-ALGORITHM, {...}},
 -- AlgId for the OWF
 iterationCount INTEGER,
 -- number of times the OWF is applied
 -- Note: Implementations MAY wish to limit acceptable sizes
 -- of this integer to values appropriate for their environment
 -- in order to reduce the risk of denial-of-service attacks.
 mac AlgorithmIdentifier{MAC-ALGORITHM, {...}}
 -- AlgId of the MAC algorithm
}

id-DHBasedMac OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 usa(840) nt(113533) nsn(7) algorithms(66) 30 }
DHBMParameter ::= SEQUENCE {
 owf AlgorithmIdentifier{DIGEST-ALGORITHM, {...}},
 -- AlgId for an OWF
 mac AlgorithmIdentifier{MAC-ALGORITHM, {...}}
 -- AlgId of the MAC algorithm
}

-- id-KemBasedMac and KemBMParameter were added in [RFC9810]

id-KemBasedMac OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 usa(840) nt(113533) nsn(7) algorithms(66) 16 }
KemBMParameter ::= SEQUENCE {
 kdf AlgorithmIdentifier{KEY-DERIVATION, {...}},
 -- AlgId of the Key Derivation Function algorithm
 kemContext [0] OCTET STRING OPTIONAL,
 -- MAY contain additional algorithm-specific context information
 len INTEGER (1..MAX),
 -- Defines the length of the keying material output of the KDF
 -- SHOULD be the maximum key length of the MAC function
 mac AlgorithmIdentifier{MAC-ALGORITHM, {...}}
 -- AlgId of the MAC algorithm
}

PKIStatus ::= INTEGER {
 accepted (0),
 -- you got exactly what you asked for
 grantedWithMods (1),
 -- you got something like what you asked for; the
 -- requester is responsible for ascertaining the differences
 rejection (2),
 -- you don't get it, more information elsewhere in the message
 waiting (3),
 -- the request body part has not yet been processed; expect to

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 106

 -- hear more later (note: proper handling of this status
 -- response MAY use the polling req/rep PKIMessages specified
 -- in Section 5.3.22; alternatively, polling in the underlying
 -- transport layer MAY have some utility in this regard)
 revocationWarning (4),
 -- this message contains a warning that a revocation is
 -- imminent
 revocationNotification (5),
 -- notification that a revocation has occurred
 keyUpdateWarning (6)
 -- update already done for the oldCertId specified in
 -- CertReqMsg
}

PKIFailureInfo ::= BIT STRING {
-- since we can fail in more than one way!
-- More codes may be added in the future if/when required.
 badAlg (0),
 -- unrecognized or unsupported algorithm identifier
 badMessageCheck (1),
 -- integrity check failed (e.g., signature did not verify)
 badRequest (2),
 -- transaction not permitted or supported
 badTime (3),
 -- messageTime was not sufficiently close to the system time,
 -- as defined by local policy
 badCertId (4),
 -- no certificate could be found matching the provided criteria
 badDataFormat (5),
 -- the data submitted has the wrong format
 wrongAuthority (6),
 -- the authority indicated in the request is different from the
 -- one creating the response token
 incorrectData (7),
 -- the requester's data is incorrect (for notary services)
 missingTimeStamp (8),
 -- when the timestamp is missing but should be there
 -- (by policy)
 badPOP (9),
 -- the POP failed
 certRevoked (10),
 -- the certificate has already been revoked
 certConfirmed (11),
 -- the certificate has already been confirmed
 wrongIntegrity (12),
 -- KEM ciphertext missing for MAC-based protection of response,
 -- or not valid integrity of message received (password based
 -- instead of signature or vice versa)
 badRecipientNonce (13),
 -- not valid recipient nonce, either missing or wrong value
 timeNotAvailable (14),
 -- the TSA's time source is not available
 unacceptedPolicy (15),
 -- the requested TSA policy is not supported by the TSA
 unacceptedExtension (16),
 -- the requested extension is not supported by the TSA
 addInfoNotAvailable (17),
 -- the additional information requested could not be

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 107

 -- understood or is not available
 badSenderNonce (18),
 -- not valid sender nonce, either missing or wrong size
 badCertTemplate (19),
 -- not valid cert. template or missing mandatory information
 signerNotTrusted (20),
 -- signer of the message unknown or not trusted
 transactionIdInUse (21),
 -- the transaction identifier is already in use
 unsupportedVersion (22),
 -- the version of the message is not supported
 notAuthorized (23),
 -- the sender was not authorized to make the preceding
 -- request or perform the preceding action
 systemUnavail (24),
 -- the request cannot be handled due to system unavailability
 systemFailure (25),
 -- the request cannot be handled due to system failure
 duplicateCertReq (26)
 -- certificate cannot be issued because a duplicate
 -- certificate already exists
}

PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL }

OOBCert ::= CMPCertificate

OOBCertHash ::= SEQUENCE {
 hashAlg [0] AlgorithmIdentifier{DIGEST-ALGORITHM, {...}}
 OPTIONAL,
 certId [1] CertId OPTIONAL,
 hashVal BIT STRING
 -- hashVal is calculated over the DER encoding of the
 -- self-signed certificate with the identifier certID.
}

POPODecKeyChallContent ::= SEQUENCE OF Challenge
-- One Challenge per encryption or key agreement key certification
-- request (in the same order as these requests appear in
-- CertReqMessages).

-- encryptedRand was added in [RFC9810]

Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier{DIGEST-ALGORITHM, {...}}
 OPTIONAL,
 -- MUST be present in the first Challenge; MAY be omitted in
 -- any subsequent Challenge in POPODecKeyChallContent (if
 -- omitted, then the owf used in the immediately preceding
 -- Challenge is to be used).
 witness OCTET STRING,
 -- the result of applying the OWF to a
 -- randomly generated INTEGER, A. (Note that a different
 -- INTEGER MUST be used for each Challenge.)
 challenge OCTET STRING,

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 108

 -- MUST be used for cmp2000(2) popdecc messages and MUST be
 -- the encryption of Rand (using a mechanism depending on the
 -- private key type).
 -- MUST be an empty OCTET STRING for cmp2021(3) popdecc messages.
 -- Note: Using challenge omitting the optional encryptedRand is
 -- bit-compatible to the syntax without adding this optional
 -- field.
 encryptedRand [0] EnvelopedData OPTIONAL
 -- MUST be omitted for cmp2000(2) popdecc messages.
 -- MUST be used for cmp2021(3) popdecc messages and MUST contain
 -- the encrypted value of Rand using CMS EnvelopedData using the
 -- key management technique depending on the private key type as
 -- defined in Section 5.2.2.
}

-- Rand was added in [RFC9480]

Rand ::= SEQUENCE {
-- Rand is encrypted involving the public key to form the content of
-- challenge or encryptedRand in POPODecKeyChallContent
 int INTEGER,
 -- the randomly generated INTEGER A (above)
 sender GeneralName
 -- the sender's name (as included in PKIHeader)
}

POPODecKeyRespContent ::= SEQUENCE OF INTEGER
-- One INTEGER per encryption or key agreement key certification
-- request (in the same order as these requests appear in
-- CertReqMessages). The retrieved INTEGER A (above) is returned to
-- the sender of the corresponding Challenge.

CertRepMessage ::= SEQUENCE {
 caPubs [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
 OPTIONAL,
 response SEQUENCE OF CertResponse }

CertResponse ::= SEQUENCE {
 certReqId INTEGER,
 -- to match this response with the corresponding request (a value
 -- of -1 is to be used if certReqId is not specified in the
 -- corresponding request, which can only be a p10cr)
 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair OPTIONAL,
 rspInfo OCTET STRING OPTIONAL
 -- analogous to the id-regInfo-utf8Pairs string defined
 -- for regInfo in CertReqMsg [RFC4211]
}

CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedKey OPTIONAL,
 -- See [RFC4211] for comments on encoding.
 -- Changed from EncryptedValue to EncryptedKey as a CHOICE of
 -- EncryptedValue and EnvelopedData due to the changes made in
 -- [RFC9480].
 -- Using the choice EncryptedValue is bit-compatible to the
 -- syntax without this change.

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 109

 publicationInfo [1] PKIPublicationInfo OPTIONAL }

CertOrEncCert ::= CHOICE {
 certificate [0] CMPCertificate,
 encryptedCert [1] EncryptedKey
 -- Changed from Encrypted Value to EncryptedKey as a CHOICE of
 -- EncryptedValue and EnvelopedData due to the changes made in
 -- [RFC9480].
 -- Using the choice EncryptedValue is bit-compatible to the
 -- syntax without this change.
}

KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] CMPCertificate OPTIONAL,
 caCerts [1] SEQUENCE SIZE (1..MAX) OF
 CMPCertificate OPTIONAL,
 keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
 CertifiedKeyPair OPTIONAL }

RevReqContent ::= SEQUENCE OF RevDetails

RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g., for cases in which serialNumber is not available)
 crlEntryDetails Extensions{{...}} OPTIONAL
 -- requested crlEntryExtensions
}

RevRepContent ::= SEQUENCE {
 status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
 -- in same order as was sent in RevReqContent
 revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL,
 -- IDs for which revocation was requested
 -- (same order as status)
 crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList OPTIONAL
 -- the resulting CRLs (there may be more than one)
}

CAKeyUpdAnnContent ::= SEQUENCE {
 oldWithNew CMPCertificate, -- old pub signed with new priv
 newWithOld CMPCertificate, -- new pub signed with old priv
 newWithNew CMPCertificate -- new pub signed with new priv
}

-- CAKeyUpdContent was added in [RFC9810]
CAKeyUpdContent ::= CHOICE {
 cAKeyUpdAnnV2 CAKeyUpdAnnContent, -- deprecated
 cAKeyUpdAnnV3 [0] RootCaKeyUpdateContent
}
-- With cmp2021, the use of CAKeyUpdAnnContent is deprecated, use
-- RootCaKeyUpdateContent instead.

CertAnnContent ::= CMPCertificate

RevAnnContent ::= SEQUENCE {

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 110

 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions{{...}} OPTIONAL
 -- extra CRL details (e.g., crl number, reason, location, etc.)
}

CRLAnnContent ::= SEQUENCE OF CertificateList

PKIConfirmContent ::= NULL

NestedMessageContent ::= PKIMessages

-- CertReqTemplateContent, AttributeTypeAndValue,
-- ExpandedRegControlSet, id-regCtrl-altCertTemplate,
-- AltCertTemplate, regCtrl-algId, id-regCtrl-algId, AlgIdCtrl,
-- regCtrl-rsaKeyLen, id-regCtrl-rsaKeyLen, and RsaKeyLenCtrl
-- were added in [RFC9480]

CertReqTemplateContent ::= SEQUENCE {
 certTemplate CertTemplate,
 -- prefilled certTemplate structure elements
 -- The SubjectPublicKeyInfo field in the certTemplate MUST NOT
 -- be used.
 keySpec Controls OPTIONAL
 -- MAY be used to specify supported algorithms
 -- Controls ::= SEQUENCE SIZE (1..MAX) OF AttributeTypeAndValue
 -- as specified in CRMF [RFC4211]
 }

AttributeTypeAndValue ::= SingleAttribute{{ ... }}

ExpandedRegControlSet ATTRIBUTE ::= { RegControlSet |
 regCtrl-altCertTemplate | regCtrl-algId | regCtrl-rsaKeyLen, ... }

regCtrl-altCertTemplate ATTRIBUTE ::=
 { TYPE AltCertTemplate IDENTIFIED BY id-regCtrl-altCertTemplate }

id-regCtrl-altCertTemplate OBJECT IDENTIFIER ::= { id-regCtrl 7 }

AltCertTemplate ::= AttributeTypeAndValue
 -- specifies a template for a certificate other than an X.509v3
 -- public key certificate

regCtrl-algId ATTRIBUTE ::=
 { TYPE AlgIdCtrl IDENTIFIED BY id-regCtrl-algId }

id-regCtrl-algId OBJECT IDENTIFIER ::= { id-regCtrl 11 }

AlgIdCtrl ::= AlgorithmIdentifier{ALGORITHM, {...}}
 -- SHALL be used to specify supported algorithms other than RSA

regCtrl-rsaKeyLen ATTRIBUTE ::=
 { TYPE RsaKeyLenCtrl IDENTIFIED BY id-regCtrl-rsaKeyLen }

id-regCtrl-rsaKeyLen OBJECT IDENTIFIER ::= { id-regCtrl 12 }

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 111

RsaKeyLenCtrl ::= INTEGER (1..MAX)
 -- SHALL be used to specify supported RSA key lengths

-- RootCaKeyUpdateContent, CRLSource, and CRLStatus were added in
-- [RFC9480]

RootCaKeyUpdateContent ::= SEQUENCE {
 newWithNew CMPCertificate,
 -- new root CA certificate
 newWithOld [0] CMPCertificate OPTIONAL,
 -- X.509 certificate containing the new public root CA key
 -- signed with the old private root CA key
 oldWithNew [1] CMPCertificate OPTIONAL
 -- X.509 certificate containing the old public root CA key
 -- signed with the new private root CA key
 }

CRLSource ::= CHOICE {
 dpn [0] DistributionPointName,
 issuer [1] GeneralNames }

CRLStatus ::= SEQUENCE {
 source CRLSource,
 thisUpdate Time OPTIONAL }

-- KemCiphertextInfo and KemOtherInfo were added in [RFC9810]

KemCiphertextInfo ::= SEQUENCE {
 kem AlgorithmIdentifier{KEM-ALGORITHM, {...}},
 -- AlgId of the KEM algorithm
 ct OCTET STRING
 -- Ciphertext output from the Encapsulate function
 }

KemOtherInfo ::= SEQUENCE {
 staticString PKIFreeText,
 -- MUST be "CMP-KEM"
 transactionID OCTET STRING,
 -- MUST contain the values from the message previously received
 -- containing the ciphertext (ct) in KemCiphertextInfo
 kemContext [0] OCTET STRING OPTIONAL
 -- MAY contain additional algorithm-specific context information
 }

INFO-TYPE-AND-VALUE ::= TYPE-IDENTIFIER

InfoTypeAndValue ::= SEQUENCE {
 infoType INFO-TYPE-AND-VALUE.
 &id({SupportedInfoSet}),
 infoValue INFO-TYPE-AND-VALUE.
 &Type({SupportedInfoSet}{@infoType}) }

SupportedInfoSet INFO-TYPE-AND-VALUE ::= { ... }

-- Example InfoTypeAndValue contents include, but are not limited
-- to, the following (uncomment in this ASN.1 module and use as
-- appropriate for a given environment):
--

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 112

-- id-it-caProtEncCert OBJECT IDENTIFIER ::= {id-it 1}
-- CAProtEncCertValue ::= CMPCertificate
-- id-it-signKeyPairTypes OBJECT IDENTIFIER ::= {id-it 2}
-- SignKeyPairTypesValue ::= SEQUENCE SIZE (1..MAX) OF
-- AlgorithmIdentifier{{...}}
-- id-it-encKeyPairTypes OBJECT IDENTIFIER ::= {id-it 3}
-- EncKeyPairTypesValue ::= SEQUENCE SIZE (1..MAX) OF
-- AlgorithmIdentifier{{...}}
-- id-it-preferredSymmAlg OBJECT IDENTIFIER ::= {id-it 4}
-- PreferredSymmAlgValue ::= AlgorithmIdentifier{{...}}
-- id-it-caKeyUpdateInfo OBJECT IDENTIFIER ::= {id-it 5}
-- CAKeyUpdateInfoValue ::= CAKeyUpdAnnContent
-- - id-it-caKeyUpdateInfo was deprecated with cmp2021
-- id-it-currentCRL OBJECT IDENTIFIER ::= {id-it 6}
-- CurrentCRLValue ::= CertificateList
-- id-it-unsupportedOIDs OBJECT IDENTIFIER ::= {id-it 7}
-- UnsupportedOIDsValue ::= SEQUENCE SIZE (1..MAX) OF
-- OBJECT IDENTIFIER
-- id-it-keyPairParamReq OBJECT IDENTIFIER ::= {id-it 10}
-- KeyPairParamReqValue ::= OBJECT IDENTIFIER
-- id-it-keyPairParamRep OBJECT IDENTIFIER ::= {id-it 11}
-- KeyPairParamRepValue ::= AlgorithmIdentifier{{...}}
-- id-it-revPassphrase OBJECT IDENTIFIER ::= {id-it 12}
-- RevPassphraseValue ::= EncryptedKey
-- - Changed from Encrypted Value to EncryptedKey as a CHOICE
-- - of EncryptedValue and EnvelopedData due to the changes
-- - made in [RFC9480]
-- - Using the choice EncryptedValue is bit-compatible to
-- - the syntax without this change
-- id-it-implicitConfirm OBJECT IDENTIFIER ::= {id-it 13}
-- ImplicitConfirmValue ::= NULL
-- id-it-confirmWaitTime OBJECT IDENTIFIER ::= {id-it 14}
-- ConfirmWaitTimeValue ::= GeneralizedTime
-- id-it-origPKIMessage OBJECT IDENTIFIER ::= {id-it 15}
-- OrigPKIMessageValue ::= PKIMessages
-- id-it-suppLangTags OBJECT IDENTIFIER ::= {id-it 16}
-- SuppLangTagsValue ::= SEQUENCE OF UTF8String
-- id-it-caCerts OBJECT IDENTIFIER ::= {id-it 17}
-- CaCertsValue ::= SEQUENCE SIZE (1..MAX) OF
-- CMPCertificate
-- - id-it-caCerts added in [RFC9480]
-- id-it-rootCaKeyUpdate OBJECT IDENTIFIER ::= {id-it 18}
-- RootCaKeyUpdateValue ::= RootCaKeyUpdateContent
-- - id-it-rootCaKeyUpdate added in [RFC9480]
-- id-it-certReqTemplate OBJECT IDENTIFIER ::= {id-it 19}
-- CertReqTemplateValue ::= CertReqTemplateContent
-- - id-it-certReqTemplate added in [RFC9480]
-- id-it-rootCaCert OBJECT IDENTIFIER ::= {id-it 20}
-- RootCaCertValue ::= CMPCertificate
-- - id-it-rootCaCert added in [RFC9480]
-- id-it-certProfile OBJECT IDENTIFIER ::= {id-it 21}
-- CertProfileValue ::= SEQUENCE SIZE (1..MAX) OF
-- UTF8String
-- - id-it-certProfile added in [RFC9480]
-- id-it-crlStatusList OBJECT IDENTIFIER ::= {id-it 22}
-- CRLStatusListValue ::= SEQUENCE SIZE (1..MAX) OF
-- CRLStatus
-- - id-it-crlStatusList added in [RFC9480]

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 113

-- id-it-crls OBJECT IDENTIFIER ::= {id-it 23}
-- CRLsValue ::= SEQUENCE SIZE (1..MAX) OF
-- CertificateList
-- - id-it-crls added in [RFC9480]
-- id-it-KemCiphertextInfo OBJECT IDENTIFIER ::= {id-it 24}
-- KemCiphertextInfoValue ::= KemCiphertextInfo
-- - id-it-KemCiphertextInfo was added in [RFC9810]
--
-- where
--
-- id-pkix OBJECT IDENTIFIER ::= {
-- iso(1) identified-organization(3)
-- dod(6) internet(1) security(5) mechanisms(5) pkix(7)}
-- and
-- id-it OBJECT IDENTIFIER ::= {id-pkix 4}
--
--
-- This construct MAY also be used to define new PKIX Certificate
-- Management Protocol request and response messages or
-- general-purpose (e.g., announcement) messages for future needs
-- or for specific environments.

GenMsgContent ::= SEQUENCE OF InfoTypeAndValue

-- May be sent by end entity, RA, or CA (depending on message
-- content). The OPTIONAL infoValue parameter of InfoTypeAndValue
-- will typically be omitted for some of the examples given above.
-- The receiver is free to ignore any contained OIDs that it
-- does not recognize. If sent from end entity to CA, the empty set
-- indicates that the CA may send
-- any/all information that it wishes.

GenRepContent ::= SEQUENCE OF InfoTypeAndValue
-- The receiver MAY ignore any contained OIDs that it does not
-- recognize.

ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 -- implementation-specific error codes
 errorDetails PKIFreeText OPTIONAL
 -- implementation-specific error details
}

CertConfirmContent ::= SEQUENCE OF CertStatus

CertStatus ::= SEQUENCE {
 certHash OCTET STRING,
 -- the hash of the certificate, using the same hash algorithm
 -- as is used to create and verify the certificate signature
 certReqId INTEGER,
 -- to match this confirmation with the corresponding req/rep
 statusInfo PKIStatusInfo OPTIONAL,
 hashAlg [0] AlgorithmIdentifier{DIGEST-ALGORITHM, {...}} OPTIONAL
 -- the hash algorithm to use for calculating certHash
 -- SHOULD NOT be used in all cases where the AlgorithmIdentifier
 -- of the certificate signature specifies a hash algorithm
 }

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 114

PollReqContent ::= SEQUENCE OF SEQUENCE {
 certReqId INTEGER }

PollRepContent ::= SEQUENCE OF SEQUENCE {
 certReqId INTEGER,
 checkAfter INTEGER, -- time in seconds
 reason PKIFreeText OPTIONAL }

--
-- EKU extension for PKI entities used in CMP
-- operations, added due to the changes made in [RFC9480]
-- The EKUs for the CA and RA are reused from CMC, as defined in
-- [RFC6402]
--

-- id-kp-cmcCA OBJECT IDENTIFIER ::= { id-kp 27 }
-- id-kp-cmcRA OBJECT IDENTIFIER ::= { id-kp 28 }
id-kp-cmKGA OBJECT IDENTIFIER ::= { id-kp 32 }

END

Acknowledgements
The authors of this document wish to thank , , , and

, the original authors of , for their work.

We also thank all reviewers of this document for their valuable feedback.

Adding KEM support to this document was partly funded by the German Federal Ministry of
Education and Research in the project Quoryptan through grant number 16KIS2033.

Carlisle Adams Stephen Farrell Tomi Kause
Tero Mononen [RFC4210]

Authors' Addresses
Hendrik Brockhaus
Siemens
Werner-von-Siemens-Strasse 1
80333 Munich
Germany

hendrik.brockhaus@siemens.comEmail:
https://www.siemens.comURI:

David von Oheimb
Siemens
Werner-von-Siemens-Strasse 1
80333 Munich
Germany

david.von.oheimb@siemens.comEmail:
https://www.siemens.comURI:

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 115

mailto:hendrik.brockhaus@siemens.com
https://www.siemens.com
mailto:david.von.oheimb@siemens.com
https://www.siemens.com

Mike Ounsworth
Entrust
1187 Park Place

, Minneapolis MN 55379
United States of America

mike.ounsworth@entrust.comEmail:
https://www.entrust.comURI:

John Gray
Entrust
1187 Park Place

, Minneapolis MN 55379
United States of America

john.gray@entrust.comEmail:
https://www.entrust.comURI:

RFC 9810 CMP July 2025

Brockhaus, et al. Standards Track Page 116

mailto:mike.ounsworth@entrust.com
https://www.entrust.com
mailto:john.gray@entrust.com
https://www.entrust.com

	RFC 9810
	Internet X.509 Public Key Infrastructure -- Certificate Management Protocol (CMP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Changes Made by RFC 4210
	1.2. Updates Made by RFC 9480
	1.3. Changes Made by This Document

	2. Terminology and Abbreviations
	3. PKI Management Overview
	3.1. PKI Management Model
	3.1.1. Definitions of PKI Entities
	3.1.1.1. Subjects and End Entities
	3.1.1.2. Certification Authority
	3.1.1.3. Registration Authority
	3.1.1.4. Key Generation Authority

	3.1.2. PKI Management Requirements
	3.1.3. PKI Management Operations

	4. Assumptions and Restrictions
	4.1. End Entity Initialization
	4.2. Initial Registration/Certification
	4.2.1. Criteria Used
	4.2.1.1. Initiation of Registration/Certification
	4.2.1.2. End Entity Message Origin Authentication
	4.2.1.3. Location of Key Generation
	4.2.1.4. Confirmation of Successful Certification

	4.2.2. Initial Registration/Certification Schemes
	4.2.2.1. Centralized Scheme
	4.2.2.2. Basic Authenticated Scheme

	4.3. POP of Private Key
	4.3.1. Signature Keys
	4.3.2. Encryption Keys
	4.3.3. Key Agreement Keys
	4.3.4. KEM Keys

	4.4. Root CA Key Update
	4.4.1. CA Operator Actions
	4.4.2. Verifying Certificates
	4.4.2.1. Verification in Cases 1 and 4
	4.4.2.2. Verification in Case 2
	4.4.2.3. Verification in Case 3

	4.4.3. Revocation - Change of the CA Key

	4.5. EKU for PKI Entities

	5. Data Structures
	5.1. Overall PKI Message
	5.1.1. PKI Message Header
	5.1.1.1. ImplicitConfirm
	5.1.1.2. ConfirmWaitTime
	5.1.1.3. OrigPKIMessage
	5.1.1.4. CertProfile
	5.1.1.5. KemCiphertextInfo

	5.1.2. PKI Message Body
	5.1.3. PKI Message Protection
	5.1.3.1. Shared Secret Information
	5.1.3.2. DH Key Pairs
	5.1.3.3. Signature
	5.1.3.4. Key Encapsulation
	5.1.3.5. Multiple Protection

	5.2. Common Data Structures
	5.2.1. Requested Certificate Contents
	5.2.2. Encrypted Values
	5.2.3. Status Codes and Failure Information for PKI Messages
	5.2.4. Certificate Identification
	5.2.5. Out-of-Band Root CA Public Key
	5.2.6. Archive Options
	5.2.7. Publication Information
	5.2.8. POP Structures
	5.2.8.1. raVerified
	5.2.8.2. POPOSigningKey Structure
	5.2.8.3. POPOPrivKey Structure
	5.2.8.3.1. Inclusion of the Private Key
	5.2.8.3.2. Indirect Method - Encrypted Certificate
	5.2.8.3.3. Direct Method - Challenge-Response Protocol

	5.2.8.4. Summary of POP Options

	5.2.9. GeneralizedTime

	5.3. Operation-Specific Data Structures
	5.3.1. Initialization Request
	5.3.2. Initialization Response
	5.3.3. Certification Request
	5.3.4. Certification Response
	5.3.5. Key Update Request Content
	5.3.6. Key Update Response Content
	5.3.7. Key Recovery Request Content
	5.3.8. Key Recovery Response Content
	5.3.9. Revocation Request Content
	5.3.10. Revocation Response Content
	5.3.11. Cross-Certification Request Content
	5.3.12. Cross-Certification Response Content
	5.3.13. CA Key Update Announcement Content
	5.3.14. Certificate Announcement
	5.3.15. Revocation Announcement
	5.3.16. CRL Announcement
	5.3.17. PKI Confirmation Content
	5.3.18. Certificate Confirmation Content
	5.3.19. PKI General Message Content
	5.3.19.1. CA Protocol Encryption Certificate
	5.3.19.2. Signing Key Pair Types
	5.3.19.3. Encryption / Key Agreement Key Pair Types
	5.3.19.4. Preferred Symmetric Algorithm
	5.3.19.5. Updated CA Key Pair
	5.3.19.6. CRL
	5.3.19.7. Unsupported Object Identifiers
	5.3.19.8. Key Pair Parameters
	5.3.19.9. Revocation Passphrase
	5.3.19.10. ImplicitConfirm
	5.3.19.11. ConfirmWaitTime
	5.3.19.12. Original PKIMessage
	5.3.19.13. Supported Language Tags
	5.3.19.14. CA Certificates
	5.3.19.15. Root CA Update
	5.3.19.16. Certificate Request Template
	5.3.19.17. CRL Update Retrieval
	5.3.19.18. KEM Ciphertext

	5.3.20. PKI General Response Content
	5.3.21. Error Message Content
	5.3.22. Polling Request and Response

	6. Mandatory PKI Management Functions
	6.1. Root CA Initialization
	6.2. Root CA Key Update
	6.3. Subordinate CA Initialization
	6.4. CRL Production
	6.5. PKI Information Request
	6.6. Cross-Certification
	6.6.1. One-Way Request-Response Scheme

	6.7. End Entity Initialization
	6.7.1. Acquisition of PKI Information
	6.7.2. Out-of-Band Verification of the Root CA Key

	6.8. Certificate Request
	6.9. Key Update

	7. Version Negotiation
	7.1. Supporting RFC 2510 Implementations
	7.1.1. Clients Talking to RFC 2510 Servers
	7.1.2. Servers Receiving Version cmp1999 PKIMessages

	8. Security Considerations
	8.1. On the Necessity of POP
	8.2. POP with a Decryption Key
	8.3. POP by Exposing the Private Key
	8.4. Attack Against DH Key Exchange
	8.5. Perfect Forward Secrecy
	8.6. Private Keys for Certificate Signing and CMP Message Protection
	8.7. Entropy of Random Numbers, Key Pairs, and Shared Secret Information
	8.8. Recurring Usage of KEM Keys for Message Protection
	8.9. Trust Anchor Provisioning Using CMP Messages
	8.10. Authorizing Requests for Certificates with Specific EKUs
	8.11. Usage of CT Logs

	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Reasons for the Presence of RAs
	Appendix B. The Use of Revocation Passphrase
	Appendix C. PKI Management Message Profiles (REQUIRED)
	C.1. General Rules for Interpretation of These Profiles
	C.2. Algorithm Use Profile
	C.3. POP Profile
	C.4. Initial Registration/Certification (Basic Authenticated Scheme)
	C.5. Certificate Request
	C.6. Key Update Request

	Appendix D. PKI Management Message Profiles (OPTIONAL)
	D.1. General Rules for Interpretation of These Profiles
	D.2. Algorithm Use Profile
	D.3. Self-Signed Certificates
	D.4. Root CA Key Update
	D.5. PKI Information Request/Response
	D.6. Cross-Certification Request/Response (1-way)
	D.7. In-Band Initialization Using External Identity Certificate

	Appendix E. Variants of Using KEM Keys for PKI Message Protection
	Appendix F. Compilable ASN.1 Definitions
	Acknowledgements
	Authors' Addresses

 Internet X.509 Public Key Infrastructure -- Certificate Management Protocol (CMP)

 Siemens

 Werner-von-Siemens-Strasse 1
 Munich
 80333
 Germany

 hendrik.brockhaus@siemens.com
 https://www.siemens.com

 Siemens

 Werner-von-Siemens-Strasse 1
 Munich
 80333
 Germany

 david.von.oheimb@siemens.com
 https://www.siemens.com

 Entrust

 1187 Park Place
 Minneapolis
 MN
 55379
 United States of America

 mike.ounsworth@entrust.com
 https://www.entrust.com

 Entrust

 1187 Park Place
 Minneapolis
 MN
 55379
 United States of America

 john.gray@entrust.com
 https://www.entrust.com

 SEC
 lamps
 CMP
 Certificate Management
 PKI

 This document describes the Internet X.509 Public Key Infrastructure (PKI)
Certificate Management Protocol (CMP). Protocol messages are defined for
X.509v3 certificate creation and management. CMP provides interactions between
client systems and PKI components such as a Registration Authority (RA) and
a Certification Authority (CA).
 This document adds support for management of certificates containing a Key Encapsulation Mechanism (KEM) public key and uses
EnvelopedData instead of EncryptedValue. This document also includes the
updates specified in Section 2 and Appendix A.2 of RFC 9480.
 This document obsoletes RFC 4210, and together with RFC 9811, it also obsoletes RFC 9480. Appendix F of this document updates
Section 9 of RFC 5912.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Changes Made by RFC 4210

 . Updates Made by RFC 9480

 . Changes Made by This Document

 . Terminology and Abbreviations

 . PKI Management Overview

 . PKI Management Model

 . Definitions of PKI Entities

 . Subjects and End Entities

 . Certification Authority

 . Registration Authority

 . Key Generation Authority

 . PKI Management Requirements

 . PKI Management Operations

 . Assumptions and Restrictions

 . End Entity Initialization

 . Initial Registration/Certification

 . Criteria Used

 . Initiation of Registration/Certification

 . End Entity Message Origin Authentication

 . Location of Key Generation

 . Confirmation of Successful Certification

 . Initial Registration/Certification Schemes

 . Centralized Scheme

 . Basic Authenticated Scheme

 . POP of Private Key

 . Signature Keys

 . Encryption Keys

 . Key Agreement Keys

 . KEM Keys

 . Root CA Key Update

 . CA Operator Actions

 . Verifying Certificates

 . Verification in Cases 1 and 4

 . Verification in Case 2

 . Verification in Case 3

 . Revocation - Change of the CA Key

 . EKU for PKI Entities

 . Data Structures

 . Overall PKI Message

 . PKI Message Header

 . ImplicitConfirm

 . ConfirmWaitTime

 . OrigPKIMessage

 . CertProfile

 . KemCiphertextInfo

 . PKI Message Body

 . PKI Message Protection

 . Shared Secret Information

 . DH Key Pairs

 . Signature

 . Key Encapsulation

 . Multiple Protection

 . Common Data Structures

 . Requested Certificate Contents

 . Encrypted Values

 . Status Codes and Failure Information for PKI Messages

 . Certificate Identification

 . Out-of-Band Root CA Public Key

 . Archive Options

 . Publication Information

 . POP Structures

 . raVerified

 . POPOSigningKey Structure

 . POPOPrivKey Structure

 . Summary of POP Options

 . GeneralizedTime

 . Operation-Specific Data Structures

 . Initialization Request

 . Initialization Response

 . Certification Request

 . Certification Response

 . Key Update Request Content

 . Key Update Response Content

 . Key Recovery Request Content

 . Key Recovery Response Content

 . Revocation Request Content

 . Revocation Response Content

 . Cross-Certification Request Content

 . Cross-Certification Response Content

 . CA Key Update Announcement Content

 . Certificate Announcement

 . Revocation Announcement

 . CRL Announcement

 . PKI Confirmation Content

 . Certificate Confirmation Content

 . PKI General Message Content

 . CA Protocol Encryption Certificate

 . Signing Key Pair Types

 . Encryption / Key Agreement Key Pair Types

 . Preferred Symmetric Algorithm

 . Updated CA Key Pair

 . CRL

 . Unsupported Object Identifiers

 . Key Pair Parameters

 . Revocation Passphrase

 . ImplicitConfirm

 . ConfirmWaitTime

 . Original PKIMessage

 . Supported Language Tags

 . CA Certificates

 . Root CA Update

 . Certificate Request Template

 . CRL Update Retrieval

 . KEM Ciphertext

 . PKI General Response Content

 . Error Message Content

 . Polling Request and Response

 . Mandatory PKI Management Functions

 . Root CA Initialization

 . Root CA Key Update

 . Subordinate CA Initialization

 . CRL Production

 . PKI Information Request

 . Cross-Certification

 . One-Way Request-Response Scheme

 . End Entity Initialization

 . Acquisition of PKI Information

 . Out-of-Band Verification of the Root CA Key

 . Certificate Request

 . Key Update

 . Version Negotiation

 . Supporting RFC 2510 Implementations

 . Clients Talking to RFC 2510 Servers

 . Servers Receiving Version cmp1999 PKIMessages

 . Security Considerations

 . On the Necessity of POP

 . POP with a Decryption Key

 . POP by Exposing the Private Key

 . Attack Against DH Key Exchange

 . Perfect Forward Secrecy

 . Private Keys for Certificate Signing and CMP Message Protection

 . Entropy of Random Numbers, Key Pairs, and Shared Secret Information

 . Recurring Usage of KEM Keys for Message Protection

 . Trust Anchor Provisioning Using CMP Messages

 . Authorizing Requests for Certificates with Specific EKUs

 . Usage of CT Logs

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . Reasons for the Presence of RAs

 . The Use of Revocation Passphrase

 . PKI Management Message Profiles (REQUIRED)

 . General Rules for Interpretation of These Profiles

 . Algorithm Use Profile

 . POP Profile

 . Initial Registration/Certification (Basic Authenticated Scheme)

 . Certificate Request

 . Key Update Request

 . PKI Management Message Profiles (OPTIONAL)

 . General Rules for Interpretation of These Profiles

 . Algorithm Use Profile

 . Self-Signed Certificates

 . Root CA Key Update

 . PKI Information Request/Response

 . Cross-Certification Request/Response (1-way)

 . In-Band Initialization Using External Identity Certificate

 . Variants of Using KEM Keys for PKI Message Protection

 . Compilable ASN.1 Definitions

 Acknowledgements

 Authors' Addresses

 Introduction
 This document describes the Internet X.509 PKI CMP. Protocol messages are
defined for certificate creation and management. The term
"certificate" in this document refers to an X.509v3 certificate as
defined in .

 Changes Made by RFC 4210
 differs from in the following areas:

 The PKI management message profile section is split to two
appendices: the required profile and the optional profile. Some
of the formerly mandatory functionality is moved to the optional
profile.

 The message confirmation mechanism has changed substantially.

 A new polling mechanism is introduced, deprecating the old polling
method at the CMP transport level.

 The CMP transport protocol issues are handled in a separate
document , thus the "Transports" section is removed.

 A new implicit confirmation method is introduced to reduce the
number of protocol messages exchanged in a transaction.

 The new specification contains some less prominent protocol
enhancements and improved explanatory text on several issues.

 Updates Made by RFC 9480
 CMP Updates and CMP Algorithms updated , supporting the PKI management operations specified in the Lightweight CMP
Profile , in the following areas:

 Added new extended key usages (EKUs) for various CMP server types, e.g., RA and CA, to express the authorization of the
certificate holder that acts as the indicated type of PKI management entity.

 Extended the description of multiple protection to cover additional use cases,
e.g., batch processing of messages.

 Used the Cryptographic Message Syntax (CMS) type EnvelopedData as the preferred choice instead of
EncryptedValue to better support crypto agility in CMP.

For reasons of completeness and consistency, the type EncryptedValue has been
exchanged in all occurrences. This includes the protection of centrally
generated private keys, encryption of certificates, Proof-of-Possession (POP) methods, and protection of revocation
passphrases. To properly differentiate the support of EnvelopedData instead
of EncryptedValue, CMP version 3 is introduced in case a transaction
is supposed to use EnvelopedData.

Note: According to point 9 in , the use of the EncryptedValue structure has been deprecated
in favor of the EnvelopedData structure. offers the EncryptedKey structure a choice of EncryptedValue and EnvelopedData
for migration to EnvelopedData.

 Offered an optional hashAlg field in CertStatus supporting cases when a certificate
needs to be confirmed, but the certificate was signed using a signature algorithm that does not indicate
a specific hash algorithm to use for computing the certHash. This is also in
preparation for upcoming post-quantum algorithms.

 Added new general message types to request CA certificates, a root CA update,
a certificate request template, or Certificate Revocation List (CRL) updates.

 Extended the use of polling to p10cr, certConf, rr, genm, and error messages.

 Deleted the mandatory algorithm profile in and instead referred to .

 Added Sections , , , and to the security considerations.

 Changes Made by This Document
 This document obsoletes and .
 Backward compatibility with CMP version 2 is maintained
 wherever possible. Updates to CMP version 2 improve crypto
 agility, extend the polling mechanism, add new general message
 types, and add EKUs to identify special CMP
 server authorizations. CMP version 3 is introduced for changes to
 the ASN.1 syntax, which support EnvelopedData, certConf with hashAlg,
 POPOPrivKey with agreeMAC, and RootCaKeyUpdateContent in ckuann
 messages.
 The updates made in this document include the
 changes specified by Section and as described in . Additionally, this document updates the content of in the following areas:

 Added introducing the Key Generation Authority (KGA).

 Extended regarding use of Certificate Transparency (CT) logs.

 Updated introducing RootCaKeyUpdateContent as an alternative to using a repository to acquire new root CA certificates.

 Added containing a description of origPKIMessage content, moved here from .

 Added support for KEM keys for POP to Sections and , for message protection to Sections and and , and for usage with CMS EnvelopedData to .

 Deprecated CAKeyUpdAnnContent in favor of RootCaKeyUpdateContent.

 Incorporated the request message behavioral clarifications from to . The definition of altCertTemplate was incorporated into , and the clarification on POPOSigningKey and on POPOPrivKey was incorporated into .

 Added support for CMS EnvelopedData to different POP methods for transferring encrypted private keys, certificates, and challenges to .

 Added Sections , , , and to the security considerations.

 Terminology and Abbreviations

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 This document relies on the terminology defined in . The most important abbreviations are listed
	below:

 CA:
 Certification Authority
 CMP:
 Certificate Management Protocol
 CMS:
 Cryptographic Message Syntax
 CRL:
 Certificate Revocation List
 CRMF:
 Certificate Request Message Format
 KEM:
 Key Encapsulation Mechanism
 KGA:
 Key Generation Authority
 LRA:
 Local Registration Authority
 MAC:
 Message Authentication Code
 PKI:
 Public Key Infrastructure
 POP:
 Proof-of-Possession
 RA:
 Registration Authority
 TEE:
 Trusted Execution Environment

 PKI Management Overview
 The PKI must be structured to be consistent with the types of
individuals who must administer it. Providing such administrators
with unbounded choices not only complicates the software required
but also increases the chances that a subtle mistake by an
administrator or software developer will result in broader
compromise. Similarly, restricting administrators with cumbersome
mechanisms will cause them not to use the PKI.
 Management protocols are REQUIRED to support online interactions
between PKI components. For example, a
management protocol might be used between a
CA and a client system with which a key pair is associated or
between two CAs that issue cross-certificates for each other.

 PKI Management Model
 Before specifying particular message formats and procedures, we first
define the entities involved in PKI management and their interactions
(in terms of the PKI management functions required). We then group
these functions in order to accommodate different identifiable types
of end entities.

 Definitions of PKI Entities
 The entities involved in PKI management include the end entity (i.e.,
the entity to whom the certificate is issued) and the CA (i.e., the entity that issues the certificate). An RA might also be involved in PKI management.

 Subjects and End Entities
 The term "subject" is used here to refer to the entity to whom the
certificate is issued, typically named in the subject or
subjectAltName field of a certificate. When we wish to distinguish
the tools and/or software used by the subject (e.g., a local
certificate management module), we will use the term "subject equipment".
In general, the term "end entity", rather than
"subject", is preferred in order to avoid confusion with the field
name. It is important to note that the end entities here will
include not only human users of applications but also applications
themselves (e.g., for 		Internet Key Exchange Protocol (IKE) / IPsec) or devices (e.g., routers or industrial
control systems). This factor influences the
protocols that the PKI management operations use; for example,
application software is far more likely to know exactly which
certificate extensions are required than are human users. PKI
management entities are also end entities in the sense that they are
sometimes named in the subject or subjectAltName field of a
certificate or cross-certificate. Where appropriate, the term "end entity"
will be used to refer to end entities who are not PKI
management entities.
 All end entities require secure local access to some information --
at a minimum, their own name and private key, the name of a CA that
is directly trusted by this entity, and that CA's public key (or a
fingerprint of the public key where a self-certified version is
available elsewhere). Implementations MAY use secure local storage
for more than this minimum (e.g., the end entity's own certificates or
application-specific information). The form of storage will also
vary -- from files to tamper-resistant cryptographic tokens. The
information stored in such local, trusted storage is referred to here
as the end entity's TEE, also known as
Personal Security Environment (PSE).
 Though TEE formats are beyond the scope of this document (they are
very dependent on equipment, et cetera), a generic interchange format
for TEEs is defined here: a certification response message (see) MAY be
used.

 Certification Authority
 The CA may or may not actually be a real
"third party" from the end entity's point of view. Quite often, the
CA will actually belong to the same organization as the end entities
it supports.
 Again, we use the term "CA" to refer to the entity named in the
issuer field of a certificate. When it is necessary to distinguish
the software or hardware tools used by the CA, we use the term "CA equipment".
 The CA equipment will often include both an "offline" component and
an "online" component, with the CA private key only available to the
"offline" component. This is, however, a matter for implementers
(though it is also relevant as a policy issue).
 We use the term "root CA" to indicate a CA that is directly trusted
by an end entity; that is, securely acquiring the value of a root CA
public key requires some out-of-band step(s). This term is not meant
to imply that a root CA is necessarily at the top of any hierarchy,
simply that the CA in question is trusted directly. The "root CA"
may provide its trust anchor information with or without using a
certificate. In some circumstances, such a certificate may be
self-signed, but in other circumstances, it may be cross-signed,
signed by a peer, signed by a superior CA, or unsigned.
 Note that other documents like and use the
term "trusted CA" or "trust anchor" instead of "root CA". This
document continues using "root CA" based on the above definition
because it is also present in the ASN.1 syntax that cannot be changed
easily.
 A "subordinate CA" is one that is not a root CA for the end entity in
question. Often, a subordinate CA will not be a root CA for any
entity, but this is not mandatory.

 Registration Authority
 In addition to end entities and CAs, many environments call for the
existence of an RA separate from the
CA. The functions that the RA may carry out will vary from case to case but MAY include
identity checking, token distribution, checking certificate requests
and authentication of their origin, revocation reporting,
name assignment, archival of key pairs, et cetera.
 This document views the RA as an OPTIONAL component: When it is not
present, the CA is assumed to be able to carry out the RA's functions
so that the PKI management protocols are the same from the
end entity's point of view.
 Again, we distinguish, where necessary, between the RA and the tools
used (the "RA equipment").
 Note that an RA is itself an end entity. We further assume that all
RAs are in fact certified end entities and that RAs have private keys
that are usable for signing. How a particular CA equipment
identifies some end entities as RAs is an implementation issue (i.e.,
this document specifies no special RA certification operation). We
do not mandate that the RA is certified by the CA with which it is
interacting at the moment (so one RA may work with more than one CA
whilst only being certified once).
 In some circumstances, end entities will communicate directly with a
CA even where an RA is present. For example, for initial
registration and/or certification, the end entity may use its RA but
communicate directly with the CA in order to refresh its certificate.

 Key Generation Authority
 A KGA is a PKI management entity generating key
pairs on behalf of an end entity. As the KGA generates the key pair, it
knows the public and the private part.
 This document views the KGA as an OPTIONAL component. When it is not present
and central key generation is needed, the CA is assumed to be able to carry
out the KGA's functions so that the PKI management protocol messages are the
same from the end entity's point of view. If certain tasks of a CA are
delegated to other components, this delegation needs authorization, which can
be indicated by EKUs (see).
 Note: When doing central generation of key pairs, implementers should consider
the implications of server-side retention on the overall security of the
system; in some cases, retention is good, for example, for escrow reasons, but
in other cases, the server should clear its copy after delivery to the end entity.
 Note: If the CA delegates key generation to a KGA, the KGA can be collocated
with the RA.

 PKI Management Requirements
 The protocols given here meet the following requirements on PKI
management

 PKI management must conform to the ISO/IEC 9594-8/ITU-T X.509
 standards, in particular .

 It must be possible to regularly update any key pair without
 affecting any other key pair.

 The use of confidentiality in PKI management protocols must be
 kept to a minimum in order to ease acceptance in environments
 where strong confidentiality might cause regulatory problems.

 PKI management protocols must allow the use of different
 industry-standard cryptographic algorithms (see CMP Algorithms).
 This means that any given
 CA, RA, or end entity may, in principle, use whichever
 algorithms suit it for its own key pair(s).

 PKI management protocols must not preclude the generation of key
 pairs by the end entity concerned, by a KGA, or by a CA. Key
 generation may also occur elsewhere, but for the purposes of PKI
 management, we can regard key generation as occurring wherever
 the key is first present at an end entity, KGA, or CA.

 PKI management protocols must support the publication of
 certificates by the end entity concerned, by an RA, or by a CA.
 Different implementations and different environments may choose
 any of the above approaches.

 PKI management protocols must support the production of
 Certificate Revocation Lists (CRLs) by allowing certified end entities
 to make requests for the revocation of certificates.
 This must be done in such a way that the denial-of-service
 attacks, which are possible, are not made simpler.

 PKI management protocols must be usable over a variety of
 "transport" mechanisms, specifically including email, Hypertext
 Transfer Protocol (HTTP), Message Queuing Telemetry Transport (MQTT),
 Constrained Application Protocol (CoAP), and various offline and non-networked file transfer methods.

 Final authority for certification creation rests with the CA.
 No RA or end entity equipment can assume that any certificate
 issued by a CA will contain what was requested; a CA may alter
 certificate field values or may add, delete, or alter extensions
 according to its operating policy. In other words, all PKI
 entities (end entities, RAs, KGAs, and CAs) must be capable of
 handling responses to requests for certificates in which the
 actual certificate issued is different from that requested (for
 example, a CA may shorten the validity period requested). Note
 that policy may dictate that the CA must not publish or
 otherwise distribute the certificate until the requesting entity
 has reviewed and accepted the newly created certificate or the
 POP is completed. In case of publication of the certificate
 (when using indirect POP, see) or a precertificate
 in a CT log , the certificate
 must be revoked if it was not accepted by the end entity or the POP could
 not be completed.

 A graceful, scheduled changeover from one non-compromised CA
 key pair to the next (CA key update) must be supported (note
 that if the CA key is compromised, re-initialization must be
 performed for all entities in the domain of that CA). An end entity
 whose TEE contains the new CA public key (following a CA
 key update) may also need to be able to verify certificates verifiable
 using the old public key. End entities who directly trust the
 old CA key pair may also need to be able to verify certificates signed
 using the new CA private key (required for situations where the
 old CA public key is "hardwired" into the end entity's
 cryptographic equipment).

 The functions of an RA may, in some implementations or
 environments, be carried out by the CA itself. The protocols
 must be designed so that end entities will use the same protocol
 regardless of whether the communication is with an RA or CA.
 Naturally, the end entity must use the correct RA or CA public
 key to verify the protection of the communication.

 Where an end entity requests a certificate containing a given
 public key value, the end entity must be ready to demonstrate
 possession of the corresponding private key value. This may be
 accomplished in various ways, depending on the type of
 certification request. See for details of the
 in-band methods defined for the PKIX-CMP (i.e., CMP) messages.

 PKI Management Operations
 The following diagram shows the relationship between the entities
defined above in terms of the PKI management operations. The letters
in the diagram indicate "protocols" in the sense that a defined set
of PKI management messages can be sent along each of the lettered
lines.

 PKI Entities

 cert.
 publish
 j
 End
 Entity
 C
 g
 "out-of-band"
 e
 loading
 r
 initial
 t
 a
 b
 registration/
 certification
 /
 key
 pair
 recovery
 key
 pair
 update
 C
 certificate
 update
 R
 PKI
 "USERS"
 revocation
 request
 L
 PKI
 MANAGEMENT
 ENTITIES
 a
 b
 a
 b
 R
 e
 g
 d
 p
 RA
 o
 cert.
 s
 publish
 c
 i
 t
 o
 g
 i
 r
 CA
 y
 h
 "out-of-band"
 cert.
 publish
 publication
 CRL
 publish
 cross-certification
 e
 f
 cross-certificate
 update
 CA-2

 +---+ cert. publish +------------+ j
 | | <--------------------- | End Entity | <-------
 | C | g +------------+ "out-of-band"
 | e | | ^ loading
 | r | | | initial
 | t | a | | b registration/
 | | | | certification
 | / | | | key pair recovery
 | | | | key pair update
 | C | | | certificate update
 | R | PKI "USERS" V | revocation request
 | L | -------------------+-+-----+-+------+-+-------------------
 | | PKI MANAGEMENT | ^ | ^
 | | ENTITIES a | | b a | | b
R	V				
e	g +------+ d				
p	<------------	RA	<-----+		
o	cert.		----+		
s	publish +------+ c				
i					
t	V	V			
o	g +------------+ i				
r	<------------------------	CA	------->		
y	h +------------+ "out-of-band"				
	cert. publish	^ publication			
	CRL publish				
 +---+ | | cross-certification
 e | | f cross-certificate
 | | update
 | |
 V |
 +------+
 | CA-2 |
 +------+

 At a high level, the set of operations for which management
	 messages are defined can be grouped as follows.

	 CA establishment: When establishing a new CA, certain steps
	 are required (e.g., production of initial CRLs and export of CA
	 public key).
 End entity initialization: This includes importing a root
 CA public key and requesting information about the options
 supported by a PKI management entity.

 Certification: Various operations result in the creation
 of new certificates:

 initial registration/certification: This is the process
 whereby an end entity first makes itself known to a CA or RA,
 prior to the CA issuing a certificate or certificates for that
 end entity. The end result of this process (when it is
 successful) is that a CA issues a certificate for an end entity's
 public key and returns that certificate to the end entity
 and/or posts that certificate in a repository. This
 process may, and typically will, involve multiple "steps",
 possibly including an initialization of the end entity's
 equipment. For example, the end entity's equipment must be
 securely initialized with the public key of a CA, e.g., using
 zero-touch methods like Bootstrapping Remote Secure Key
 Infrastructure (BRSKI) or Secure Zero
 Touch Provisioning (SZTP) , to be used
 in validating certificate paths. Furthermore, an end entity
 typically needs to be initialized with its own key
 pair(s).
 key pair update: Every key pair needs to be updated
 regularly (i.e., replaced with a new key pair), and a new
 certificate needs to be issued.
 certificate update: As certificates expire, they may be
 "refreshed" if nothing relevant in the environment has
 changed.
 CA key pair update: As with end entities, CA key pairs need
 to be updated regularly; however, different mechanisms are
 required.

 cross-certification request: One CA requests issuance of a
 cross-certificate from another CA. For the purposes of this
 standard, the following terms are defined. A
 "cross-certificate" is a certificate in which the subject CA
 and the issuer CA are distinct and SubjectPublicKeyInfo
 contains a verification key (i.e., the certificate has been
 issued for the subject CA's signing key pair). When it is
 necessary to distinguish more finely, the following terms may
 be used: A cross-certificate is called an "inter-domain
 cross-certificate" if the subject and issuer CAs belong to
 different administrative domains; it is called an
 "intra-domain cross-certificate" otherwise.

 The above definition of "cross-certificate"
 aligns with the defined term "CA-certificate" in X.509.
 Note that this term is not to be confused with the X.500
 "cACertificate" attribute type, which is unrelated.
 In many environments, the term
 "cross-certificate", unless further qualified, will be
 understood to be synonymous with "inter-domain
 cross-certificate" as defined above.
 Issuance of cross-certificates may be, but is
 not necessarily, mutual; that is, two CAs may issue
 cross-certificates for each other.

 cross-certificate update: Similar to a normal certificate
		update but involving a cross-certificate.

 Certificate/CRL discovery operations: Some PKI management
 operations result in the publication of certificates or CRLs:

		 certificate publication: Having gone to the trouble of
		producing a certificate, some means for publishing may be
		needed. The "means" defined in PKIX MAY
		involve the messages specified in Sections to or MAY
		involve other methods (for example, Lightweight Directory Access Protocol (LDAP)) as described in
		 or (the
		"Operational Protocols" documents of the PKIX series of
		specifications).
 CRL publication: As for certificate publication.

 Recovery operations: Some PKI management operations are
 used when an end entity has "lost" its TEE:

		 key pair recovery: As an option, user client key
		materials (e.g., a user's private key used for decryption
		purposes) MAY be backed up by a CA, an RA, or a
		key backup system associated with a CA or RA. If an entity
		needs to recover these backed up key materials (e.g., as a
		result of a forgotten password or a lost key chain file), a
		protocol exchange may be needed to support such recovery.

 Revocation operations: Some PKI management operations
 result in the creation of new CRL entries and/or new CRLs:

		 revocation request: An authorized person advises a CA
		of an abnormal situation requiring certificate revocation.

 TEE operations: Whilst the definition of TEE operations
 (e.g., moving a TEE, changing a PIN, etc.) are beyond the scope of
 this specification, we do define a PKIMessage (CertRepMessage)
 that can form the basis of such operations.

 Note that online protocols are not the only way of implementing the
above operations. For all operations, there are offline methods of
achieving the same result, and this specification does not mandate
use of online protocols. For example, when hardware tokens are
used, many of the operations MAY be achieved as part of the physical
token delivery.
 Later sections define a set of standard messages supporting the above
operations. Transfer protocols for conveying these exchanges in
various environments (e.g., offline: file-based; online: email,
HTTP , MQTT, and CoAP) are
beyond the scope of this document and must be specified separately.
Appropriate transfer protocols MUST be capable of delivering the CMP
messages reliably.
 CMP provides inbuilt integrity protection and authentication. The information
communicated unencrypted in CMP messages does not contain sensitive
information endangering the security of the PKI when intercepted. However,
it might be possible for an eavesdropper to utilize the available information to
gather confidential technical or business-critical information. Therefore, users
should consider protection of confidentiality on lower levels of the protocol
stack, e.g., by using TLS , DTLS , or IPsec .

 Assumptions and Restrictions

 End Entity Initialization
 The first step for an end entity in dealing with PKI management
entities is to request information about the PKI functions supported
and to securely acquire a copy of the relevant root CA public key(s).

 Initial Registration/Certification
 There are many schemes that can be used to achieve initial
registration and certification of end entities. No one method is
suitable for all situations due to the range of policies that a CA
may implement and the variation in the types of end entity that can
occur.
 However, we can classify the initial registration/certification
schemes that are supported by this specification. Note that the word
"initial", above, is crucial: We are dealing with the situation where
the end entity in question has had no previous contact with the PKI,
except having received the root CA certificate of that PKI by some
zero-touch method like BRSKI
 or SZTP . In case the end entity
already possesses certified keys, then some
simplifications/alternatives are possible.
 Having classified the schemes that are supported by this
specification, we can then specify some as mandatory and some as
optional. The goal is that the mandatory schemes cover a sufficient
number of the cases that will arise in real use, whilst the optional
schemes are available for special cases that arise less frequently.
In this way, we achieve a balance between flexibility and ease of
implementation.
 Further classification of mandatory and optional schemes addressing
different environments is available, e.g., in Appendices and
 of this specification on managing human user certificates
as well as in the Lightweight CMP Profile on fully
automating certificate management in a machine-to-machine and Internet of Things (IoT)
environment. Industry standards such as for
mobile networks and for railroad automation have adopted
CMP and defined a series of mandatory schemes for their use cases.
 We will now describe the classification of initial
registration/certification schemes.

 Criteria Used

 Initiation of Registration/Certification
 In terms of the PKI messages that are produced, we can regard the
initiation of the initial registration/certification exchanges as
occurring wherever the first PKI message relating to the end entity
is produced. Note that the real-world initiation of the
registration/certification procedure may occur elsewhere (e.g., a
personnel department may telephone an RA operator or use zero-touch
methods like BRSKI or SZTP).
 The possible locations are at the end entity, an RA, or a CA.

 End Entity Message Origin Authentication
 The online messages produced by the end entity that requires a
certificate may be authenticated or not. The requirement here is to
authenticate the origin of any messages from the end entity to the
PKI (CA/RA).
 In this specification, such authentication is achieved by two different means:

 symmetric: The PKI (CA/RA) issuing the end entity with a secret value (initial
authentication key) and reference value (used to identify the secret value)
via some out-of-band means. The initial authentication key can then be used
to protect relevant PKI messages.

 asymmetric: Using a private key and certificate issued by another PKI trusted
for initial authentication, e.g., an Initial Device Identifier (IDevID) IEEE 802.1AR.
The trust establishment in this external PKI is out of scope of this document.

 Thus, we can classify the initial registration/certification scheme
according to whether or not the online 'end entity -> PKI management
entity' messages are authenticated or not.

 We do not discuss the authentication of the 'PKI management
entity -> end entity' messages here, as this is always REQUIRED. In any case, it can be
achieved simply once the root-CA public key has been installed at the
end entity's equipment or it can be based on the initial
authentication key.
 An initial registration/certification procedure can be secure
where the messages from the end entity are authenticated via some
out-of-band means (e.g., a subsequent visit).

 Location of Key Generation
 In this specification, "key generation" is regarded as occurring
wherever either the public or private component of a key pair first
occurs in a PKIMessage. Note that this does not preclude a
centralized key generation service by a KGA; the actual key pair MAY have
been
generated elsewhere and transported to the end entity, RA, or CA
using a (proprietary or standardized) key generation request/response
protocol (outside the scope of this specification).
 Thus, there are three possibilities for the location of "key generation":
the end entity, a KGA, or a CA.

 Confirmation of Successful Certification
 Following the creation of a certificate for an end entity,
additional assurance can be gained by having the end entity
explicitly confirm successful receipt of the message containing (or
indicating the creation of) the certificate. Naturally, this
confirmation message must be protected (based on the initial
symmetric or asymmetric authentication key or other means).
 This gives two further possibilities: confirmed or not.

 Initial Registration/Certification Schemes
 The criteria above allow for a large number of initial
registration/certification schemes. Examples of possible initial
registration/certification schemes can be found in the following
subsections. An entity may support other schemes specified in
profiles of PKIX-CMP, such as Appendices and or .

 Centralized Scheme
 In terms of the classification above, this scheme is, in some ways,
the simplest possible, where:

 initiation occurs at the certifying CA;

 no online message authentication is required;

 "key generation" occurs at the certifying CA (see); and

 no confirmation message is required.

 In terms of message flow, this scheme means that the only message
required is sent from the CA to the end entity. The message must
contain the entire TEE for the end entity. Some out-of-band means
must be provided to allow the end entity to authenticate the message
received and to decrypt any encrypted values.

 Basic Authenticated Scheme
 In terms of the classification above, this scheme is where:

 initiation occurs at the end entity;

 message authentication is required;

 "key generation" occurs at the end entity (see); and

 a confirmation message is recommended.

 Note: An Initial Authentication Key (IAK) can be either a symmetric key or
an asymmetric private key with a certificate issued by another PKI trusted
for this purpose. The establishment of such trust is out of scope of this
	 document.
 In terms of message flow, the basic authenticated scheme is as
follows:

 End
 Entity
 RA/CA
 out-of-band
 distribution
 of
 Initial
 Authentication
 Key
 (IAK)
 and
 reference
 value
 (RA/CA
 ->
 end
 entity)
 Key
 generation
 Creation
 of
 certification
 request
 Protect
 request
 with
 IAK
 certification
 request
 verify
 request
 process
 request
 create
 response
 certification
 response
 handle
 response
 create
 confirmation
 cert
 conf
 message
 verify
 confirmation
 create
 response
 conf
 ack
 (optional)
 handle
 response

 End Entity RA/CA
 ========== =============
 out-of-band distribution of Initial Authentication
 Key (IAK) and reference value (RA/CA -> end entity)
 Key generation
 Creation of certification request
 Protect request with IAK
 -----> certification request ----->
 verify request
 process request
 create response
 <----- certification response <-----
 handle response
 create confirmation
 -----> cert conf message ----->
 verify confirmation
 create response
 <----- conf ack (optional) <-----
 handle response

 Note: Where verification of the cert confirmation message fails, the RA/CA
 MUST revoke the newly issued certificate if it has been published or
otherwise made available.

 POP of Private Key
 POP is where a PKI management entity (CA/RA)
verifies if an end entity has access to the private key
corresponding to a given public key. The question of whether, and in
what circumstances, POPs add value to a PKI is a debate as old as PKI
itself! See for a further discussion on the necessity
of POP in PKI.
 The PKI management operations specified here make it possible
for an end entity to prove to a CA/RA that it has possession of (i.e., is able
to use) the private key corresponding to the public key for which a
certificate is requested (see for different POP methods). A given CA/RA is free to choose how to
enforce POP (e.g., out-of-band procedural means versus PKIX-CMP
in-band messages) in its certification exchanges (i.e., this may be a
policy issue). However, it is REQUIRED that CAs/RAs MUST enforce POP
by some means because there are currently many non-PKIX operational
protocols in use (various electronic mail protocols are one example)
that do not explicitly check the binding between the end entity and
the private key. Until operational protocols that do verify the
binding (for signature, encryption, key agreement, and KEM key pairs)
exist, and are ubiquitous, this binding can only be assumed to have
been verified by the CA/RA. Therefore, if the binding is not
verified by the CA/RA, certificates in the Internet PKI
end up being somewhat less meaningful.
 POP is accomplished in different ways depending upon the type of key
for which a certificate is requested. If a key can be used for
multiple purposes (e.g., an RSA key), then any appropriate method MAY
be used (e.g., a key that may be used for signing, as well as other
purposes, MUST NOT be sent to the CA/RA in order to prove
possession unless archival of the private key is explicitly desired).
 This specification explicitly allows for cases where an end entity
supplies the relevant proof to an RA and the RA subsequently attests
to the CA that the required proof has been received (and validated!).
For example, an end entity wishing to have a signing key certified
could send the appropriate signature to the RA, which then simply
notifies the relevant CA that the end entity has supplied the
required proof. Of course, such a situation may be disallowed by
some policies (e.g., CAs may be the only entities permitted to verify
POP during certification).

 Signature Keys
 For signature keys, the end entity can sign a value to prove
possession of the private key; see .

 Encryption Keys
 For encryption keys, the end entity can provide the private key to
the CA/RA (e.g., for archiving), see , or can be required to decrypt a value in order to prove
possession of the private key. Decrypting a
value can be achieved either directly (see) or indirectly (see).
 The direct method is for the RA/CA to issue a random challenge to
which an immediate response by the end entity is required.
 The indirect method is to issue a certificate that is encrypted for
the end entity (and have the end entity demonstrate its ability to
decrypt this certificate in the confirmation message). This allows a
CA to issue a certificate in a form that can only be used by the
intended end entity.
 This specification encourages use of the indirect method because it
requires no extra messages to be sent (i.e., the proof can be
demonstrated using the {request, response, confirmation} triple of
messages).

 Key Agreement Keys
 For key agreement keys, the end entity and the PKI management entity
(i.e., CA or RA) must establish a shared secret key in order to prove
that the end entity has possession of the private key.
 Note that this need not impose any restrictions on the keys that can
be certified by a given CA. In particular, for Diffie-Hellman (DH) keys,
the end entity may freely choose its algorithm parameters provided
that the CA can generate a short-term (or one-time) key pair with the
appropriate parameters when necessary.

 KEM Keys
 For KEM keys, the end entity can provide the private key to
the CA/RA (e.g., for archiving), see , or can be required to decrypt
a value in order to prove possession of the private key.
Decrypting a value can be achieved either directly (see) or indirectly (see).
 Note: A definition of KEMs can be found in .
 The direct method is for the RA/CA to issue a random challenge to which an
immediate response by the end entity is required.
 The indirect method is to issue a certificate that is encrypted for the end entity using a shared secret key derived from a key encapsulated using the public key (and have the end entity demonstrate its ability to use its private key for decapsulation of the KEM ciphertext, derive the shared secret key, decrypt this certificate, and provide a hash of the certificate in the confirmation message). This allows a CA to issue a certificate in a form that can only be used by the intended end entity.
 This specification encourages use of the indirect method because it requires
no extra messages to be sent (i.e., the proof can be demonstrated using the
{request, response, confirmation} triple of messages).
 A certification request message for a KEM certificate SHALL use POPOPrivKey by using the keyEncipherment choice of ProofOfPossession (see) in the popo field of CertReqMsg as long as no KEM-specific choice is available.

 Root CA Key Update
 This discussion only applies to CAs that are directly trusted by some
end entities. Recognizing whether a self-signed or non-self-signed
CA is supposed to be directly trusted for some end entities is a
matter of CA policy and end entity configuration. Thus, this is beyond
the scope of this document.
 The basis of the procedure described here is that the CA protects its
new public key using its previous private key and vice versa. Thus,
when a CA updates its key pair, it may generate two link certificates:
	"old with new" and "new with old".
 Note: The usage of link certificates has been shown to be very
specific for each use case, and no assumptions are done on this aspect.
RootCaKeyUpdateContent is updated to specify these link certificates
as optional.
 Note: When an LDAP directory is used to publish root CA updates, the
old and new root CA certificates together with the two link
certificates are stored as cACertificate attribute values.
 When a CA changes its key pair, those entities who have acquired the
old CA public key via "out-of-band" means are most affected. These
end entities need to acquire the new CA public key in a trusted way.
This may be achieved "out-of-band" by using a repository or by
using online messages also containing the link certificates
"new with old". Once the end entity acquired and properly verified
the new CA public key, it must load the new trust anchor information
into its trusted store.
 The data structure used to protect the new and old CA public keys is
typically a standard X.509v3 certificate (which may also
contain extensions). There are no new data structures required.
 Note: Sometimes self-signed root CA certificates do not make use of
X.509v3 extensions and may be X.509v1 certificates. Therefore, a
root CA key update must be able to work for version 1 certificates.
The use of the X.509v3 KeyIdentifier extension is recommended for
easier path building.
 Note: While the scheme could be generalized to cover cases where
the CA updates its key pair more than once during the validity period
of one of its end entities' certificates, this generalization seems
of dubious value. Not having this generalization simply means that
the validity periods of certificates issued with the old CA key pair
cannot exceed the end of the "old with new" certificate validity
period.
 Note: This scheme offers a mechanism to ensures that end entities
will acquire the new CA public key, at the latest by the expiry of
the last certificate they owned that was signed with the old CA
private key. Certificate and/or key update operations occurring at
other times do not necessarily require this (depending on the end entity's equipment).
 Note: In practice, a new root CA may have a slightly different subject
Distinguished Name (DN), e.g., indicating a generation identifier like the year of issuance or
a version number, for instance, in an Organizational Unit (OU) element. How to bridge trust to
the new root CA certificate in a CA DN change or a cross-certificate scenario
is out of scope for this document.

 CA Operator Actions
 To change the key of the CA, the CA operator does the following:

 Generate a new key pair.

 Create a certificate containing the new CA public key signed with
 the new private key or by the private key of some other CA (the
 "new with new" certificate).

 Optionally: Create a link certificate containing the new CA public
 key signed with the old private key (the "new with old"
 certificate).

 Optionally: Create a link certificate containing the old CA public
 key signed with the new private key (the "old with new"
 certificate).

 Publish these new certificates so that end entities may acquire
 it, e.g., using a repository or RootCaKeyUpdateContent.

 The old CA private key is then no longer required when the validity
of the "old with old" certificate ended. However, the old
CA public key will remain in use for validating the "new with old"
link certificate until the new CA public key is loaded into the
trusted store. The old CA public key is no longer required (other
than for non-repudiation) when all end entities of this CA have
securely acquired and stored the new CA public key.
 The "new with new" certificate must have a validity period with a notBefore
time that is before the notAfter time of the "old with old" certificate and
a notAfter time that is after the notBefore time of the next update of this
certificate.
 The "new with old" certificate must have a validity period with the same
notBefore time as the "new with new" certificate and a notAfter time by which
all end entities of this CA will securely possess the new CA public key (at
the latest, at the notAfter time of the "old with old" certificate).
 The "old with new" certificate must have a validity period with the same
notBefore and notAfter time as the "old with old" certificate.
 Note: Further operational considerations on transition from one root CA
self-signed certificate to the next is available in .

 Verifying Certificates
 Normally when verifying a signature, the verifier verifies (among
other things) the certificate containing the public key of the
signer. However, once a CA is allowed to update its key, there are a
range of new possibilities. These are shown in the table below.

 Verifier's TEE contains NEW public key
 Verifier's TEE contains OLD public key

 Signer's certificate is protected using NEW key pair
 Case 1: The verifier can directly verify the certificate.
 Case 2: The verifier is missing the NEW public key.

 Signer's certificate is protected using OLD key pair
 Case 3: The verifier is missing the OLD public key.
 Case 4: The verifier can directly verify the certificate.

 Verification in Cases 1 and 4
 In these cases, the verifier has a local copy of the CA public key
that can be used to verify the certificate directly. This is the
same as the situation where no key change has occurred.

 Verification in Case 2
 In case 2, the verifier must get access to the new public key of the
CA. Case 2 will arise when the CA operator has issued the verifier's
certificate, then changed the CA's key, and then issued the signer's
certificate; so it is quite a typical case.
 The verifier does the following:

 Get the "new with new" and "new with old" certificates. The
 location of where to retrieve these certificates may be available in
 the authority information access extension of the "old with old"
 certificate (see the access method for caIssuers in), or it may be locally configured.

 If a repository is available, look up the certificates in the
 caCertificate attribute.

 If an HTTP or FTP server is available, pick the certificates
 from the "certs-only" CMS message.

 If a CMP server is available, request the certificates using
 the root CA update the general message (see).

 Otherwise, get the certificates "out-of-band" using any
 trustworthy mechanism.

 If the certificates are received, check that the validity periods
 and the subject and issuer fields match. Verify the signatures
 using the old root CA key (which the verifier has locally).

 If all checks are successful, securely store the new trust anchor
 information and validate the signer's certificate.

 Verification in Case 3
 In case 3, the verifier must get access to the old public key of the
CA. Case 3 will arise when the CA operator has issued the signer's
certificate, then changed the key, and then issued the verifier's
certificate.
 The verifier does the following:

 Get the "old with new" certificate. The location of where to retrieve
 these certificates may be available in the authority
 information access extension of the "new with new" certificate (see
 caIssuers access method in), or it
 may be locally configured.

 If a repository is available, look up the certificate in the
 caCertificate attribute.

 If an HTTP or FTP server is available, pick the certificate
 from the "certs-only" CMS message.

 If a CMP server and an untrusted copy of the old root CA
 certificate are available (e.g., the signer provided it in-band
 in the CMP extraCerts filed), request the certificate using the
 root CA update the general message (see).

 Otherwise, get the certificate "out-of-band" using any
 trustworthy mechanism.

 If the certificate is received, check that the validity periods
 and the subject and issuer fields match. Verify the signatures
 using the new root CA key (which the verifier has locally).

 If all checks were successful, securely store the old trust anchor
 information and validate the signer's certificate.

 Revocation - Change of the CA Key
 As we saw above, the verification of a certificate becomes more
complex once the CA is allowed to change its key. This is also true
for revocation checks, as the CA may have signed the CRL using a newer
private key than the one within the user's TEE.
 The analysis of the alternatives is the same as for certificate
verification.

 EKU for PKI Entities
 The EKU extension indicates the purposes for which the
certified key pair may be used. Therefore, it restricts the use of a certificate
to specific applications.
 A CA may want to delegate parts of its duties to other PKI management entities.
This section provides a mechanism to both prove this delegation and enable
automated means for checking the authorization of this delegation. Such delegation
may also be expressed by other means, e.g., explicit configuration.
 To offer automatic validation for the delegation of a role by a CA to another
entity, the certificates used for CMP message protection or signed data for
central key generation MUST be issued by the delegating CA and MUST contain
the respective EKUs. This proves that the delegating CA authorized this entity to act in the given role, as described below.
 The OIDs to be used for these EKUs are:

 id-kp-cmcCA OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) kp(3) 27 }

 id-kp-cmcRA OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) kp(3) 28 }

 id-kp-cmKGA OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) kp(3) 32 }

 Note: specifies OIDs for a
	Certificate Management over CMS (CMC) CA and a CMC RA.
As the functionality of a CA and
RA is not specific to any protocol used for managing certificates (such as CMC or CMP),
these EKUs are reused by CMP.
 The meaning of the id-kp-cmKGA EKU is as follows:

 CMP KGA:

 CMP KGAs are CAs or are identified by the id-kp-cmKGA
EKU. The CMP KGA knows the private key it generated on behalf
of the end entity. This is a very sensitive service and needs specific authorization,
which by default is with the CA certificate itself. The CA may delegate
its authorization by placing the id-kp-cmKGA EKU in the certificate
used to authenticate the origin of the generated private key. The authorization
may also be determined through local configuration of the end entity.

 Data Structures
 This section contains descriptions of the data structures required
for PKI management messages. describes constraints on
their values and the sequence of events for each of the various PKI
management operations.

 Overall PKI Message
 All of the messages used in this specification for the purposes of PKI management
use the following structure:

 PKIMessage ::= SEQUENCE {
 header PKIHeader,
 body PKIBody,
 protection [0] PKIProtection OPTIONAL,
 extraCerts [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
 OPTIONAL
 }

 PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage

 The PKIHeader contains information that is common to many PKI
messages.
 The PKIBody contains message-specific information.
 The PKIProtection, when used, contains bits that protect the PKI
message.
 The extraCerts field can contain certificates that may be useful to
the recipient. For example, this can be used by a CA or RA to
present an end entity with certificates that it needs to verify its
own new certificate (for example, if the CA that issued the end entity's
certificate is not a root CA for the end entity). Note that
this field does not necessarily contain a certification path; the
recipient may have to sort, select from, or otherwise process the
extra certificates in order to use them.

 PKI Message Header
 All PKI messages require some header information for addressing and
transaction identification. Some of this information will also be
present in a transport-specific envelope. However, if the PKI
message is protected, then this information is also protected (i.e.,
we make no assumption about secure transport).
 The following data structure is used to contain this information:

 PKIHeader ::= SEQUENCE {
 pvno INTEGER { cmp1999(1), cmp2000(2),
 cmp2021(3) },
 sender GeneralName,
 recipient GeneralName,
 messageTime [0] GeneralizedTime OPTIONAL,
 protectionAlg [1] AlgorithmIdentifier{ALGORITHM, {...}}
 OPTIONAL,
 senderKID [2] KeyIdentifier OPTIONAL,
 recipKID [3] KeyIdentifier OPTIONAL,
 transactionID [4] OCTET STRING OPTIONAL,
 senderNonce [5] OCTET STRING OPTIONAL,
 recipNonce [6] OCTET STRING OPTIONAL,
 freeText [7] PKIFreeText OPTIONAL,
 generalInfo [8] SEQUENCE SIZE (1..MAX) OF
 InfoTypeAndValue OPTIONAL
 }

 PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String

 The usage of the protocol version number (pvno) is described in .
 The sender field contains the name of the sender of the PKIMessage.
This name (in conjunction with senderKID, if supplied) should be
sufficient to indicate the key to use to verify the protection on the
message. If nothing about the sender is known to the sending entity
(e.g., in the initial request message, where the end entity may not know
its own DN, email name, IP address, etc.), then
the "sender" field MUST contain a "NULL-DN" value in the directoryName choice.
A "NULL-DN" is a SEQUENCE OF relative DNs of zero length and is encoded as 0x3000.
In such a case, the senderKID field MUST hold an identifier (i.e., a reference
number) that indicates to the receiver the appropriate shared secret
information to use to verify the message.
 The recipient field contains the name of the recipient of the
PKIMessage. This name (in conjunction with recipKID, if supplied)
should be usable to verify the protection on the message.
 The protectionAlg field specifies the algorithm used to protect the
message. If no protection bits are supplied (note that PKIProtection
is OPTIONAL), then this field MUST be omitted; if protection bits are
supplied, then this field MUST be supplied.
 senderKID and recipKID are usable to indicate which keys have been
used to protect the message (recipKID will normally only be required
where protection of the message uses DH or Elliptic Curve Diffie-Hellman (ECDH) keys).
These fields MUST be used if required to uniquely identify a key
(e.g., if more than one key is associated with a given sender name).
The senderKID SHOULD be used in any case.
 Note: The recommendation of using senderKID has changed since ,
where it was recommended to be omitted if not needed to identify the protection
key.
 The transactionID field within the message header is to be used to
allow the recipient of a message to correlate this with an ongoing
transaction. This is needed for all transactions that consist of
more than just a single request/response pair. For transactions that
consist of a single request/response pair, the rules are as follows.
A client MUST populate the transactionID field if the message
contains an infoValue of type KemCiphertextInfo (see). In all other cases,
the client MAY populate the transactionID field of the request. If a
server receives such a request that has the transactionID field set,
then it MUST set the transactionID field of the response to the same
value. If a server receives such request with a missing
transactionID field, then it MUST populate the transactionID field if
the message contains a KemCiphertextInfo field. In all other cases,
the server MAY set the transactionID field of the response.
 For transactions that consist of more than just a single
request/response pair, the rules are as follows. If the message
contains an infoValue of type KemCiphertextInfo, the client
 MUST generate a transactionID; otherwise, the client SHOULD
generate a transactionID for the first request. If a server receives
such a request that has the transactionID field set, then it MUST set
the transactionID field of the response to the same value. If a
server receives such request with a missing transactionID field, then
it MUST populate the transactionID field of the response with a
server-generated ID. Subsequent requests and responses MUST all set
the transactionID field to the thus established value. In all cases
where a transactionID is being used, a given client MUST NOT have
more than one transaction with the same transactionID in progress at
any time (to a given server). Servers are free to require uniqueness
of the transactionID or not, as long as they are able to correctly
associate messages with the corresponding transaction. Typically,
this means that a server will require the {client, transactionID}
tuple to be unique, or even the transactionID alone to be unique, if
it cannot distinguish clients based on any transport-level information.
A server receiving the first message of a transaction (which requires
more than a single request/response pair) that contains a
transactionID that does not allow it to meet the above constraints
(typically because the transactionID is already in use) MUST send
back an ErrorMsgContent with a PKIFailureInfo of transactionIdInUse.
It is RECOMMENDED that the clients fill the transactionID field with
128 bits of (pseudo-)random data for the start of a transaction to
reduce the probability of having the transactionID in use at the
server.
 The senderNonce and recipNonce fields protect the PKIMessage against
replay attacks. The senderNonce will typically be 128 bits of
(pseudo-)random data generated by the sender, whereas the recipNonce
is copied from the senderNonce field of the previous message in the
transaction.
 The messageTime field contains the time at which the sender created
the message. This may be useful to allow end entities to
correct/check their local time for consistency with the time on a
	 central system.
 The freeText field may be used to send a human-readable message to
the recipient (in any number of languages). Each UTF8String MAY
include a language tag to indicate the language of the
contained text. The first language used in this sequence indicates
the desired language for replies.
 The generalInfo field may be used to send machine-processable
additional data to the recipient. The following generalInfo
extensions are defined and MAY be supported.

 ImplicitConfirm
 This is used by the end entity to inform the CA or RA that it does not wish to send
a certificate confirmation for issued certificates.

 id-it-implicitConfirm OBJECT IDENTIFIER ::= {id-it 13}
 ImplicitConfirmValue ::= NULL

 If the CA grants the request to the end entity, it MUST put the same
extension in the PKIHeader of the response. If the end entity does not find
the extension in the response, it MUST send the certificate
confirmation.

 ConfirmWaitTime
 This is used by the CA or RA to inform the end entity how long it intends to wait
for the certificate confirmation before revoking the certificate and
deleting the transaction.

 id-it-confirmWaitTime OBJECT IDENTIFIER ::= {id-it 14}
 ConfirmWaitTimeValue ::= GeneralizedTime

 OrigPKIMessage
 An RA MAY include the original PKIMessage from the end entity in the generalInfo
field of the PKIHeader of a PKIMessage. This is used by the RA to inform
the CA of the original PKIMessage that it received from the end entity and modified
in some way (e.g., added or modified particular field values or added new
extensions) before forwarding the new PKIMessage. This
accommodates, for example, cases in which the CA wishes to check the message origin, the POP, or other
information on the original end entity message.
 Note: If the changes made by
the RA to the original PKIMessage break the POP of a certificate request,
the RA can set the popo field of the new PKIMessage to raVerified (see).
 Unless the OrigPKIMessage infoValue is in the header of a nested message, it MUST contain exactly one PKIMessage. The contents of OrigPKIMessage infoValue in the header of a nested message MAY contain multiple PKIMessage structures, which MUST be in the same order as the PKIMessage structures in PKIBody.

 id-it-origPKIMessage OBJECT IDENTIFIER ::= {id-it 15}
 OrigPKIMessageValue ::= PKIMessages

 CertProfile
 This is used by the end entity to indicate specific certificate profiles, e.g., when
requesting a new certificate or a certificate request template (see).

 id-it-certProfile OBJECT IDENTIFIER ::= {id-it 21}
 CertProfileValue ::= SEQUENCE SIZE (1..MAX) OF UTF8String

 When used in a p10cr message, the CertProfileValue sequence MUST NOT contain multiple certificate profile names. When used in an ir/cr/kur/genm message, the CertProfileValue sequence MUST NOT contain more certificate profile names than the number of CertReqMsg or GenMsgContent InfoTypeAndValue elements contained in the message body.
 The certificate profile names in the CertProfileValue sequence relate to the CertReqMsg or GenMsgContent InfoTypeAndValue elements in the given order. An empty string means no certificate profile name is associated with the respective CertReqMsg or GenMsgContent InfoTypeAndValue element. If the CertProfileValue sequence contains less certificate profile entries than CertReqMsg or GenMsgContent InfoTypeAndValue elements, the remaining CertReqMsg or GenMsgContent InfoTypeAndValue elements have no profile name associated with them.

 KemCiphertextInfo
 A PKI entity MAY provide the KEM ciphertext for MAC-based message protection using KEM (see) in the generalInfo field of a request message to a PKI management entity if it knows that the PKI management entity uses a KEM key pair and has its public key.

 id-it-KemCiphertextInfo OBJECT IDENTIFIER ::= { id-it 24 }
 KemCiphertextInfoValue ::= KemCiphertextInfo

 For more details of KEM-based message protection, see . See for the definition of {id-it 24}.

 PKI Message Body

 PKIBody ::= CHOICE {
 ir [0] CertReqMessages, --Initialization Req
 ip [1] CertRepMessage, --Initialization Resp
 cr [2] CertReqMessages, --Certification Req
 cp [3] CertRepMessage, --Certification Resp
 p10cr [4] CertificationRequest, --PKCS #10 Cert. Req.
 popdecc [5] POPODecKeyChallContent, --pop Challenge
 popdecr [6] POPODecKeyRespContent, --pop Response
 kur [7] CertReqMessages, --Key Update Request
 kup [8] CertRepMessage, --Key Update Response
 krr [9] CertReqMessages, --Key Recovery Req
 krp [10] KeyRecRepContent, --Key Recovery Resp
 rr [11] RevReqContent, --Revocation Request
 rp [12] RevRepContent, --Revocation Response
 ccr [13] CertReqMessages, --Cross-Cert. Request
 ccp [14] CertRepMessage, --Cross-Cert. Resp
 ckuann [15] CAKeyUpdContent, --CA Key Update Ann.
 cann [16] CertAnnContent, --Certificate Ann.
 rann [17] RevAnnContent, --Revocation Ann.
 crlann [18] CRLAnnContent, --CRL Announcement
 pkiconf [19] PKIConfirmContent, --Confirmation
 nested [20] NestedMessageContent, --Nested Message
 genm [21] GenMsgContent, --General Message
 genp [22] GenRepContent, --General Response
 error [23] ErrorMsgContent, --Error Message
 certConf [24] CertConfirmContent, --Certificate Confirm
 pollReq [25] PollReqContent, --Polling Request
 pollRep [26] PollRepContent --Polling Response
 }

 The specific types are described in below.

 PKI Message Protection
 Some PKI messages will be protected for integrity.
 Note: If an asymmetric algorithm is used to protect a message and the relevant
public component has been certified already, then the origin of the
message can also be authenticated. On the other hand, if the public
component is uncertified, then the message origin cannot be
automatically authenticated but may be authenticated via out-of-band
means.
 When protection is applied, the following structure is used:

 PKIProtection ::= BIT STRING

 The input to the calculation of PKIProtection is the DER encoding of
the following data structure:

 ProtectedPart ::= SEQUENCE {
 header PKIHeader,
 body PKIBody
 }

 There MAY be cases in which the PKIProtection BIT STRING is
deliberately not used to protect a message (i.e., this OPTIONAL field
is omitted) because other protection, external to PKIX, will be
applied instead. Such a choice is explicitly allowed in this
specification. Examples of such external protection include CMS and Security Multiparts encapsulation of the
PKIMessage (or simply the PKIBody (omitting the CHOICE tag), if the
relevant PKIHeader information is securely carried in the external
mechanism). It is noted, however, that many such external mechanisms
require that the end entity already possesses a public-key
certificate, a unique DN, and/or other such
infrastructure-related information. Thus, they may not be
appropriate for initial registration, key-recovery, or any other
process with "bootstrapping" characteristics. For those cases, it
may be necessary that the PKIProtection parameter be used. In the
future, if/when external mechanisms are modified to accommodate
bootstrapping scenarios, the use of PKIProtection may become rare or
non-existent.
 Depending on the circumstances, the PKIProtection bits may contain a
MAC or signature. Only the following
cases can occur:

 Shared Secret Information
 In this case, the sender and recipient share secret information with sufficient
entropy (established via out-of-band means). PKIProtection will contain a
MAC value, and the protectionAlg MAY be one of the options described in CMP Algorithms.
 The algorithm identifier id-PasswordBasedMac is defined in and updated by . It is mentioned in for backward compatibility. More modern alternatives are listed in .

 id-PasswordBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 13}
 PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 owf AlgorithmIdentifier,
 iterationCount INTEGER,
 mac AlgorithmIdentifier
 }

 The following text gives a method of key expansion to be used when the MAC algorithm requires an input length that is larger than the size of the one-way function (OWF).
 Note: and do not mention this key expansion method or give an example using HMAC algorithms where key expansion is not needed. It is recognized that this omission in can lead to confusion and possible incompatibility if key expansion is not used when needed. Therefore, when key expansion is required (when K > H), the key expansion defined in the following text MUST be used.
 In the above protectionAlg, the salt value is appended to the shared
secret input. The OWF is then applied iterationCount times, where the
salted secret is the input to the first iteration and, for each
successive iteration, the input is set to be the output of the
previous iteration. The output of the final iteration (called
"BASEKEY" for ease of reference, with a size of "H") is what is used
to form the symmetric key. If the MAC algorithm requires a K-bit key
and K <= H, then the most significant K bits of BASEKEY are used. If
K > H, then all of BASEKEY is used for the most significant H bits of
the key, OWF("1" || BASEKEY) is used for the next most significant H
bits of the key, OWF("2" || BASEKEY) is used for the next most
significant H bits of the key, and so on, until all K bits have been
derived. [Here "N" is the ASCII byte encoding the number N and "||"
represents concatenation.]
 Note: It is RECOMMENDED that the fields of PBMParameter remain
constant throughout the messages of a single transaction (e.g.,
ir/ip/certConf/pkiConf) to reduce the overhead associated with
PasswordBasedMac computation.

 DH Key Pairs
 Where the sender and receiver possess finite-field or elliptic-curve-based
DH certificates
with compatible DH parameters in order to protect the message, the
end entity must generate a symmetric key based on its private DH key
value and the DH public key of the recipient of the PKI message.
PKIProtection will contain a MAC value keyed with this derived
symmetric key, and the protectionAlg will be the following:

 id-DHBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 30}

 DHBMParameter ::= SEQUENCE {
 owf AlgorithmIdentifier,
 -- AlgId for an OWF
 mac AlgorithmIdentifier
 -- the MAC AlgId
 }

 In the above protectionAlg, OWF is applied to the result of the
DH computation. The OWF output (called "BASEKEY" for
ease of reference, with a size of "H") is what is used to form the
symmetric key. If the MAC algorithm requires a K-bit key and K <= H, then
the most significant K bits of BASEKEY are used. If K > H, then
all of BASEKEY is used for the most significant H bits of the key,
OWF("1" || BASEKEY) is used for the next most significant H bits of
the key, OWF("2" || BASEKEY) is used for the next most significant H
bits of the key, and so on, until all K bits have been derived.
[Here "N" is the ASCII byte encoding the number N and "||" represents concatenation.]
 Note: Hash algorithms that can be used as OWFs are listed in CMP Algorithms.

 Signature
 In this case, the sender possesses a signature key pair and simply
signs the PKI message. PKIProtection will contain the signature
value and the protectionAlg will be an AlgorithmIdentifier for a
digital signature, which MAY be one of the options described in CMP
Algorithms.

 Key Encapsulation
 In case the sender of a message has a KEM key pair, it can be used to establish a shared secret key for MAC-based message protection. This can be used for message authentication.
 This approach uses the definition of KEM algorithm functions in as follows:
 A KEM algorithm provides three functions:

 KeyGen() -> (pk, sk): Generate a public key (pk) and a
 private (secret) key (sk).
 Encapsulate(pk) -> (ct, ss): Given the public key
 (pk), produce a ciphertext (ct) and a shared secret (ss).
 Decapsulate(sk, ct) -> (ss): Given the private key
 (sk) and the ciphertext (ct), produce the shared secret
 (ss).

 To support a particular KEM algorithm, the PKI entity that possesses a KEM key pair and wishes to use it for MAC-based message protection MUST support the KEM Decapsulate() function. The PKI entity that wishes to verify the MAC-based message protection MUST support the KEM Encapsulate() function. The respective public KEM key is usually carried in a certificate .
 Note: Both PKI entities send and receive messages in a PKI management operation. Both PKI entities may independently wish to protect messages using their KEM key pairs. For ease of explanation, we use the terms "Alice" to denote the PKI entity possessing the KEM key pair and who wishes to provide MAC-based message protection and "Bob" to denote the PKI entity having Alice's authentic public KEM key and who needs to verify the MAC-based protection provided by Alice.
 Assuming Bob has Alice's KEM public key, he generates the ciphertext using KEM encapsulation and transfers it to Alice in an InfoTypeAndValue structure. Alice then retrieves the KEM shared secret from the ciphertext using KEM decapsulation and the associated KEM private key. Using a key derivation function (KDF), Alice derives a shared secret key from the KEM shared secret and other data sent by Bob. PKIProtection will contain a MAC value calculated using that shared secret key, and the protectionAlg will be the following:

 id-KemBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 16}

 KemBMParameter ::= SEQUENCE {
 kdf AlgorithmIdentifier{KEY-DERIVATION, {...}},
 kemContext [0] OCTET STRING OPTIONAL,
 len INTEGER (1..MAX),
 mac AlgorithmIdentifier{MAC-ALGORITHM, {...}}
 }

 Note: The OID for id-KemBasedMac was assigned on the private-use arc { iso(1) member-body(2) us(840) nortelnetworks(113533) entrust(7) } and not assigned on an IANA-owned arc because the authors wished to place it on the same branch as the existing OIDs for id-PasswordBasedMac and id-DHBasedMac.
 kdf is the algorithm identifier of the chosen KDF, and any associated parameters, used to derive the shared secret key.
 kemContext MAY be used to transfer additional algorithm-specific context information (see also the definition of ukm in).
 len is the output length of the KDF and MUST be the desired size of the key to be used for MAC-based message protection.
 mac is the algorithm identifier of the chosen MAC algorithm, and any associated parameters, used to calculate the MAC value.
 The KDF and MAC algorithms MAY be chosen from the options in CMP Algorithms .
 The InfoTypeAndValue transferring the KEM ciphertext uses OID id-it-KemCiphertextInfo. It contains a KemCiphertextInfo structure, as defined in .
 Note: This InfoTypeAndValue can be carried in a genm/genp message body, as specified in , or in the generalInfo field of PKIHeader in messages of other types (see).
 In the following, a generic message flow for MAC-based protection using KEM is specified in more detail. It is assumed that Bob possesses Alice's public KEM key. Alice can be the initiator of a PKI management operation or the responder. For more detailed figures, see .
 Generic Message Flow:

 Generic Message Flow When Alice Has a KEM Key Pair

 Step#
 Alice
 Bob
 1
 perform
 KEM
 Encapsulate
 KEM
 Ciphertext
 2
 perform
 KEM
 Decapsulate,
 perform
 key
 derivation,
 format
 message
 with
 MAC-based
 protection
 message
 3
 perform
 key
 derivation,
 verify
 MAC-based
 protection
 Alice
 authenticated
 by
 Bob

Step# Alice Bob

 1 perform KEM Encapsulate
 <-- KEM Ciphertext <--
 2 perform KEM Decapsulate,
 perform key derivation,
 format message with
 MAC-based protection
 --> message -->
 3 perform key derivation,
 verify MAC-based
 protection
------------------- Alice authenticated by Bob --------------------

 Bob needs to possess Alice's authentic public KEM key (pk), for instance, contained in a KEM certificate that was received and successfully validated by Bob beforehand.

		Bob generates a shared secret (ss) and the associated ciphertext (ct) using the KEM Encapsulate function with Alice's public KEM key (pk). Bob MUST NOT reuse the ss and ct for other PKI management operations. From this data, Bob produces a KemCiphertextInfo structure, including the KEM algorithm identifier and the ciphertext (ct) and sends it to Alice in an InfoTypeAndValue structure, as defined in .
 Encapsulate(pk) -> (ct, ss)

 Alice decapsulates the shared secret (ss) from the ciphertext (ct) using the KEM Decapsulate function and its private KEM key (sk).
 Decapsulate(ct, sk) -> (ss)

If the decapsulation operation outputs an error, any failInfo field in an error response message SHALL contain the value badMessageCheck and the PKI management operation SHALL be terminated.

Alice derives the shared secret key (ssk) using a KDF. The shared secret (ss) is used as input key material for the KDF, and the value len is the desired output length of the KDF as required by the MAC algorithm to be used for message protection. KDF, len, and MAC will be transferred to Bob in the protectionAlg KemBMParameter. The DER-encoded KemOtherInfo structure, as defined below, is used as context for the KDF.
 KDF(ss, len, context)->(ssk)

The shared secret key (ssk) is used for MAC-based protection by Alice.

 Bob derives the same shared secret key (ssk) using the KDF. Also here, the shared secret (ss) is used as input key material for the KDF, the value len is the desired output length for the KDF, and the DER-encoded KemOtherInfo structure constructed in the same way as on Alice's side is used as context for the KDF.
 KDF(ss, len, context)->(ssk)

Bob uses the shared secret key (ssk) for verifying the MAC-based protection of the message received and in this way authenticates Alice.

 This shared secret key (ssk) can be reused by Alice for MAC-based protection of further messages sent to Bob within the current PKI management operation.
 This approach employs the notation of KDF(IKM, L, info) as described in with the following changes:

 IKM is the input key material. It is the symmetric secret called "ss" resulting from the KEM.

 L is dependent of the MAC algorithm that is used with the shared secret key for CMP message protection and is called "len" in this document.

 info is an additional input to the KDF, is called "context" in this document, and contains the DER-encoded KemOtherInfo structure defined as:

 KemOtherInfo ::= SEQUENCE {
 staticString PKIFreeText,
 transactionID OCTET STRING,
 kemContext [0] OCTET STRING OPTIONAL
 }

staticString MUST be "CMP-KEM".

transactionID MUST be the value from the message containing the ciphertext (ct) in KemCiphertextInfo.

Note: The transactionID is used to ensure domain separation of the derived shared secret key between different PKI management operations. For all PKI management operations with more than one exchange, the transactionID MUST be set anyway (see). In case Bob provided an infoValue of type KemCiphertextInfo to Alice in the initial request message (see of), the transactionID MUST be set by Bob.

kemContext MAY contain additional algorithm-specific context information.

 OKM is the output keying material of the KDF used for MAC-based message protection of length len and is called "ssk" in this document.

 There are various ways that Alice can request and Bob can provide the KEM ciphertext (see for details). The KemCiphertextInfo can be requested using PKI general messages, as described in . Alternatively, the generalInfo field of the PKIHeader can be used to convey the same request and response InfoTypeAndValue structures, as described in . The procedure also works without Alice explicitly requesting the KEM ciphertext in case Bob knows one of Alice's KEM keys beforehand and can expect that she is ready to use it.
 If both the initiator and responder in a PKI management operation have KEM key pairs, this procedure can be applied by both entities independently, establishing and using different shared secret keys for either direction.

 Multiple Protection
 When receiving a protected PKI message, a PKI management entity, such as an
RA, MAY forward that message adding its own protection. Additionally, multiple
PKI messages MAY be aggregated. There are several use cases for such messages.

 The RA confirms having validated and authorized a message and forwards the
original message unchanged.

 A PKI management entity collects several messages that are to be forwarded
in the same direction and forwards them in a batch. Request messages can
be transferred as a batch upstream (towards the CA); response or announce messages
can be transferred as a batch downstream (towards an RA but not to the end entity).
For instance, this can be used when bridging an offline connection between
two PKI management entities.

 These use cases are accomplished by nesting the messages within a new PKI
message. The structure used is as follows:

 NestedMessageContent ::= PKIMessages

 In case an RA needs to modify a request message, it MAY include the original
PKIMessage in the generalInfo field of the modified message, as described in
 .

 Common Data Structures
 Before specifying the specific types that may be placed in a PKIBody,
we define some data structures that are used in more than one case.

 Requested Certificate Contents
 Various PKI management messages require that the originator of the
message indicate some of the fields that are required to be present
in a certificate. The CertTemplate structure allows entities requesting a certificate
to specify the data fields that they want to be included.
Typically, they are required to provide at least the publicKey field.
A CertTemplate structure is identical to a TBSCertificate structure (see)
but with all fields optional/situational.
 Note: Even if the originator completely specifies the contents of
a certificate it requires, a CA is free to modify fields within the
certificate actually issued. If the modified certificate is
unacceptable to the requester, the requester MUST send back a
certConf message that either does not include this certificate (via a
CertHash) or does include this certificate (via a CertHash) along
with a status of "rejected". See for the definition
and use of CertHash and the certConf message.
 Note: Before requesting a new certificate, an end entity can request a certTemplate
structure as a kind of certificate request blueprint in order to learn which
data the CA expects to be present in the certificate request (see).
 See CRMF for CertTemplate syntax.
 If certTemplate is an empty SEQUENCE (i.e., all fields omitted), then the
controls field in the CertRequest structure MAY contain the id-regCtrl-altCertTemplate
control, specifying a template for a certificate other than an X.509v3 public-key
certificate. Conversely, if certTemplate is not empty (i.e., at least one
field is present), then controls MUST NOT contain id-regCtrl-altCertTemplate.
The new control is defined as follows:

 id-regCtrl-altCertTemplate OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) pkip(5) regCtrl(1) 7}

 AltCertTemplate ::= AttributeTypeAndValue

 Also see for more details on how to manage certificates in alternative formats using CRMF syntax.

 Encrypted Values
 When encrypted data like a private key, certificate, POP challenge, or revocation passphrase is sent in PKI messages, it is RECOMMENDED to use the EnvelopedData structure. In some cases, this is accomplished by using the EncryptedKey data structure instead of EncryptedValue.

 EncryptedKey ::= CHOICE {
 encryptedValue EncryptedValue, -- deprecated
 envelopedData [0] EnvelopedData }

 See Certificate Request Message Format (CRMF) for EncryptedKey and EncryptedValue syntax and Cryptographic Message
 Syntax (CMS) for EnvelopedData syntax. Using the EncryptedKey data structure offers the
choice to either use EncryptedValue (for backward compatibility only) or
EnvelopedData. The use of the EncryptedValue structure has been deprecated
in favor of the EnvelopedData structure. Therefore, it is RECOMMENDED to
use EnvelopedData.
 Note: The EncryptedKey structure defined in CRMF is used here, which makes the update backward compatible. Using the new syntax
with the untagged default choice EncryptedValue is bits-on-the-wire compatible
with the old syntax.
 To indicate support for EnvelopedData, the pvno cmp2021 has been introduced.
Details on the usage of the protocol version number
 are described in .
 The EnvelopedData structure is RECOMMENDED to be used in CMP to transport a private key,
certificate, POP challenge, or revocation passphrase in encrypted form as follows:

 It contains only one RecipientInfo structure because the content is encrypted
only for one recipient.

 It may contain a private key in the AsymmetricKeyPackage structure (which is placed in the encryptedContentInfo field), as defined
in , that is wrapped in a SignedData structure, as specified in
 and , signed by the KGA or CA.

 It may contain a certificate, POP challenge, or revocation passphrase directly in the encryptedContent
field.

 The content of the EnvelopedData structure, as specified in ,
 MUST be encrypted using a newly generated symmetric content-encryption
key. This content-encryption key MUST be securely provided to the recipient
using one of four key management techniques.
 The choice of the key management technique to be used by the sender depends
on the credential available at the recipient:

 recipient's certificate with an algorithm identifier and a public key that supports key transport and where any given key usage extension allows keyEncipherment:
The content-encryption key will be protected using the key transport key management technique, as specified in .

 recipient's certificate with an algorithm identifier and a public key that supports key agreement and where any given key usage extension allows keyAgreement:
The content-encryption key will be protected using the key agreement key management technique, as specified in .

 a password or shared secret: The content-encryption key will be protected
using the password-based key management technique, as specified in
 .

 recipient's certificate with an algorithm identifier and a public key that supports KEM and where any given key usage extension allows keyEncipherment: The content-encryption key will be protected using the key management technique for KEM keys, as specified in .

 Note: There are cases where the algorithm identifier, the type of the public key,
and the key usage extension will not be sufficient to decide on the key management
technique to use, e.g., when rsaEncryption is the algorithm identifier. In
such cases, it is a matter of local policy to decide.

 Status Codes and Failure Information for PKI Messages
 All response messages will include some status information. The
following values are defined.

 PKIStatus ::= INTEGER {
 accepted (0),
 grantedWithMods (1),
 rejection (2),
 waiting (3),
 revocationWarning (4),
 revocationNotification (5),
 keyUpdateWarning (6)
 }

 Responders may use the following syntax to provide more information
about failure cases.

 PKIFailureInfo ::= BIT STRING {
 badAlg (0),
 badMessageCheck (1),
 badRequest (2),
 badTime (3),
 badCertId (4),
 badDataFormat (5),
 wrongAuthority (6),
 incorrectData (7),
 missingTimeStamp (8),
 badPOP (9),
 certRevoked (10),
 certConfirmed (11),
 wrongIntegrity (12),
 badRecipientNonce (13),
 timeNotAvailable (14),
 unacceptedPolicy (15),
 unacceptedExtension (16),
 addInfoNotAvailable (17),
 badSenderNonce (18),
 badCertTemplate (19),
 signerNotTrusted (20),
 transactionIdInUse (21),
 unsupportedVersion (22),
 notAuthorized (23),
 systemUnavail (24),
 systemFailure (25),
 duplicateCertReq (26)
 }

 PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL
 }

 Certificate Identification
 In order to identify particular certificates, the CertId data
structure is used.
 See for CertId syntax.

 Out-of-Band Root CA Public Key
 Each root CA that provides a self-signed certificate must be able to publish its current public key via some
"out-of-band" means or together with the respective link certificate using an online mechanism. While such mechanisms are beyond the scope of
this document, we define data structures that can support such
mechanisms.
 There are generally two methods available: Either the CA directly
publishes its self-signed certificate, or this information is
available via the directory (or equivalent) and the CA publishes a
hash of this value to allow verification of its integrity before use.
 Note: As an alternative to out-of-band distribution of root CA public keys, the CA can provide the self-signed certificate together with link certificates, e.g., using RootCaKeyUpdateContent ().

 OOBCert ::= Certificate

 The fields within this certificate are restricted as follows:

 The certificate MUST be self-signed (i.e., the signature must be
verifiable using the SubjectPublicKeyInfo field);

 The subject and issuer fields MUST be identical;

 If the subject field contains a "NULL-DN", then both subjectAltNames and
issuerAltNames extensions MUST be present and have exactly the
same value; and

 The values of all other extensions must be suitable for a self-signed
certificate (e.g., key identifiers for the subject and issuer must be the
same).

 OOBCertHash ::= SEQUENCE {
 hashAlg [0] AlgorithmIdentifier OPTIONAL,
 certId [1] CertId OPTIONAL,
 hashVal BIT STRING
 }

 The intention of the hash value is that anyone who has securely
received the hash value (via the out-of-band means) can verify a
self-signed certificate for that CA.

 Archive Options
 Requesters may indicate that they wish the PKI to archive a private
key value using the PKIArchiveOptions structure.
 See for PKIArchiveOptions syntax.

 Publication Information
 Requesters may indicate that they wish the PKI to publish a
certificate using the PKIPublicationInfo structure.
 See for PKIPublicationInfo syntax.

 POP Structures
 The POP structure used is indicated in the popo field
of type ProofOfPossession in the CertReqMsg sequence (see).

 ProofOfPossession ::= CHOICE {
 raVerified [0] NULL,
 signature [1] POPOSigningKey,
 keyEncipherment [2] POPOPrivKey,
 keyAgreement [3] POPOPrivKey
 }

 raVerified
 An end entity MUST NOT use raVerified. If an RA performs changes to a certification request breaking the provided POP, or if the RA requests a certificate on behalf of an end entity and cannot provide the POP itself, the RA MUST use raVerified. Otherwise, it SHOULD NOT use raVerified.
 When introducing raVerified, the RA MUST check the existing POP, or it MUST ensure by other means that the end entity is the holder of the private key. The RA MAY provide the original message containing the POP in the generalInfo field using the id-it-origPKIMessage (see) enabling the CA to verify it.

 POPOSigningKey Structure
 If the certification request is for a key pair that supports signing (i.e., a request for a verification certificate), then the POP of the private key is demonstrated through use of the POPOSigningKey structure; for details, see .

 POPOSigningKey ::= SEQUENCE {
 poposkInput [0] POPOSigningKeyInput OPTIONAL,
 algorithmIdentifier AlgorithmIdentifier,
 signature BIT STRING
 }

 POPOSigningKeyInput ::= SEQUENCE {
 authInfo CHOICE {
 sender [0] GeneralName,
 publicKeyMAC PKMACValue
 },
 publicKey SubjectPublicKeyInfo
 }

 PKMACValue ::= SEQUENCE {
 algId AlgorithmIdentifier,
 value BIT STRING
 }

 Note: For the purposes of this specification, the ASN.1 comment given in pertains not only to certTemplate but also to the altCertTemplate control, as defined in .
 If certTemplate (or the altCertTemplate control) contains the subject and publicKey values, then poposkInput MUST be omitted and the signature MUST be computed on the DER-encoded value of the certReq field of the CertReqMsg (or the DER-encoded value of AltCertTemplate). If certTemplate/altCertTemplate does not contain both the subject and public key values (i.e., if it contains only one of these or neither), then poposkInput MUST be present and the signature MUST be computed on the DER-encoded value of poposkInput (i.e., the "value" OCTETs of the POPOSigningKeyInput DER).
 In the special case that the CA/RA has a DH certificate that is known to the end entity and the certification request is for a key agreement key pair, the end entity can also use the POPOSigningKey structure (where the algorithmIdentifier field is DHBasedMAC and the signature field is the MAC) for demonstrating POP.

 POPOPrivKey Structure
 If the certification request is for a key pair that does not support signing (i.e., a request for an encryption or key agreement certificate), then the POP of the private key is demonstrated through use of the POPOPrivKey structure in one of the following three ways; for details see Sections and in .

 POPOPrivKey ::= CHOICE {
 thisMessage [0] BIT STRING, -- deprecated
 subsequentMessage [1] SubsequentMessage,
 dhMAC [2] BIT STRING, -- deprecated
 agreeMAC [3] PKMACValue,
 encryptedKey [4] EnvelopedData
 }

 SubsequentMessage ::= INTEGER {
 encrCert (0),
 challengeResp (1)
 }

 When using agreeMAC or encryptedKey choices, the pvno cmp2021(3) MUST be used. Details on the usage of the protocol version number are described in .

 Inclusion of the Private Key
 This method mentioned previously in demonstrates POP of the private key by including the encrypted private key in the CertRequest in the POPOPrivKey structure or in the PKIArchiveOptions control structure. This method SHALL only be used if archival of the private key is desired.
 For a certification request message indicating cmp2021(3) in the pvno field of the PKIHeader, the encrypted private key MUST be transferred in the encryptedKey choice of POPOPrivKey (or within the PKIArchiveOptions control) in a CMS EnvelopedData structure, as defined in .
 Note: The thisMessage choice has been deprecated in favor of encryptedKey. When using cmp2000(2) in the certification request message header for backward compatibility, the thisMessage choice of POPOPrivKey is used containing the encrypted private key in an EncryptedValue structure wrapped in a BIT STRING. This allows the necessary conveyance and protection of the private key while maintaining bits-on-the-wire compatibility with .

 Indirect Method - Encrypted Certificate
 The indirect method mentioned previously in demonstrates POP of the private key by having the CA return the requested certificate in encrypted form (see). This method is indicated in the CertRequest by requesting the encrCert option in the subsequentMessage choice of POPOPrivKey.

 end
 entity
 RA/CA
 req
 rep
 (enc
 cert)
 conf
 (cert
 hash)
 ack

 end entity RA/CA
 ---- req ---->
 <--- rep (enc cert) -----
 ---- conf (cert hash) ---->
 <--- ack -----

 The end entity proves knowledge of the private key to the CA by providing the correct CertHash for this certificate in the certConf message. This demonstrates POP because the end entity can only compute the correct CertHash if it is able to recover the encrypted certificate, and it can only recover the certificate if it is able to obtain the symmetric key using the required private key. Clearly, for this to work, the CA MUST NOT publish the certificate until the certConf message arrives (when certHash is to be used to demonstrate POP). See for further details, and see for security considerations regarding use of CT logs.
 The recipient SHOULD maintain a context of the PKI management operation, e.g., using transactionID and certReqId, to identify the private key to use when decrypting the EnvelopedData containing the newly issued certificate. The recipient may be unable to use the RecipientInfo structure as it refers to the certificate that is still encrypted. The sender MUST populate the rid field as specified by CMS, and the client MAY ignore it.

 Direct Method - Challenge-Response Protocol
 The direct method mentioned previously in demonstrates POP of the private key by having the end entity engage in a challenge-response protocol (using the messages popdecc of type POPODecKeyChall and popdecr of type POPODecKeyResp; see below) between CertReqMessages and CertRepMessage. This method is indicated in the CertRequest by requesting the challengeResp option in the subsequentMessage choice of POPOPrivKey.
 Note: This method would typically be used in an environment in which an RA verifies POP and then makes a certification request to the CA on behalf of the end entity. In such a scenario, the CA trusts the RA to have done POP correctly before the RA requests a certificate for the end entity.
 The complete protocol then looks as follows (note that req' does not necessarily encapsulate req as a nested message):

 end
 entity
 RA
 CA
 req
 chall
 resp
 req'
 rep
 conf
 ack
 rep
 conf
 ack

 end entity RA CA
 ---- req ---->
 <--- chall ---
 ---- resp --->
 ---- req' --->
 <--- rep -----
 ---- conf --->
 <--- ack -----
 <--- rep -----
 ---- conf --->
 <--- ack -----

 This protocol is obviously much longer than the exchange given in above but allows a Local Registration Authority (LRA) to be involved and has the property that the certificate itself is not actually created until the POP is complete. In some environments, a different order of the above messages may be required, such as the following (this may be determined by policy):

 end
 entity
 RA
 CA
 req
 chall
 resp
 req'
 rep
 rep
 conf
 conf
 ack
 ack

 end entity RA CA
 ---- req ---->
 <--- chall ---
 ---- resp --->
 ---- req' --->
 <--- rep -----
 <--- rep -----
 ---- conf --->
 ---- conf --->
 <--- ack -----
 <--- ack -----

 The challenge-response messages for POP of a private key are specified as follows (for decryption keys, see , p.404 for details). This challenge-response exchange is associated with the preceding certification request message (and subsequent certification response and confirmation messages) by the transactionID used in the PKIHeader and by the protection applied to the PKIMessage.

 POPODecKeyChallContent ::= SEQUENCE OF Challenge

 Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier OPTIONAL,
 witness OCTET STRING,
 challenge OCTET STRING, -- deprecated
 encryptedRand [0] EnvelopedData OPTIONAL
 }

 Rand ::= SEQUENCE {
 int INTEGER,
 sender GeneralName
 }

 More details on the fields in this syntax are available in .
 For a popdecc message indicating cmp2021(3) in the pvno field of the PKIHeader, the encryption of Rand MUST be transferred in the encryptedRand field in a CMS EnvelopedData structure as defined in . The challenge field MUST contain an empty OCTET STRING.
 The recipient SHOULD maintain a context of the PKI management operation, e.g., using transactionID and certReqId, to identify the private key to use when decrypting encryptedRand. The sender MUST populate the rid field in the EnvelopedData sequence using the issuerAndSerialNumber choice containing a NULL-DN as issuer and the certReqId as serialNumber. The client MAY ignore the rid field.
 Note: The challenge field has been deprecated in favor of encryptedRand. When using cmp2000(2) in the popdecc message header for backward compatibility, the challenge field MUST contain the encryption (involving the public key for which the certification request is being made) of Rand and encryptedRand MUST be omitted. Using challenge (omitting the optional encryptedRand field) is bit-compatible with . Note that the size of Rand, when used with challenge, needs to be appropriate for encryption, involving the public key of the requester. If, in some environment, names are so long that they cannot fit (e.g., very long DNs), then whatever portion will fit should be used (as long as it includes at least the common name, and as long as the receiver is able to deal meaningfully with the abbreviation).

 POPODecKeyRespContent ::= SEQUENCE OF INTEGER

 On receiving the popdecc message, the end entity decrypts all included challenges
and responds with a popdecr message containing the decrypted integer values in the same order.

 Summary of POP Options
 The text in this section provides several options with respect to POP techniques. Using "SK" for "signing key", "EK" for "encryption key", "KAK" for "key agreement key", and "KEMK" for "key encapsulation mechanism key", the techniques may be summarized as follows:

 RAVerified;
 SKPOP;
 EKPOPThisMessage; -- deprecated
 KAKPOPThisMessage; -- deprecated
 EKPOPEncryptedKey;
 KAKPOPEncryptedKey;
 KEMKPOPEncryptedKey;
 KAKPOPThisMessageDHMAC;
 EKPOPEncryptedCert;
 KAKPOPEncryptedCert;
 KEMKPOPEncryptedCert;
 EKPOPChallengeResp;
 KAKPOPChallengeResp; and
 KEMKPOPChallengeResp.

 Given this array of options, it is natural to ask how an end entity can know what is supported by the CA/RA (i.e., which options it may use when requesting certificates). The following guidelines should clarify this situation for end entity implementers.

 RAVerified: This is not an end entity decision; the RA uses this if
 and only if it has verified POP before forwarding the request on
 to the CA, so it is not possible for the end entity to choose this
 technique.
 SKPOP: If the end entity has a signing key pair, this is the only POP
 method specified for use in the request for a corresponding
 certificate.
 EKPOPThisMessage (deprecated), KAKPOPThisMessage
 (deprecated), EKPOPEncryptedKey, KAKPOPEncryptedKey,
 KEMKPOPEncryptedKey: Whether or not to give up its private key
 to the CA/RA is an end entity decision. If the end entity decides to reveal its
 key, then these are the only POP methods available in this
 specification to achieve this (and the key pair type and
 protocol version used will determine which of these methods to
 use). The reason for deprecating EKPOPThisMessage and
 KAKPOPThisMessage options has been given in .
 KAKPOPThisMessageDHMAC: The end entity can only use this method if
 (1) the CA/RA has a DH certificate available for this purpose
 and (2) the end entity already has a copy of this certificate. If both
 these conditions hold, then this technique is clearly supported
 and may be used by the end entity, if desired.
 EKPOPEncryptedCert, KAKPOPEncryptedCert,
 KEMKPOPEncryptedCert, EKPOPChallengeResp, KAKPOPChallengeResp,
 and KEMKPOPChallengeResp: The end entity picks one of these (in the
 subsequentMessage field) in the request message, depending upon
 preference and key pair type. The end entity is not doing POP at this
 point; it is simply indicating which method it wants to
 use. Therefore, if the CA/RA replies with a "badPOP" error, the
 end entity can re-request using the other POP method chosen in
 subsequentMessage. Note, however, that this specification
 encourages the use of the EncryptedCert choice and, furthermore,
 says that the challenge-response would typically be used when an
 RA is involved and doing POP verification. Thus, the end entity should
 be able to make an intelligent decision regarding which of these
 POP methods to choose in the request message.

 GeneralizedTime
 GeneralizedTime is a standard ASN.1 type and SHALL be used as specified in .

 Operation-Specific Data Structures

 Initialization Request
 An Initialization request message contains as the PKIBody a
CertReqMessages data structure, which specifies the requested
certificate(s). Typically, SubjectPublicKeyInfo, KeyId, and Validity
are the template fields that may be supplied for each certificate
requested (see the profiles defined in and Appendices
and for further information). This
message is intended to be used for entities when first initializing
into the PKI.
 See and for CertReqMessages syntax.

 Initialization Response
 An Initialization response message contains as the PKIBody a
CertRepMessage data structure, which has for each certificate
requested a PKIStatusInfo field, a subject certificate, and possibly
a private key (normally encrypted using EnvelopedData; see for further information).
 See for CertRepMessage syntax. Note that if the PKI
message protection is "shared secret information" (see),
then any certificate transported in the caPubs field may be
directly trusted as a root CA certificate by the initiator.

 Certification Request
 A Certification request message contains as the PKIBody a
CertReqMessages data structure, which specifies the requested
certificates (see the profiles defined in and
for further information). This message is intended to be used for existing PKI
entities who wish to obtain additional certificates.
 See and for CertReqMessages syntax.
 Alternatively, the PKIBody MAY be a CertificationRequest (this
structure is fully specified by the ASN.1 structure
CertificationRequest given in ; see the profiles defined in
 for further information).
This structure may be
required for certificate requests for signing key pairs when
interoperation with legacy systems is desired, but its use is
strongly discouraged whenever not absolutely necessary.

 Certification Response
 A Certification response message contains as the PKIBody a
CertRepMessage data structure, which has a status value for each
certificate requested and optionally has a CA public key, failure
information, a subject certificate, and an encrypted private key.

 CertRepMessage ::= SEQUENCE {
 caPubs [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
 OPTIONAL,
 response SEQUENCE OF CertResponse
 }

 CertResponse ::= SEQUENCE {
 certReqId INTEGER,
 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair OPTIONAL,
 rspInfo OCTET STRING OPTIONAL
 -- analogous to the id-regInfo-utf8Pairs string defined
 -- for regInfo in CertReqMsg [RFC4211]
 }

 CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedKey OPTIONAL,
 -- See [RFC4211] for comments on encoding.
 publicationInfo [1] PKIPublicationInfo OPTIONAL
 }

 CertOrEncCert ::= CHOICE {
 certificate [0] CMPCertificate,
 encryptedCert [1] EncryptedKey
 }

 A p10cr message contains exactly one CertificationRequestInfo data structure,
as specified in PKCS #10 , but no certReqId.
Therefore, the certReqId in the corresponding Certification
Response (cp) message MUST be set to -1.
 Only one of the failInfo (in PKIStatusInfo) and certificate (in
CertifiedKeyPair) fields can be present in each CertResponse
(depending on the status). For some status values (e.g., waiting),
neither of the optional fields will be present.
 Given an EncryptedCert and the relevant decryption key, the
certificate may be obtained. The purpose of this is to allow a CA to
return the value of a certificate but with the constraint that only
the intended recipient can obtain the actual certificate. The
benefit of this approach is that a CA may reply with a certificate
even in the absence of proof that the requester is the end entity
that can use the relevant private key (note that the proof is not
obtained until the certConf message is received by the CA). Thus,
the CA will not have to revoke that certificate in the event that
something goes wrong with the POP (but MAY do so
anyway, depending upon policy).
 The use of EncryptedKey is described in .
 Note: To indicate support for EnvelopedData, the pvno cmp2021 has been
introduced. Details on the usage of different protocol version
numbers are described in .

 Key Update Request Content
 For key update requests, the CertReqMessages syntax is used.
Typically, SubjectPublicKeyInfo, KeyId, and Validity are the template
fields that may be supplied for each key to be updated (see the profiles
defined in and for further information).
This message
is intended to be used to request updates to existing (non-revoked
and non-expired) certificates (therefore, it is sometimes referred to
as a "Certificate Update" operation). An update is a replacement
certificate containing either a new subject public key or the current
subject public key (although the latter practice may not be
appropriate for some environments).
 See and for CertReqMessages syntax.

 Key Update Response Content
 For key update responses, the CertRepMessage syntax is used. The
response is identical to the initialization response.
 See for CertRepMessage syntax.

 Key Recovery Request Content
 For key recovery requests, the syntax used is identical to the
initialization request CertReqMessages. Typically,
SubjectPublicKeyInfo and KeyId are the template fields that may be
used to supply a signature public key for which a certificate is
required.
 See and for CertReqMessages syntax. Note that if a
key history is required, the requester must supply a protocol
encryption key control in the request message.

 Key Recovery Response Content
 For key recovery responses, the following syntax is used. For some
status values (e.g., waiting), none of the optional fields will be
present.

 KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] Certificate OPTIONAL,
 caCerts [1] SEQUENCE SIZE (1..MAX) OF
 Certificate OPTIONAL,
 keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
 CertifiedKeyPair OPTIONAL
 }

 Revocation Request Content
 When requesting revocation of a certificate (or several
certificates), the following data structure is used (see the profiles defined
in for further information). The name of the
requester is present in the PKIHeader structure.

 RevReqContent ::= SEQUENCE OF RevDetails

 RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 crlEntryDetails Extensions OPTIONAL
 }

 Revocation Response Content
 The revocation response is the response to the above message. If
produced, this is sent to the requester of the revocation. (A
separate revocation announcement message MAY be sent to the subject
of the certificate for which revocation was requested.)

 RevRepContent ::= SEQUENCE {
 status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
 revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL,
 crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList
 OPTIONAL
 }

 Cross-Certification Request Content
 Cross-certification requests use the same syntax (CertReqMessages) as
normal certification requests, with the restriction that the key pair
 MUST have been generated by the requesting CA and the private key
 MUST NOT be sent to the responding CA (see the profiles defined in
for further information). This request MAY also be used
by subordinate CAs to get their certificates signed by the parent CA.
 See and for CertReqMessages syntax.

 Cross-Certification Response Content
 Cross-certification responses use the same syntax (CertRepMessage) as
normal certification responses, with the restriction that no
encrypted private key can be sent.
 See for CertRepMessage syntax.

 CA Key Update Announcement Content
 When a CA updates its own key pair, the following data structure MAY
be used to announce this event.

 RootCaKeyUpdateContent ::= SEQUENCE {
 newWithNew CMPCertificate,
 newWithOld [0] CMPCertificate OPTIONAL,
 oldWithNew [1] CMPCertificate OPTIONAL
 }

CAKeyUpdContent ::= CHOICE {
 cAKeyUpdAnnV2 CAKeyUpdAnnContent, -- deprecated
 cAKeyUpdAnnV3 [0] RootCaKeyUpdateContent
}

 When using RootCaKeyUpdateContent in the ckuann message, the pvno cmp2021 MUST be used. Details on the usage of the protocol version number are described in .
 In contrast to CAKeyUpdAnnContent as supported with cmp2000, RootCaKeyUpdateContent offers omitting newWithOld and oldWithNew, depending on the needs of the end entity.

 Certificate Announcement
 This structure MAY be used to announce the existence of certificates.
 Note that this message is intended to be used for those cases (if
any) where there is no pre-existing method for publication of
certificates; it is not intended to be used where, for example, X.500
is the method for publication of certificates.

 CertAnnContent ::= Certificate

 Revocation Announcement
 When a CA has revoked, or is about to revoke, a particular
certificate, it MAY issue an announcement of this (possibly upcoming)
event.

 RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions OPTIONAL
 }

 A CA MAY use such an announcement to warn (or notify) a subject that
its certificate is about to be (or has been) revoked. This would
typically be used where the request for revocation did not come from
the subject concerned.
 The willBeRevokedAt field contains the time at which a new entry will
be added to the relevant CRLs.

 CRL Announcement
 When a CA issues a new CRL (or set of CRLs), the following data
structure MAY be used to announce this event.

 CRLAnnContent ::= SEQUENCE OF CertificateList

 PKI Confirmation Content
 This data structure is used in the protocol exchange as the final
PKIMessage. Its content is the same in all cases -- actually, there
is no content since the PKIHeader carries all the required
information.

 PKIConfirmContent ::= NULL

 Use of this message for certificate confirmation is NOT RECOMMENDED;
certConf SHOULD be used instead. Upon receiving a pkiconf for a
certificate response, the recipient MAY treat it as a certConf with
all certificates being accepted.

 Certificate Confirmation Content
 This data structure is used by the client to send a confirmation to
the CA/RA to accept or reject certificates.

 CertConfirmContent ::= SEQUENCE OF CertStatus

 CertStatus ::= SEQUENCE {
 certHash OCTET STRING,
 certReqId INTEGER,
 statusInfo PKIStatusInfo OPTIONAL,
 hashAlg [0] AlgorithmIdentifier{DIGEST-ALGORITHM, {...}}
 OPTIONAL
 }

 The hashAlg field SHOULD be used only in exceptional cases where the signatureAlgorithm
of the certificate to be confirmed does not specify a hash algorithm in the
OID or in the parameters or no hash algorithm is specified for hashing certificates signed using the signatureAlgorithm. Note that for EdDSA, a hash algorithm is specified in , such that the hashAlg field is not needed for EdDSA. Otherwise, the certHash value
 SHALL be computed using the same hash algorithm as used to create and verify
the certificate signature or as specified for hashing certificates signed using the signatureAlgorithm. If hashAlg is used, the CMP version indicated
by the certConf message header must be cmp2021(3).
 For any particular CertStatus, omission of the statusInfo field
indicates acceptance of the specified certificate. Alternatively,
explicit status details (with respect to acceptance or rejection) MAY
be provided in the statusInfo field, perhaps for auditing purposes at
the CA/RA.
 Within CertConfirmContent, omission of a CertStatus structure
corresponding to a certificate supplied in the previous response
message indicates rejection of the certificate. Thus, an empty
CertConfirmContent (a zero-length SEQUENCE) MAY be used to indicate
rejection of all supplied certificates. See
for a discussion of the certHash field with respect to
POP.

 PKI General Message Content

 InfoTypeAndValue ::= SEQUENCE {
 infoType OBJECT IDENTIFIER,
 infoValue ANY DEFINED BY infoType OPTIONAL
 }

 -- where {id-it} = {id-pkix 4} = {1 3 6 1 5 5 7 4}
 GenMsgContent ::= SEQUENCE OF InfoTypeAndValue

 CA Protocol Encryption Certificate
 This MAY be used by the end entity to get a certificate from the CA to use to
protect sensitive information during the protocol.

 GenMsg: {id-it 1}, < absent >
 GenRep: {id-it 1}, Certificate | < absent >

 End entities MUST ensure that the correct certificate is used for this
purpose.

 Signing Key Pair Types
 This MAY be used by the end entity to get the list of signature algorithms whose subject
public key values the CA is willing to
certify.

 GenMsg: {id-it 2}, < absent >
 GenRep: {id-it 2}, SEQUENCE SIZE (1..MAX) OF
 AlgorithmIdentifier

 Note: For the purposes of this exchange, rsaEncryption and sha256WithRSAEncryption, for
example, are considered to be equivalent; the question being asked is, "Is
the CA willing to certify an RSA public key?"
 Note: In case several elliptic curves are supported, several id-ecPublicKey elements
as defined in need to be given, one per named curve.

 Encryption / Key Agreement Key Pair Types
 This MAY be used by the client to get the list of encryption / key
agreement algorithms whose subject public key values the CA is
willing to certify.

 GenMsg: {id-it 3}, < absent >
 GenRep: {id-it 3}, SEQUENCE SIZE (1..MAX) OF
 AlgorithmIdentifier

 Note: In case several elliptic curves are supported, several id-ecPublicKey elements
as defined in need to be given, one per named curve.

 Preferred Symmetric Algorithm
 This MAY be used by the client to get the CA-preferred symmetric
encryption algorithm for any confidential information that needs to
be exchanged between the end entity and the CA (for example, if the end entity wants
to send its private decryption key to the CA for archival purposes).

 GenMsg: {id-it 4}, < absent >
 GenRep: {id-it 4}, AlgorithmIdentifier

 Updated CA Key Pair
 This MAY be used by the CA to announce a CA key update event.

 GenMsg: {id-it 18}, RootCaKeyUpdateValue

 See for details of CA key update announcements.

 CRL
 This MAY be used by the client to get a copy of the latest CRL.

 GenMsg: {id-it 6}, < absent >
 GenRep: {id-it 6}, CertificateList

 Unsupported Object Identifiers
 This is used by the server to return a list of object identifiers
that it does not recognize or support from the list submitted by the
client.

 GenRep: {id-it 7}, SEQUENCE SIZE (1..MAX) OF OBJECT IDENTIFIER

 Key Pair Parameters
 This MAY be used by the end entity to request the domain parameters to use
for generating the key pair for certain public-key algorithms. It
can be used, for example, to request the appropriate P, Q, and G to
generate the DH/DSA key or to request a set of well-known elliptic
curves.

 GenMsg: {id-it 10}, OBJECT IDENTIFIER -- (Algorithm object-id)
 GenRep: {id-it 11}, AlgorithmIdentifier | < absent >

 An absent infoValue in the GenRep indicates that the algorithm
specified in GenMsg is not supported.
 End entities MUST ensure that the parameters are acceptable to it and that the
GenRep message is authenticated (to avoid substitution attacks).

 Revocation Passphrase
 This MAY be used by the end entity to send a passphrase to a CA/RA for the purpose
of authenticating a later revocation request (in the case that the appropriate
signing private key is no longer available to authenticate the request).
See for further details on the use of this mechanism.

 GenMsg: {id-it 12}, EncryptedKey
 GenRep: {id-it 12}, < absent >

 The use of EncryptedKey is described in .

 ImplicitConfirm
 See for the definition and use of {id-it 13}.

 ConfirmWaitTime
 See for the definition and use of {id-it 14}.

 Original PKIMessage
 See for the definition and use of {id-it 15}.

 Supported Language Tags
 This MAY be used to determine the appropriate language tag to use in
subsequent messages. The sender sends its list of supported
languages (in order of most to least preferred); the receiver returns
the one it wishes to use. (Note: Each UTF8String MUST include a
language tag.) If none of the offered tags are supported, an error
 MUST be returned.

 GenMsg: {id-it 16}, SEQUENCE SIZE (1..MAX) OF UTF8String
 GenRep: {id-it 16}, SEQUENCE SIZE (1) OF UTF8String

 CA Certificates
 This MAY be used by the client to get CA certificates.

 GenMsg: {id-it 17}, < absent >
 GenRep: {id-it 17}, SEQUENCE SIZE (1..MAX) OF
 CMPCertificate | < absent >

 Root CA Update
 This MAY be used by the client to get an update of a root CA certificate,
which is provided in the body of the request message. In contrast to the
ckuann message, this approach follows the request/response model.
 The end entity SHOULD reference its current trust anchor in RootCaCertValue
in the request body, giving the root CA certificate if available.

 GenMsg: {id-it 20}, RootCaCertValue | < absent >
 GenRep: {id-it 18}, RootCaKeyUpdateValue | < absent >

 RootCaCertValue ::= CMPCertificate

 RootCaKeyUpdateValue ::= RootCaKeyUpdateContent

 RootCaKeyUpdateContent ::= SEQUENCE {
 newWithNew CMPCertificate,
 newWithOld [0] CMPCertificate OPTIONAL,
 oldWithNew [1] CMPCertificate OPTIONAL
 }

 Note: In contrast to CAKeyUpdAnnContent (which was deprecated with pvno cmp2021),
RootCaKeyUpdateContent offers omitting newWithOld and oldWithNew,
depending on the needs of the end entity.

 Certificate Request Template
 This MAY be used by the client to get a template containing requirements
for certificate request attributes and extensions. The controls id-regCtrl-algId
and id-regCtrl-rsaKeyLen MAY contain details on the types of subject public
keys the CA is willing to certify.
 The id-regCtrl-algId control MAY be used to identify a cryptographic algorithm
(see) other than rsaEncryption. The algorithm
field SHALL identify a cryptographic
algorithm. The contents of the optional parameters field will vary according
to the algorithm identified. For example, when the algorithm is set to id-ecPublicKey,
the parameters identify the elliptic curve to be used; see .
 Note: The client may specify a profile name in the certProfile field (see).
 The id-regCtrl-rsaKeyLen control SHALL be used for algorithm rsaEncryption
and SHALL contain the intended modulus bit length of the RSA key.

 GenMsg: {id-it 19}, < absent >
 GenRep: {id-it 19}, CertReqTemplateContent | < absent >

 CertReqTemplateValue ::= CertReqTemplateContent

 CertReqTemplateContent ::= SEQUENCE {
 certTemplate CertTemplate,
 keySpec Controls OPTIONAL }

 Controls ::= SEQUENCE SIZE (1..MAX) OF AttributeTypeAndValue

 id-regCtrl-algId OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) pkip(5) regCtrl(1) 11 }

 AlgIdCtrl ::= AlgorithmIdentifier{ALGORITHM, {...}}

 id-regCtrl-rsaKeyLen OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) pkip(5) regCtrl(1) 12 }

 RsaKeyLenCtrl ::= INTEGER (1..MAX)

 The CertReqTemplateValue contains the prefilled certTemplate to be used for
a future certificate request. The publicKey field in the certTemplate MUST NOT be used. In case the PKI management entity wishes to specify supported
public-key algorithms, the keySpec field MUST be used. One AttributeTypeAndValue
per supported algorithm or RSA key length MUST be used.
 Note: The controls for an ASN.1 type are defined in CRMF.

 CRL Update Retrieval
 This MAY be used by the client to get new CRLs, specifying the source of
the CRLs and the thisUpdate value of the latest CRL it already has, if available.
A CRL source is given either by a DistributionPointName or the GeneralNames
of the issuing CA. The DistributionPointName should be treated as an internal
pointer to identify a CRL that the server already has and not as a way to
ask the server to fetch CRLs from external locations. The server SHALL only provide
those CRLs that are more recent than the ones indicated by the client.

 GenMsg: {id-it 22}, SEQUENCE SIZE (1..MAX) OF CRLStatus
 GenRep: {id-it 23}, SEQUENCE SIZE (1..MAX) OF
 CertificateList | < absent >

 CRLSource ::= CHOICE {
 dpn [0] DistributionPointName,
 issuer [1] GeneralNames }

 CRLStatus ::= SEQUENCE {
 source CRLSource,
 thisUpdate Time OPTIONAL }

 KEM Ciphertext
 This MAY be used by a PKI entity to get the KEM ciphertext for MAC-based message protection using KEM (see).
 The PKI entity that possesses a KEM key pair can request the ciphertext by sending an InfoTypeAndValue structure of type KemCiphertextInfo where the infoValue is absent. The ciphertext can be provided in the following genp message with an InfoTypeAndValue structure of the same type.

 GenMsg: {id-it 24}, < absent >
 GenRep: {id-it 24}, KemCiphertextInfo

 KemCiphertextInfo ::= SEQUENCE {
 kem AlgorithmIdentifier{KEM-ALGORITHM, {...}},
 ct OCTET STRING
 }

 kem is the algorithm identifier of the KEM algorithm, and any associated parameters, used to generate the ciphertext (ct).
 ct is the ciphertext output from the KEM Encapsulate function.
 Note: These InfoTypeAndValue structures can also be transferred in the generalInfo field of the PKIHeader in messages of other types (see).

 PKI General Response Content

 GenRepContent ::= SEQUENCE OF InfoTypeAndValue

 Examples of GenReps that MAY be supported include those listed in the
subsections of .

 Error Message Content
 This data structure MAY be used by an end entity, CA, or RA to convey error information and
by a PKI management entity to initiate delayed delivery of responses.

 ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 errorDetails PKIFreeText OPTIONAL
 }

 This message MAY be generated at any time during a PKI transaction. If the
client sends this request, the server MUST respond with a pkiconf response
or another error message if any part of the header is not valid.
 In case a PKI management entity sends an error message to the end entity with the
pKIStatusInfo field containing the status "waiting", the end entity SHOULD initiate
polling as described in .
If the end entity does not initiate polling, both sides MUST treat this message
as the end of the transaction (if a transaction is in progress).
 If protection is desired on the message, the client MUST protect it
using the same technique (i.e., signature or MAC) as the starting
message of the transaction. The CA MUST always sign it with a
signature key.

 Polling Request and Response
 This pair of messages is intended to handle scenarios in which the client
needs to poll the server to determine the status of an outstanding response
(i.e., when the "waiting" PKIStatus has been received).

 PollReqContent ::= SEQUENCE OF SEQUENCE {
 certReqId INTEGER }

 PollRepContent ::= SEQUENCE OF SEQUENCE {
 certReqId INTEGER,
 checkAfter INTEGER, -- time in seconds
 reason PKIFreeText OPTIONAL }

 Unless implicit confirmation has been requested and granted, in response to an ir, cr, p10cr, kur, krr, or ccr request message, polling is initiated
with an ip, cp, kup, krp, or ccp response message containing status "waiting". For
any type of request message, polling can be initiated with an error response
message with status "waiting". The following clauses describe how polling
messages are used. It is assumed that multiple certConf messages can be
sent during transactions. There will be one sent in response to each ip,
	 cp, kup, krp, or ccp that contains a CertStatus for an issued certificate.

	 In response to an ip, cp, kup, krp, or ccp message, an end entity will
	 send a certConf for all issued certificates and expect a pkiconf
	 for each certConf. An end entity will send a pollReq message in response
	 to each CertResponse element of an ip, cp, or kup message with
	 status "waiting" and in response to an error message with status
	 "waiting". Its certReqId MUST be either the index
	 of a CertResponse data structure with status "waiting" or -1
	 referring to the complete response.
 In response to a pollReq, a CA/RA will return an ip, cp, kup,
 krp, or ccp if one or more of the still pending requested certificates
 are ready or the final response to some other type of request is
 available; otherwise, it will return a pollRep.

 If the end entity receives a pollRep, it will wait for at least the
 number of seconds given in the checkAfter field before sending
 another pollReq.
 Note that the checkAfter value heavily depends on the
 certificate management environment. There are different possible reasons
 for a delayed delivery of response messages, e.g., high
 load on the server's backend, offline transfer of messages
 between two PKI management entities, or required RA operator
 approval. Therefore, the checkAfter time can vary greatly. This
 should also be considered by the transfer protocol.

 If the end entity receives an ip, cp, kup, krp, or ccp, then it will
 be treated in the same way as the initial response; if it receives
 any other response, then this will be treated as the final
 response to the original request.

 The following client-side state machine describes polling for individual
CertResponse elements at the example of an ir request message.

 START
 Send
 ir
 ip
 Check
 status
 of
 returned
 certs
 (issued)
 (waiting)
 Add
 to
 Check
 CertResponse
 Add
 to
 conf
 list
 for
 each
 certificate
 pending
 list
 (empty
 conf
 list)
 (conf
 list)
 ip
 (empty
 pending
 list)
 pollRep
 END
 Send
 certConf
 Send
 pollReq
 Wait
 (pending
 list)

 START
 |
 v
 Send ir
 | ip
 v
 Check status
 of returned <------------------------+
 certs |
 | |
 +------------------------>|<------------------+ |
 | | | |
 | (issued) v (waiting) | |
 Add to <----------- Check CertResponse ------> Add to |
 conf list for each certificate pending list |
 / \ |
 / \ (empty conf list) |
 (conf list) / \ |
 / \ ip |
 / \ +-----------------+
 (empty pending list) V V | pollRep
 END <---- Send certConf Send pollReq---------->Wait
 | ^ ^ |
 | | | |
 +-----------------+ +---------------+
 (pending list)

 In the following exchange, the end entity is enrolling for two certificates
in one request.

 Step#
 End
 entity
 PKI
 1
 format
 ir
 2
 ir
 3
 handle
 ir
 4
 manual
 intervention
 is
 required
 for
 both
 certs
 5
 ip
 6
 process
 ip
 7
 format
 pollReq
 8
 pollReq
 9
 check
 status
 of
 cert
 requests,
 certificates
 not
 ready
 10
 format
 pollRep
 11
 pollRep
 12
 wait
 13
 format
 pollReq
 14
 pollReq
 15
 check
 status
 of
 cert
 requests,
 one
 certificate
 is
 ready
 16
 format
 ip
 17
 ip
 18
 handle
 ip
 19
 format
 certConf
 20
 certConf
 21
 handle
 certConf
 22
 format
 ack
 23
 pkiconf
 24
 format
 pollReq
 25
 pollReq
 26
 check
 status
 of
 certificate,
 certificate
 is
 ready
 27
 format
 ip
 28
 ip
 29
 handle
 ip
 30
 format
 certConf
 31
 certConf
 32
 handle
 certConf
 33
 format
 ack
 34
 pkiconf

Step# End entity PKI

 1 format ir
 2 --> ir -->
 3 handle ir
 4 manual intervention is
 required for both certs
 5 <-- ip <--
 6 process ip
 7 format pollReq
 8 --> pollReq -->
 9 check status of cert requests,
 certificates not ready
 10 format pollRep
 11 <-- pollRep <--
 12 wait
 13 format pollReq
 14 --> pollReq -->
 15 check status of cert requests,
 one certificate is ready
 16 format ip
 17 <-- ip <--
 18 handle ip
 19 format certConf
 20 --> certConf -->
 21 handle certConf
 22 format ack
 23 <-- pkiconf <--
 24 format pollReq
 25 --> pollReq -->
 26 check status of certificate,
 certificate is ready
 27 format ip
 28 <-- ip <--
 29 handle ip
 30 format certConf
 31 --> certConf -->
 32 handle certConf
 33 format ack
 34 <-- pkiconf <--

 The following client-side state machine describes polling for a complete
response message.

 Start
 Send
 request
 Receive
 response
 ip/cp/kup/krp/ccp/error
 with
 other
 status
 "waiting"
 response
 Polling
 Send
 pollReq
 Receive
 response
 pollRep
 other
 response
 Handle
 response
 End

 Start
 |
 | Send request
 v
 +----------- Receive response ------------+
 | |
 | ip/cp/kup/krp/ccp/error with | other
 | status "waiting" | response
 | |
 v |
 +------> Polling |
	Send pollReq
	Receive response
v	
 +-----------+------------------->+<-------------------+
 pollRep other response |
 v
 Handle response
 |
 v
 End

 In the following exchange, the end entity is sending a general message request,
and the response is delayed by the server.

 Step#
 End
 entity
 PKI
 1
 format
 genm
 2
 genm
 3
 handle
 genm
 4
 delay
 in
 response
 is
 necessary
 5
 format
 error
 message
 "waiting"
 with
 certReqId
 set
 to
 -1
 6
 error
 7
 process
 error
 8
 format
 pollReq
 9
 pollReq
 10
 check
 status
 of
 original
 request,
 general
 message
 response
 not
 ready
 11
 format
 pollRep
 12
 pollRep
 13
 wait
 14
 format
 pollReq
 15
 pollReq
 16
 check
 status
 of
 original
 request,
 general
 message
 response
 is
 ready
 17
 format
 genp
 18
 genp
 19
 handle
 genp

Step# End entity PKI

 1 format genm
 2 --> genm -->
 3 handle genm
 4 delay in response is necessary
 5 format error message "waiting"
 with certReqId set to -1
 6 <-- error <--
 7 process error
 8 format pollReq
 9 --> pollReq -->
 10 check status of original request,
 general message response not
 ready
 11 format pollRep
 12 <-- pollRep <--
 13 wait
 14 format pollReq
 15 --> pollReq -->
 16 check status of original request,
 general message response is
 ready
 17 format genp
 18 <-- genp <--
 19 handle genp

 Mandatory PKI Management Functions
 Some of the PKI management functions outlined in are
described in this section.
 This section deals with functions that are "mandatory" in the sense
that all end entity and CA/RA implementations MUST be able to provide
the functionality described. This part is effectively the profile of
the PKI management functionality that MUST be supported. Note,
however, that the management functions described in this section do
not need to be accomplished using the PKI messages defined in
if alternate means are suitable for a given environment. See
 and for profiles of the PKIMessage structures
that MUST be supported for specific use cases.

 Root CA Initialization
 [See for this document's definition of "root CA".]
 If a newly created root CA is at the top of a PKI hierarchy, it usually
produces a "self-certificate", which is a
certificate structure with the profile defined for the "newWithNew"
certificate issued following a root CA key update.
 In order to make the CA's self-certificate useful to end entities
that do not acquire the self-certificate via "out-of-band" means, the
CA must also produce a fingerprint for its certificate. End entities
that acquire this fingerprint securely via some "out-of-band" means
can then verify the CA's self-certificate and, hence, the other
attributes contained therein.
 The data structure used to carry the fingerprint may be the OOBCertHash (see).

 Root CA Key Update
 CA keys (as all other keys) have a finite lifetime and will have to
be updated on a periodic basis. The certificates NewWithNew,
NewWithOld, and OldWithNew (see) MAY be issued by the
CA to aid existing end entities who hold the current root CA
certificate (OldWithOld) to transition securely to the new root
CA certificate (NewWithNew) and to aid new end entities who
will hold NewWithNew to acquire OldWithOld securely for verification
of existing data.

 Subordinate CA Initialization
 [See for this document's definition of "subordinate CA".]
 From the perspective of PKI management protocols, the initialization of a
subordinate CA is the same as the initialization of an end entity. The only
difference is that the subordinate CA must also produce an initial revocation
list.

 CRL Production
 Before issuing any certificates, a newly established CA (which issues
CRLs) must produce "empty" versions of each CRL, which are to be
periodically produced.

 PKI Information Request
 When a PKI entity (CA, RA, or end entity) wishes to acquire information about
the current status of a CA, it MAY send that CA a request for such
information.
 The CA MUST respond to the request by providing (at least) all of the
information requested by the requester. If some of the information
cannot be provided, then an error must be conveyed to the requester.
 If PKIMessages are used to request and supply this PKI information,
then the request MUST be the GenMsg message, the response MUST be the
GenRep message, and the error MUST be the Error message. These
messages are protected using a MAC based on shared secret information
(e.g., password-based MAC; see "CMP Algorithms") or using any asymmetric authentication means such as a
signature (if the end entity has an existing certificate).

 Cross-Certification
 The requester CA is the CA that will become the subject of the
cross-certificate; the responder CA will become the issuer of the
cross-certificate.
 The requester CA must be "up and running" before initiating the
cross-certification operation.

 One-Way Request-Response Scheme
 The cross-certification scheme is essentially a one-way operation;
that is, when successful, this operation results in the creation of
one new cross-certificate. If the requirement is that cross-certificates
be created in "both directions", then each CA, in turn,
must initiate a cross-certification operation (or use another
scheme).
 This scheme is suitable where the two CAs in question can already
verify each other's signatures (they have some common points of
trust) or where there is an out-of-band verification of the origin of
the certification request.
 Detailed Description:
 Cross-certification is initiated at one CA known as the responder.
The CA administrator for the responder identifies the CA it wants to
cross-certify and the responder CA equipment generates an
authorization code. The responder CA administrator passes this
authorization code by out-of-band means to the requester CA
administrator. The requester CA administrator enters the
authorization code at the requester CA in order to initiate the
online exchange.
 The authorization code is used for authentication and integrity
purposes. This is done by generating a symmetric key based on the
authorization code and using the symmetric key for generating MACs on all messages exchanged.
(Authentication may alternatively be done using signatures instead of
MACs, if the CAs are able to retrieve and validate the required
public keys by some means, such as an out-of-band hash comparison.)
 The requester CA initiates the exchange by generating a cross-certification
request (ccr) with a fresh random number (requester random number).
The requester CA then sends the ccr message to the responder CA.
The fields in this message are protected from modification with a
MAC based on the authorization code.
 Upon receipt of the ccr message, the responder CA validates the
message and the MAC, saves the requester random number, and generates
its own random number (responder random number). It then generates
(and archives, if desired) a new requester certificate that contains
the requester CA public key and is signed with the responder CA
signature private key. The responder CA responds with the cross-certification response (ccp) message. The fields in this message are
protected from modification with a MAC based on the authorization
code.
 Upon receipt of the ccp message, the requester CA validates the
message (including the received random numbers) and the MAC. The
requester CA responds with the certConf message. The fields in this
message are protected from modification with a MAC based on the
authorization code. The requester CA MAY write the requester
certificate to the Repository as an aid to later certificate path
construction.
 Upon receipt of the certConf message, the responder CA validates the
message and the MAC and sends back an acknowledgement using the
pkiconf message. It MAY also publish the requester certificate as
an aid to later path construction.
 Notes:

 The ccr message must contain a "complete" certification request;
 that is, all fields except the serial number (including, e.g., a
 BasicConstraints extension) must be specified by the requester
 CA.

 The ccp message SHOULD contain the verification certificate of
 the responder CA; if present, the requester CA must then verify
 this certificate (for example, via the "out-of-band" mechanism).

 (A simpler, non-interactive model of cross-certification may also be
envisioned, in which the issuing CA acquires the subject CA's public
key from some repository, verifies it via some out-of-band mechanism,
and creates and publishes the cross-certificate without the subject
CA's explicit involvement. This model may be perfectly legitimate
for many environments, but since it does not require any protocol
message exchanges, its detailed description is outside the scope of
this specification.)

 End Entity Initialization
 As with CAs, end entities must be initialized. Initialization of end entities
requires at least two steps:

 acquisition of PKI information

 out-of-band verification of one root-CA public key

 (Other possible steps include the retrieval of trust condition
information and/or out-of-band verification of other CA public keys.)

 Acquisition of PKI Information
 The information REQUIRED is:

 the current root-CA public key

 (if the certifying CA is not a root-CA) the certification path
from the root CA to the certifying CA together with appropriate
revocation lists

 the algorithms and algorithm parameters that the certifying CA
supports for each relevant usage

 Additional information could be required (e.g., supported extensions
or CA policy information) in order to produce a certification request
that will be successful. However, for simplicity, we do not mandate
that the end entity acquires this information via the PKI messages.
The end result is simply that some certification requests may fail
(e.g., if the end entity wants to generate its own encryption key,
but the CA doesn't allow that).
 The required information MAY be acquired as described in .

 Out-of-Band Verification of the Root CA Key
 An end entity must securely possess the public key of its root CA.
One method to achieve this is to provide the end entity with the CA's
self-certificate fingerprint via some secure "out-of-band" means.
The end entity can then securely use the CA's self-certificate.
 See for further details.

 Certificate Request
 An initialized end entity MAY request an additional certificate at
any time (for any purpose). This request will be made using the
certification request (cr) message. If the end entity already
possesses a signing key pair (with a corresponding verification
certificate), then this cr message will typically be protected by the
entity's digital signature. The CA returns the new certificate (if
the request is successful) in a CertRepMessage.

 Key Update
 When a key pair is due to expire, the relevant end entity MAY request
a key update; that is, it MAY request that the CA issue a new
certificate for a new key pair (or, in certain circumstances, a new
certificate for the same key pair). The request is made using a key
update request (kur) message (referred to, in some environments, as a
"Certificate Update" operation). If the end entity already possesses
a signing key pair (with a corresponding verification certificate),
then this message will typically be protected by the entity's digital
signature. The CA returns the new certificate (if the request is
successful) in a key update response (kup) message, which is
syntactically identical to a CertRepMessage.

 Version Negotiation
 This section defines the version negotiation used to support older
protocols between clients and servers.
 If a client knows the protocol version(s) supported by the server (e.g.,
from a previous PKIMessage exchange or via some out-of-band means), then
it MUST send a PKIMessage with the highest version supported by both it and
the server. If a client does not know what version(s) the server supports,
then it MUST send a PKIMessage using the highest version it supports with
the following exception: Version cmp2021 SHOULD only be used if cmp2021 syntax
is needed for the request being sent or for the expected response.
 Note: Using cmp2000 as the default pvno value is done to avoid extra
 message exchanges for version negotiation and to foster compatibility
 with cmp2000 implementations.
Version cmp2021 syntax is only needed if a message exchange uses EnvelopedData,
hashAlg (in CertStatus), POPOPrivKey with agreeMAC, or ckuann with RootCaKeyUpdateContent.
 If a server receives a message with a version that it supports, then
the version of the response message MUST be the same as the received
version. If a server receives a message with a version higher or
lower than it supports, then it MUST send back an ErrorMsg with the
unsupportedVersion bit set (in the failureInfo field of the
pKIStatusInfo). If the received version is higher than the highest
supported version, then the version in the error message MUST be the
highest version the server supports; if the received version is lower
than the lowest supported version, then the version in the error
message MUST be the lowest version the server supports.
 If a client gets back an ErrorMsgContent with the unsupportedVersion
bit set and a version it supports, then it MAY retry the request with
that version.

 Supporting RFC 2510 Implementations
 did not specify the behavior of implementations receiving
versions they did not understand since there was only one version in
existence. With the introduction of the revision in , the following versioning behavior is recommended.

 Clients Talking to RFC 2510 Servers
 If, after sending a message with a pvno value higher than cmp1999, a
 client receives an ErrorMsgContent with a version of cmp1999, then it MUST
abort the current transaction.
 If a client receives a non-error PKIMessage with a version of
cmp1999, then it MAY decide to continue the transaction (if the
transaction hasn't finished) using the semantics described in . If it does
not choose to do so and the transaction is not finished, then it MUST
abort the transaction and send an ErrorMsgContent with a version of
cmp1999.

 Servers Receiving Version cmp1999 PKIMessages
 If a server receives a version cmp1999 message, it MAY revert to the behavior described in and respond with version cmp1999 messages. If it does
not choose to do so, then it MUST send back an ErrorMsgContent as
described above in .

 Security Considerations

 On the Necessity of POP
 It is well established that the role of a CA is to
verify that the name and public key belong to the end entity prior to
issuing a certificate. If an entity holding a private key obtains a certificate containing the corresponding public key issued for a different entity, it can authenticate as the entity named in the certificate. This facilitates masquerading. It is not entirely clear what security guarantees are lost if an end entity is able to obtain a certificate containing a public key that they do not possess the corresponding private key for. There are some scenarios,
described as "forwarding attacks" in Appendix A of , in
which this can lead to protocol attacks against a naively implemented
sign-then-encrypt protocol, but in general, it merely results in the
end entity obtaining a certificate that they cannot use.

 POP with a Decryption Key
 Some cryptographic considerations are worth explicitly spelling out.
In the protocols specified above, when an end entity is required to
prove possession of a decryption key, it is effectively challenged to
decrypt something (its own certificate). This scheme (and many
others!) could be vulnerable to an attack if the possessor of the
decryption key in question could be fooled into decrypting an
arbitrary challenge and returning the cleartext to an attacker.
Although in this specification a number of other failures in security
are required in order for this attack to succeed, it is conceivable
that some future services (e.g., notary, trusted time) could
potentially be vulnerable to such attacks. For this reason, we
reiterate the general rule that implementations should be very careful
about decrypting arbitrary "ciphertext" and revealing recovered
"plaintext" since such a practice can lead to serious security
vulnerabilities.
 The client MUST return the decrypted values only if they match the expected content type. In an indirect method, the decrypted value MUST be a valid certificate, and in a direct method, the decrypted value MUST be a Rand as defined in .

 POP by Exposing the Private Key
 Note also that exposing a private key to the CA/RA as a
POP technique can carry some security risks (depending
upon whether or not the CA/RA can be trusted to handle such material
appropriately). Implementers are advised to:

 Exercise caution in selecting and using this particular POP
mechanism.

 Only use this POP mechanism if archival of the private key is desired.

 When appropriate, have the user of the application explicitly
state that they are willing to trust the CA/RA to have a copy of
their private key before proceeding to reveal the private key.

 Attack Against DH Key Exchange
 A small subgroup attack during a DH key exchange may be
carried out as follows. A malicious end entity may deliberately
choose DH parameters that enable it to derive (a significant
number of bits of) the DH private key of the CA during a key
archival or key recovery operation. Armed with this knowledge, the
end entity would then be able to retrieve the decryption private key of
another unsuspecting end entity, EE2, during EE2's legitimate key
archival or key recovery operation with that CA. In order to avoid
the possibility of such an attack, two courses of action are
available. (1) The CA may generate a fresh DH key pair to be used
as a protocol encryption key pair for each end entity with which it
interacts. (2) The CA may enter into a key validation protocol (not
specified in this document) with each requesting end entity to ensure
that the end entity's protocol encryption key pair will not facilitate this
attack. Option (1) is clearly simpler (requiring no extra protocol
exchanges from either party) and is therefore RECOMMENDED.

 Perfect Forward Secrecy
 Long-term security typically requires perfect forward secrecy (pfs).
When transferring encrypted long-term confidential values such as centrally generated private keys or revocation passphrases, pfs is likely important.
Yet, it is not needed for CMP message protection providing integrity and authenticity because transfer of PKI messages is usually completed in very limited time.
For the same reason, it is not typically required for the indirect method to provide a POP () delivering the newly issued certificate in encrypted form.
 Encrypted values () are transferred using CMS EnvelopedData , which does not offer pfs. In cases where long-term security is needed, CMP messages SHOULD be transferred over a mechanism that provides pfs, such as TLS with appropriate cipher suites selected.

 Private Keys for Certificate Signing and CMP Message Protection
 A CA should not reuse its certificate signing key for other purposes, such
as protecting CMP responses and TLS connections. This way, exposure to other
parts of the system and the number of uses of this particularly critical
key are reduced to a minimum.

 Entropy of Random Numbers, Key Pairs, and Shared Secret Information
 Implementations must generate nonces and private keys from random input.
The use of inadequate pseudorandom number generators (PRNGs) to generate
cryptographic keys can result in little or no security. An attacker may find
it much easier to reproduce the PRNG environment that produced the keys and
to search the resulting small set of possibilities than brute-force searching the whole key space. As an example of predictable random numbers, see ; consequences of low-entropy random numbers are discussed in Mining Your Ps and Qs. The generation of quality random numbers is difficult. ISO/IEC 20543:2019, NIST SP 800-90A Rev.1, BSI AIS 31 V2.0, and other specifications offer valuable guidance in this area.
 If shared secret information is generated by a cryptographically secure random number
generator (CSRNG), it is safe to assume that the entropy of the shared secret
information equals its bit length. If no CSRNG is used, the entropy of
shared secret information depends on the details of the generation process
and cannot be measured securely after it has been generated.
 If user-generated passwords are used as shared secret information,
 their entropy cannot be measured. Passwords generated from user-supplied entropy
 are typically insufficient for protected delivery of
 centrally generated keys or trust anchors.
 If the entropy of shared secret information protecting the delivery of
a centrally generated key pair is known, it should not be less than the security
strength of that key pair; if the shared secret information is reused for
different key pairs, the security of the shared secret information should
exceed the security strength of each individual key pair.
 For the case of a PKI management operation that delivers a new trust anchor
(e.g., a root CA certificate), using caPubs or genp that is (a) not concluded
in a timely manner or (b) where the shared secret information is reused
for several key management operations, the entropy of the shared secret information,
if known, should not be less than the security strength of the trust anchor
being managed by the operation. The shared secret information should have
an entropy that at least matches the security strength of the key material
being managed by the operation. Certain use cases may require shared secret
information that may be of a low security strength, e.g., a human-generated
password. It is RECOMMENDED that such secret information be limited to a
single PKI management operation.
 Importantly for this section, further information about algorithm use profiles
and their security strength is available in CMP Algorithms.

 Recurring Usage of KEM Keys for Message Protection
 For each PKI management operation using MAC-based message protection involving KEM (see), the KEM Encapsulate() function, providing a fresh KEM ciphertext (ct) and shared secret (ss), MUST be invoked.
 It is assumed that the overall data size of the CMP messages
in a PKI management operation protected by a single shared secret key
is small enough not to introduce extra security risks.
 To be appropriate for use with this specification, the KEM algorithm
 MUST explicitly be designed to be secure when the public key is used
many times. For example, a KEM algorithm with a single-use public
key is not appropriate because the public key is expected to be
carried in a long-lived certificate and used over and over.
Thus, KEM algorithms that offer indistinguishability under adaptive
chosen ciphertext attack (IND-CCA2) security are appropriate. A
common design pattern for obtaining IND-CCA2 security with public key
reuse is to apply the Fujisaki-Okamoto (FO) transform or a
variant of the FO transform .
 Therefore, given a long-term public key using an IND-CCA2-secure KEM
algorithm, there is no limit to the number of CMP messages that can
be authenticated using KEM keys for MAC-based message protection.

 Trust Anchor Provisioning Using CMP Messages
 A provider of trust anchors, which may be an RA involved in configuration
management of its clients, MUST NOT include to-be-trusted CA certificates
in a CMP message unless the specific deployment scenario can ensure that
it is adequate that the receiving end entity trusts these certificates, e.g., by
loading them into its trust store.
 Whenever an end entity receives in a CMP message a CA certificate to be used
as a trust anchor (for example, in the caPubs field of a certificate response
or in a general response), it MUST properly authenticate the message sender with
existing trust anchors without requiring new trust anchor information included in the
message.
 Additionally, the end entity MUST verify that the sender is an authorized source
of trust anchors. This authorization is governed by local policy and typically
indicated using shared secret information or with a signature-based message
protection using a certificate issued by a PKI that is explicitly authorized
for this purpose.

 Authorizing Requests for Certificates with Specific EKUs
 When a CA issues a certificate containing EKU extensions as
defined in , this expresses delegation of an authorization that
originally is only with the CA certificate itself.
Such delegation is a very sensitive action in a PKI, and therefore,
special care must be taken when approving such certificate requests to
ensure that only legitimate entities receive a certificate containing
such an EKU.

 Usage of CT Logs
 CAs that support indirect POP MUST NOT also publish final certificates to CT logs before having received the certConf message containing the certHash of that certificate to complete the POP. The risk is that a malicious actor could fetch the final certificate from the CT log and use that to spoof a response to the implicit POP challenge via a certConf response. This risk does not apply to CT precertificates, so those are OK to publish.
 If a certificate or its precertificate was published in a CT log, it must be revoked if a required certConf message could not be verified, especially when the implicit POP was used.

 IANA Considerations
 This document updates the ASN.1 modules in CMP Updates. The OID 116 (id-mod-cmp2023-02) was registered in the "SMI Security for PKIX Module Identifier" registry to identify the updated ASN.1 module.
 IANA has added the following entry in the "SMI Security for PKIX CMP Information Types" registry within the SMI Numbers registry group (see) :

 Decimal:
 24
 Description:
 id-it-KemCiphertextInfo
 Reference:
 RFC 9810

 Note that the new OID 1.2.840.113533.7.66.16 was registered by Entrust,
 and not by IANA, for id-KemBasedMac in the arc 1.2.840.113533.7.66.
 This was done to match the previous registrations for id-PasswordBasedMac
 and id-DHBasedMac, which are also on the Entrust private
 arc.
 All existing references to , , and at except those in the "SMI Security for PKIX Module Identifier" registry have been replaced with references to this document.

 References

 Normative References

 Handbook of Applied Cryptography

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 PKCS #9: Selected Object Classes and Attribute Types Version 2.0

 This memo represents a republication of PKCS #9 v2.0 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series, and change control is retained within the PKCS process. The body of this document, except for the security considerations section, is taken directly from that specification. This memo provides information for the Internet community.

 PKCS #10: Certification Request Syntax Specification Version 1.7

 This memo represents a republication of PKCS #10 v1.7 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series, and change control is retained within the PKCS process. The body of this document, except for the security considerations section, is taken directly from the PKCS #9 v2.0 or the PKCS #10 v1.7 document. This memo provides information for the Internet community.

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)

 This document describes the Certificate Request Message Format (CRMF) syntax and semantics. This syntax is used to convey a request for a certificate to a Certification Authority (CA), possibly via a Registration Authority (RA), for the purposes of X.509 certificate production. The request will typically include a public key and the associated registration information. This document does not define a certificate request protocol. [STANDARDS-TRACK]

 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

 This memo profiles the X.509 v3 certificate and X.509 v2 certificate revocation list (CRL) for use in the Internet. An overview of this approach and model is provided as an introduction. The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of Internet name forms. Standard certificate extensions are described and two Internet-specific extensions are defined. A set of required certificate extensions is specified. The X.509 v2 CRL format is described in detail along with standard and Internet-specific extensions. An algorithm for X.509 certification path validation is described. An ASN.1 module and examples are provided in the appendices. [STANDARDS-TRACK]

 Elliptic Curve Cryptography Subject Public Key Information

 This document specifies the syntax and semantics for the Subject Public Key Information field in certificates that support Elliptic Curve Cryptography. This document updates Sections 2.3.5 and 5, and the ASN.1 module of "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3279. [STANDARDS-TRACK]

 Tags for Identifying Languages

 This document describes the structure, content, construction, and semantics of language tags for use in cases where it is desirable to indicate the language used in an information object. It also describes how to register values for use in language tags and the creation of user-defined extensions for private interchange. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Cryptographic Message Syntax (CMS)

 This document describes the Cryptographic Message Syntax (CMS). This syntax is used to digitally sign, digest, authenticate, or encrypt arbitrary message content. [STANDARDS-TRACK]

 Asymmetric Key Packages

 This document defines the syntax for private-key information and a content type for it. Private-key information includes a private key for a specified public-key algorithm and a set of attributes. The Cryptographic Message Syntax (CMS), as defined in RFC 5652, can be used to digitally sign, digest, authenticate, or encrypt the asymmetric key format content type. This document obsoletes RFC 5208. [STANDARDS-TRACK]

 Certificate Management over CMS (CMC) Updates

 This document contains a set of updates to the base syntax for CMC, a Certificate Management protocol using the Cryptographic Message Syntax (CMS). This document updates RFC 5272, RFC 5273, and RFC 5274.
 The new items in this document are: new controls for future work in doing server side key generation, definition of a Subject Information Access value to identify CMC servers, and the registration of a port number for TCP/IP for the CMC service to run on. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Update to the Cryptographic Message Syntax (CMS) for Algorithm Identifier Protection

 This document updates the Cryptographic Message Syntax (CMS) specified in RFC 5652 to ensure that algorithm identifiers in signed-data and authenticated-data content types are adequately protected.

 Algorithm Requirements Update to the Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)

 This document updates the cryptographic algorithm requirements for the Password-Based Message Authentication Code in the Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF) specified in RFC 4211.

 Certificate Management Protocol (CMP) Algorithms

 This document describes the conventions for using several
cryptographic algorithms with the Certificate Management Protocol
(CMP). CMP is used to enroll and further manage the lifecycle of
X.509 certificates. This document also updates the algorithm use
profile from Appendix D.2 of RFC 4210.

 Using Key Encapsulation Mechanism (KEM) Algorithms in the Cryptographic Message Syntax (CMS)

 The Cryptographic Message Syntax (CMS) supports key transport and key agreement algorithms. In recent years, cryptographers have been specifying Key Encapsulation Mechanism (KEM) algorithms, including quantum-secure KEM algorithms. This document defines conventions for the use of KEM algorithms by the originator and recipients to encrypt and decrypt CMS content. This document updates RFC 5652.

 Informative References

 A proposal for: Functionality classes for random number generators - Version 2.0

 T-Systems GEI GmbH

 Federal Office for Information Security (BSI)

 Federal Office for Information Security (BSI)

 National Vulnerability Database - CVE-2008-0166

 National Institute of Science and Technology (NIST)

 Network Domain Security (NDS); Authentication Framework (AF)

 3GPP

 Secure Integration of Asymmetric and Symmetric Encryption Schemes

 Journal of Cryptology, vol. 26, no. 1, pp. 80-101

 Proof-of-possession for KEM certificates using verifiable generation

 Cryptology ePrint Archive, Paper 2022/703

 A Modular Analysis of the Fujisaki-Okamoto Transformation

 Theory of Cryptography (TCC 2017), Lecture Notes in Computer Science, vol. 10677, pp. 341-371

 IEEE Standard for Local and Metropolitan Area Networks - Secure Device Identity

 IEEE

 Information technology -- Security techniques -- Test and analysis methods for random bit generators within ISO/IEC 19790 and ISO/IEC 15408

 ISO/IEC

 Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices

 UC San Diego

 University of Michigan

 University of Michigan

 University of Michigan

 21st USENIX Security Symposium (USENIX Security 12)

 Internet X.509 Public Key Infrastructure - Algorithm Identifiers for the Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM)

 sn3rd

 AWS

 AWS

 Cloudflare

 The Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) is a quantum-resistant key-encapsulation mechanism (KEM). This document specifies the conventions for using the ML-KEM in X.509 Public Key Infrastructure. The conventions for the subject public keys and private keys are also specified.

 Work in Progress

 Recommendation for Random Number Generation Using Deterministic Random Bit Generators

 Information Technology Laboratory

 Information Technology Laboratory

 Security Multiparts for MIME: Multipart/Signed and Multipart/Encrypted

 This document defines a framework within which security services may be applied to MIME body parts. [STANDARDS-TRACK] This memo defines a new Simple Mail Transfer Protocol (SMTP) [1] reply code, 521, which one may use to indicate that an Internet host does not accept incoming mail. This memo defines an Experimental Protocol for the Internet community. This memo defines an extension to the SMTP service whereby an interrupted SMTP transaction can be restarted at a later time without having to repeat all of the commands and message content sent prior to the interruption. This memo defines an Experimental Protocol for the Internet community.

 Internet X.509 Public Key Infrastructure Certificate Management Protocols

 This document describes the Internet X.509 Public Key Infrastructure (PKI) Certificate Management Protocols. [STANDARDS-TRACK]

 Internet X.509 Public Key Infrastructure Operational Protocols: FTP and HTTP

 The protocol conventions described in this document satisfy some of the operational requirements of the Internet Public Key Infrastructure (PKI). This document specifies the conventions for using the File Transfer Protocol (FTP) and the Hypertext Transfer Protocol (HTTP) to obtain certificates and certificate revocation lists (CRLs) from PKI repositories. [STANDARDS-TRACK]

 Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)

 This document describes the Internet X.509 Public Key Infrastructure (PKI) Certificate Management Protocol (CMP). Protocol messages are defined for X.509v3 certificate creation and management. CMP provides on-line interactions between PKI components, including an exchange between a Certification Authority (CA) and a client system. [STANDARDS-TRACK]

 Alternative Certificate Formats for the Public-Key Infrastructure Using X.509 (PKIX) Certificate Management Protocols

 The Public-Key Infrastructure using X.509 (PKIX) Working Group of the Internet Engineering Task Force (IETF) has defined a number of certificate management protocols. These protocols are primarily focused on X.509v3 public-key certificates. However, it is sometimes desirable to manage certificates in alternative formats as well. This document specifies how such certificates may be requested using the Certificate Request Message Format (CRMF) syntax that is used by several different protocols. It also explains how alternative certificate formats may be incorporated into such popular protocols as PKIX Certificate Management Protocol (PKIX-CMP) and Certificate Management Messages over CMS (CMC). This memo provides information for the Internet community.

 IP Encapsulating Security Payload (ESP)

 This document describes an updated version of the Encapsulating Security Payload (ESP) protocol, which is designed to provide a mix of security services in IPv4 and IPv6. ESP is used to provide confidentiality, data origin authentication, connectionless integrity, an anti-replay service (a form of partial sequence integrity), and limited traffic flow confidentiality. This document obsoletes RFC 2406 (November 1998). [STANDARDS-TRACK]

 Lightweight Directory Access Protocol (LDAP): The Protocol

 This document describes the protocol elements, along with their semantics and encodings, of the Lightweight Directory Access Protocol (LDAP). LDAP provides access to distributed directory services that act in accordance with X.500 data and service models. These protocol elements are based on those described in the X.500 Directory Access Protocol (DAP). [STANDARDS-TRACK]

 New ASN.1 Modules for the Public Key Infrastructure Using X.509 (PKIX)

 The Public Key Infrastructure using X.509 (PKIX) certificate format, and many associated formats, are expressed using ASN.1. The current ASN.1 modules conform to the 1988 version of ASN.1. This document updates those ASN.1 modules to conform to the 2002 version of ASN.1. There are no bits-on-the-wire changes to any of the formats; this is simply a change to the syntax. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Additional New ASN.1 Modules for the Cryptographic Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)

 The Cryptographic Message Syntax (CMS) format, and many associated formats, are expressed using ASN.1. The current ASN.1 modules conform to the 1988 version of ASN.1. This document updates some auxiliary ASN.1 modules to conform to the 2008 version of ASN.1; the 1988 ASN.1 modules remain the normative version. There are no bits- on-the-wire changes to any of the formats; this is simply a change to the syntax. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Internet X.509 Public Key Infrastructure -- HTTP Transfer for the Certificate Management Protocol (CMP)

 This document describes how to layer the Certificate Management Protocol (CMP) over HTTP. It is the "CMPtrans" document referenced in RFC 4210; therefore, this document updates the reference given therein. [STANDARDS-TRACK]

 Internet Key Exchange Protocol Version 2 (IKEv2)

 This document describes version 2 of the Internet Key Exchange (IKE) protocol. IKE is a component of IPsec used for performing mutual authentication and establishing and maintaining Security Associations (SAs). This document obsoletes RFC 5996, and includes all of the errata for it. It advances IKEv2 to be an Internet Standard.

 Object Identifier Registry for the PKIX Working Group

 When the Public-Key Infrastructure using X.509 (PKIX) Working Group was chartered, an object identifier arc was allocated by IANA for use by that working group. This document describes the object identifiers that were assigned in that arc, returns control of that arc to IANA, and establishes IANA allocation policies for any future assignments within that arc.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Secure Zero Touch Provisioning (SZTP)

 This document presents a technique to securely provision a networking device when it is booting in a factory-default state. Variations in the solution enable it to be used on both public and private networks. The provisioning steps are able to update the boot image, commit an initial configuration, and execute arbitrary scripts to address auxiliary needs. The updated device is subsequently able to establish secure connections with other systems. For instance, a device may establish NETCONF (RFC 6241) and/or RESTCONF (RFC 8040) connections with deployment-specific network management systems.

 Hash Of Root Key Certificate Extension

 This document specifies the Hash Of Root Key certificate extension. This certificate extension is carried in the self-signed certificate for a trust anchor, which is often called a Root Certification Authority (CA) certificate. This certificate extension unambiguously identifies the next public key that will be used at some point in the future as the next Root CA certificate, eventually replacing the current one.

 Bootstrapping Remote Secure Key Infrastructure (BRSKI)

 This document specifies automated bootstrapping of an Autonomic Control Plane. To do this, a Secure Key Infrastructure is bootstrapped. This is done using manufacturer-installed X.509 certificates, in combination with a manufacturer's authorizing service, both online and offline. We call this process the Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol. Bootstrapping a new device can occur when using a routable address and a cloud service, only link-local connectivity, or limited/disconnected networks. Support for deployment models with less stringent security requirements is included. Bootstrapping is complete when the cryptographic identity of the new key infrastructure is successfully deployed to the device. The established secure connection can be used to deploy a locally issued certificate to the device as well.

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

 This document specifies version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 The DTLS 1.3 protocol is based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection / non-replayability. Datagram semantics of the underlying transport are preserved by the DTLS protocol.
 This document obsoletes RFC 6347.

 Certificate Transparency Version 2.0

 This document describes version 2.0 of the Certificate Transparency (CT) protocol for publicly logging the existence of Transport Layer Security (TLS) server certificates as they are issued or observed, in a manner that allows anyone to audit certification authority (CA) activity and notice the issuance of suspect certificates as well as to audit the certificate logs themselves. The intent is that eventually clients would refuse to honor certificates that do not appear in a log, effectively forcing CAs to add all issued certificates to the logs.
 This document obsoletes RFC 6962. It also specifies a new TLS extension that is used to send various CT log artifacts.
 Logs are network services that implement the protocol operations for submissions and queries that are defined in this document.

 Certificate Management Protocol (CMP) Updates

 This document contains a set of updates to the syntax of Certificate Management Protocol (CMP) version 2 and its HTTP transfer mechanism. This document updates RFCs 4210, 5912, and 6712.
 The aspects of CMP updated in this document are using EnvelopedData instead of EncryptedValue, clarifying the handling of p10cr messages, improving the crypto agility, as well as adding new general message types, extended key usages to identify certificates for use with CMP, and well-known URI path segments.
 CMP version 3 is introduced to enable signaling support of EnvelopedData instead of EncryptedValue and signal the use of an explicit hash AlgorithmIdentifier in certConf messages, as far as needed.

 Constrained Application Protocol (CoAP) Transfer for the Certificate Management Protocol

 This document specifies the use of the Constrained Application Protocol (CoAP) as a transfer mechanism for the Certificate Management Protocol (CMP). CMP defines the interaction between various PKI entities for the purpose of certificate creation and management. CoAP is an HTTP-like client-server protocol used by various constrained devices in the Internet of Things space.

 Lightweight Certificate Management Protocol (CMP) Profile

 This document aims at simple, interoperable, and automated PKI management operations covering typical use cases of industrial and Internet of Things (IoT) scenarios. This is achieved by profiling the Certificate Management Protocol (CMP), the related Certificate Request Message Format (CRMF), and transfer based on HTTP or Constrained Application Protocol (CoAP) in a succinct but sufficiently detailed and self-contained way. To make secure certificate management for simple scenarios and constrained devices as lightweight as possible, only the most crucial types of operations and options are specified as mandatory. More specialized or complex use cases are supported with optional features.

 BRSKI with Alternative Enrollment (BRSKI-AE)

 This document defines enhancements to the Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol, known as BRSKI with Alternative Enrollment (BRSKI-AE). BRSKI-AE extends BRSKI to support certificate enrollment mechanisms instead of the originally specified use of Enrollment over Secure Transport (EST). It supports certificate enrollment protocols such as the Certificate Management Protocol (CMP) that use authenticated self-contained signed objects for certification messages, allowing for flexibility in network device onboarding scenarios. The enhancements address use cases where the existing enrollment mechanism may not be feasible or optimal, providing a framework for integrating suitable alternative enrollment protocols. This document also updates the BRSKI reference architecture to accommodate these alternative methods, ensuring secure and scalable deployment across a range of network environments.

 Internet X.509 Public Key Infrastructure -- HTTP Transfer for the Certificate Management Protocol (CMP)

 Siemens

 Siemens

 Entrust

 Entrust

 ERTMS/ETCS On-line Key Management FFFIS

 UNISIG

 Subset-137, V1.0.0

 Information technology - Open Systems Interconnection - The Directory: Public-key and attribute certificate frameworks

 ITU-T

 Reasons for the Presence of RAs
 The reasons that justify the presence of an RA can be split into
those that are due to technical factors and those that are
organizational in nature. Technical reasons include the following.

 If hardware tokens are in use, then not all end entities will have
the equipment needed to initialize these; the RA equipment can
include the necessary functionality (this may also be a matter of
policy).

 Some end entities may not have the capability to publish
certificates; again, the RA may be suitably placed for this.

 The RA will be able to issue signed revocation requests on behalf
of end entities associated with it, whereas the end entity may not
be able to do this (if the key pair is completely lost).

 Some of the organizational reasons that argue for the presence of an
RA are the following.

 It may be more cost effective to concentrate functionality in the
RA equipment than to supply functionality to all end entities
(especially if special token initialization equipment is to be
used).

 Establishing RAs within an organization can reduce the number of
CAs required, which is sometimes desirable.

 RAs may be better placed to identify people with their
"electronic" names, especially if the CA is physically remote from
the end entity.

 For many applications, there will already be some
administrative structure in place so that candidates for the role of RA are
easy to find (which may not be true of the CA).

 Further reasons relevant for automated machine-to-machine certificate lifecycle
management are available in the Lightweight CMP Profile .

 The Use of Revocation Passphrase
 A revocation request must incorporate suitable security mechanisms,
including proper authentication, in order to reduce the probability
of successful denial-of-service attacks. A digital signature or DH/KEM-based message protection on the
request -- REQUIRED to support within this specification depending on the key type used if
revocation requests are supported -- can provide the authentication
required, but there are circumstances under which an alternative
mechanism may be desirable (e.g., when the private key is no longer
accessible and the entity wishes to request a revocation prior to
re-certification of another key pair). In order to accommodate such
circumstances, a password-based MAC (see CMP Algorithms) on the request is also REQUIRED to
support within this specification (subject to local security policy
for a given environment) if revocation requests are supported and if
shared secret information can be established between the requester
and the responder prior to the need for revocation.
 A mechanism that has seen use in some environments is "revocation passphrase",
in which a value of sufficient entropy (i.e., a
relatively long passphrase rather than a short password) is shared
between (only) the entity and the CA/RA at some point prior to
revocation; this value is later used to authenticate the revocation
request.
 In this specification, the following technique to establish shared
secret information (i.e., a revocation passphrase) is OPTIONAL to
support. Its precise use in CMP messages is as follows.

 The OID and value specified in MAY be sent in a GenMsg message
at any time or MAY be sent in the generalInfo
field of the PKIHeader of any PKIMessage at any time. (In particular, the
EncryptedKey structure as described in may be sent in the header
of the certConf message that confirms acceptance
of certificates requested in an initialization request or certificate request
message.) This conveys a revocation passphrase chosen by the entity to the
relevant CA/RA. When EnvelopedData is used, this is in the decrypted bytes
of the encryptedContent field. When EncryptedValue is used, this is in the decrypted
bytes of the encValue field. Furthermore, the transfer is accomplished with
appropriate confidentiality characteristics.

 If a CA/RA receives the revocation passphrase (OID and value
specified in) in a GenMsg, it MUST construct and
send a GenRep message that includes the OID (with absent value)
specified in . If the CA/RA receives the
revocation passphrase in the generalInfo field of a PKIHeader of
any PKIMessage, it MUST include the OID (with absent value) in the
generalInfo field of the PKIHeader of the corresponding response
PKIMessage. If the CA/RA is unable to return the appropriate
response message for any reason, it MUST send an error message
with a status of "rejection" and, optionally, a failInfo reason
set.

 Either the localKeyId attribute of EnvelopedData as specified in
 or the valueHint field of EncryptedValue MAY
contain a key identifier (chosen
by the entity, along with the passphrase itself) to assist in later retrieval
of the correct passphrase (e.g., when the revocation request is constructed
by the end entity and received by the CA/RA).

 The revocation request message is protected by a password-based MAC (see
 "CMP Algorithms")
with the revocation passphrase as the key. If appropriate, the
senderKID field in the PKIHeader MAY contain the value previously
transmitted in localKeyId or valueHint.

 Note: For a message transferring a revocation passphrase indicating cmp2021(3) in the pvno field of the PKIHeader, the encrypted passphrase MUST be transferred in the envelopedData choice of EncryptedKey as defined in . When using cmp2000(2) in the message header for backward compatibility, the encryptedValue is used. This allows the necessary conveyance and protection of the passphrase while maintaining bits-on-the-wire compatibility with . The encryptedValue choice has been deprecated in favor of encryptedData.
 Using the technique specified above, the revocation passphrase may be
initially established and updated at any time without requiring extra
messages or out-of-band exchanges. For example, the revocation
request message itself (protected and authenticated through a MAC
that uses the revocation passphrase as a key) may contain, in the
PKIHeader, a new revocation passphrase to be used for authenticating
future revocation requests for any of the entity's other
certificates. In some environments, this may be preferable to
mechanisms that reveal the passphrase in the revocation request
message, since this can allow a denial-of-service attack in which the
revealed passphrase is used by an unauthorized third party to
authenticate revocation requests on the entity's other certificates.
However, because the passphrase is not revealed in the request
message, there is no requirement that the passphrase must always be
updated when a revocation request is made (that is, the same
passphrase MAY be used by an entity to authenticate revocation
requests for different certificates at different times).
 Furthermore, the above technique can provide strong cryptographic
protection over the entire revocation request message even when a
digital signature is not used. Techniques that do authentication of
the revocation request by simply revealing the revocation passphrase
typically do not provide cryptographic protection over the fields of
the request message (so that a request for revocation of one
certificate may be modified by an unauthorized third party to a
request for revocation of another certificate for that entity).

 PKI Management Message Profiles (REQUIRED)
 This appendix contains detailed profiles for those PKIMessages that
 MUST be supported by conforming implementations (see).
 Note: Appendices and focus on PKI management operations
managing certificates for human end entities.
In contrast, the Lightweight CMP Profile focuses on typical use
cases of industrial and IoT scenarios supporting highly automated certificate
lifecycle management scenarios.
 Profiles for the PKIMessages used in the following PKI management
operations are provided:

 initial registration/certification

 basic authenticated scheme

 certificate request

 key update

 General Rules for Interpretation of These Profiles

 Where OPTIONAL or DEFAULT fields are not mentioned in individual
 profiles, they SHOULD be absent from the relevant message (i.e.,
 a receiver can validly reject a message containing such fields as
 being syntactically incorrect). Mandatory fields are not
 mentioned if they have an obvious value. The protocol version number MUST be set as specified in).

 Where structures occur in more than one message, they are
 separately profiled as appropriate.

 The algorithmIdentifiers from PKIMessage structures are profiled
 separately.

 A "special" X.500 DN is called the "NULL-DN"; this means a DN
 containing a zero-length SEQUENCE OF RelativeDistinguishedNames
 (its DER encoding is then '3000'H).

 Where a GeneralName is required for a field, but no suitable
 value is available (e.g., an end entity produces a request before
 knowing its name), then the GeneralName is to be an X.500 NULL-DN
 (i.e., the Name field of the CHOICE is to contain a NULL-DN).

 Where a profile omits to specify the value for a GeneralName,
 then the NULL-DN value is to be present in the relevant
 PKIMessage field. This occurs with the sender field of the
 PKIHeader for some messages.

 Where any ambiguity arises due to naming of fields, the profile
 names these using a "dot" notation (e.g., "certTemplate.subject"
 means the subject field within a field called certTemplate).

 Where a "SEQUENCE OF types" is part of a message, a zero-based
 array notation is used to describe fields within the SEQUENCE OF
 (e.g., crm[0].certReq.certTemplate.subject refers to a subfield
 of the first CertReqMsg contained in a request message).

 All PKI message exchanges in Appendices to require a
 certConf message to be sent by the initiating entity and a
 pkiconf message to be sent by the responding entity. The pkiconf
 is not included in some of the profiles given since its body is
 NULL and its header contents are clear from the context. Any
 authenticated means can be used for the protectionAlg (e.g.,
 password-based MAC, if shared secret information is known, or
 signature).

 Algorithm Use Profile
 For specifications of algorithm identifiers and respective conventions for
conforming implementations, please refer to CMP Algorithms.

 POP Profile
 The table below describes the POP fields for use (in signature field of
 pop field of ProofOfPossession structure) when proving possession of a
 private signing key that corresponds to a public verification key for
 which a certificate has been requested.

 Field
 Value
 Comment

 algorithmIdentifier
 MSG_SIG_ALG
 only signature protection is allowed for this proof

 signature
 present
 bits calculated using MSG_SIG_ALG

 Note: For examples of MSG_SIG_ALG OIDs, see CMP Algorithms.
 POP of a private decryption key that corresponds to a
public encryption key for which a certificate has been requested does
not use this profile; the CertHash field of the certConf message is
used instead.
 Not every CA/RA will do POP (of signing key,
decryption key, or key agreement key) in the PKIX-CMP in-band
certification request protocol (how POP is done MAY ultimately be a
policy issue that is made explicit for any given CA in its publicized
Policy OID and Certification Practice Statement). However, this
specification mandates that CA/RA entities MUST do POP (by some
means) as part of the certification process. All end entities MUST
be prepared to provide POP (i.e., these components of the PKIX-CMP
protocol MUST be supported).

 Initial Registration/Certification (Basic Authenticated Scheme)
 An (uninitialized) end entity requests a (first) certificate from a
CA. When the CA responds with a message containing a certificate,
the end entity replies with a certificate confirmation. The CA sends
a pkiconf message back, closing the transaction. All messages are
authenticated.
 This scheme allows the end entity to request certification of a
locally generated public key (typically a signature key). The end entity
 MAY also choose to request the centralized generation and
certification of another key pair (typically an encryption key pair).
 Certification may only be requested for one locally generated public
key (for more, use separate PKIMessages).
 The end entity MUST support POP of the private key
associated with the locally generated public key.
 Preconditions:

 The end entity can authenticate the CA's signature based on
out-of-band means.

 The end entity and the CA share a symmetric MACing key.

 Message Flow:

 Step#
 End
 entity
 PKI
 1
 format
 ir
 2
 ir
 3
 handle
 ir
 4
 format
 ip
 5
 ip
 6
 handle
 ip
 7
 format
 certConf
 8
 certConf
 9
 handle
 certConf
 10
 format
 pkiconf
 11
 pkiconf
 12
 handle
 pkiconf

Step# End entity PKI

 1 format ir
 2 --> ir -->
 3 handle ir
 4 format ip
 5 <-- ip <--
 6 handle ip
 7 format certConf
 8 --> certConf -->
 9 handle certConf
 10 format pkiconf
 11 <-- pkiconf <--
 12 handle pkiconf

 For this profile, we mandate that the end entity MUST include all
(i.e., one or two) CertReqMsg in a single PKIMessage and that the
PKI (CA) MUST produce a single response PKIMessage that contains the
complete response (i.e., including the OPTIONAL second key pair, if
it was requested and if centralized key generation is supported).
For simplicity, we also mandate that this message MUST be the final
	one (i.e., no use of "waiting" status value).
 The end entity has an out-of-band interaction with the CA/RA. This
transaction established the shared secret, the referenceNumber, and
optionally the DN used for both the sender and subject
name in the certificate template. See for security
	considerations on quality of shared secret information.
 Initialization Request -- ir
 	
Field Value

recipient CA name
 -- the name of the CA who is being asked to produce a certificate
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this request, based
 -- on initial authentication key
senderKID referenceNum
 -- the reference number that the CA has previously issued
 -- to the end entity (together with the MACing key)
transactionID present
 -- implementation-specific value, meaningful to end
 -- entity.
 -- [If already in use at the CA, then a rejection message MUST
 -- be produced by the CA]

senderNonce present
 -- 128 (pseudo-)random bits
freeText any valid value
body ir (CertReqMessages)
 only one or two CertReqMsg
 are allowed
 -- if more certificates are required, requests MUST be
 -- packaged in separate PKIMessages

CertReqMsg one or two present
 -- see below for details, note: crm[0] means the first
 -- (which MUST be present), crm[1] means the second (which
 -- is OPTIONAL, and used to ask for a centrally generated key)

crm[0].certReq. fixed value of zero
 certReqId
 -- this is the index of the template within the message
crm[0].certReq present
 certTemplate
 -- MUST include subject public key value, otherwise unconstrained
crm[0].pop... optionally present if public key
 POPOSigningKey from crm[0].certReq.certTemplate is
 a signing key
 -- POP MAY be required in this exchange
 -- (see Appendix D.3 for details)
crm[0].certReq. optionally present
 controls.archiveOptions
 -- the end entity MAY request that the locally generated
 -- private key be archived

crm[0].certReq. optionally present
 controls.publicationInfo
 -- the end entity MAY ask for publication of resulting cert.

crm[1].certReq fixed value of one
 certReqId
 -- the index of the template within the message
 crm[1].certReq present
 certTemplate
 -- MUST NOT include actual public key bits, otherwise
 -- unconstrained (e.g., the names need not be the same as in
 -- crm[0]). Note that subjectPublicKeyInfo MAY be present
 -- and contain an AlgorithmIdentifier followed by a
 -- zero-length BIT STRING for the subjectPublicKey if it is
 -- desired to inform the CA/RA of algorithm and parameter
 -- preferences regarding the to-be-generated key pair.

 crm[1].certReq. present [object identifier MUST be
 PROT_ENC_ALG]

 controls.protocolEncrKey
 -- if centralized key generation is supported by this CA,
 -- this short-term asymmetric encryption key (generated by
 -- the end entity) will be used by the CA to encrypt (a
 -- symmetric key used to encrypt) a private key generated by
 -- the CA on behalf of the end entity

crm[1].certReq. optionally present
 controls.archiveOptions
crm[1].certReq. optionally present
 controls.publicationInfo
protection present
 -- bits calculated using MSG_MAC_ALG

 Initialization Response -- ip

Field Value

sender CA name
 -- the name of the CA who produced the message
messageTime present
 -- time at which CA produced message
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this response
senderKID referenceNum
 -- the reference number that the CA has previously issued to the
 -- end entity (together with the MACing key)
transactionID present
 -- value from corresponding ir message
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
 -- value from senderNonce in corresponding ir message
freeText any valid value
body ip (CertRepMessage)
 contains exactly one response
 for each request
 -- The PKI (CA) responds to either one or two requests as
 -- appropriate. crc[0] denotes the first (always present);
 -- crc[1] denotes the second (only present if the ir message
 -- contained two requests and if the CA supports centralized
 -- key generation).
crc[0]. fixed value of zero
 certReqId
 -- MUST contain the response to the first request in the
 -- corresponding ir message
crc[0].status. present, positive values allowed:
 status "accepted", "grantedWithMods"
 negative values allowed:
 "rejection"
crc[0].status. present if and only if
 failInfo crc[0].status.status is "rejection"
crc[0]. present if and only if
 certifiedKeyPair crc[0].status.status is
 "accepted" or "grantedWithMods"
certificate present unless end entity's public
 key is an encryption key and POP
 is done in this in-band exchange
encryptedCert present if and only if end entity's
 public key is an encryption key and
 POP done in this in-band exchange
publicationInfo optionally present

 -- indicates where certificate has been published (present
 -- at discretion of CA)

crc[1]. fixed value of one
 certReqId
 -- MUST contain the response to the second request in the
 -- corresponding ir message
crc[1].status. present, positive values allowed:
 status "accepted", "grantedWithMods"
 negative values allowed:
 "rejection"
crc[1].status. present if and only if
 failInfo crc[0].status.status is "rejection"
crc[1]. present if and only if
 certifiedKeyPair crc[0].status.status is "accepted"
 or "grantedWithMods"
certificate present
privateKey present
 -- Use EnvelopedData; if backward compatibility is required,
 -- use EncryptedValue, see Section 5.2.2
publicationInfo optionally present
 -- indicates where certificate has been published (present
 -- at discretion of CA)

protection present
 -- bits calculated using MSG_MAC_ALG
extraCerts optionally present
 -- the CA MAY provide additional certificates to the end
 -- entity

 Certificate confirm -- certConf

Field Value

sender present
 -- same as in ir
recipient CA name
 -- the name of the CA who was asked to produce a certificate
transactionID present
 -- value from corresponding ir and ip messages
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
 -- value from senderNonce in corresponding ip message
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this message. The
 -- MAC is based on the initial authentication key shared
 -- between the end entity and the CA.

senderKID referenceNum
 -- the reference number that the CA has previously issued
 -- to the end entity (together with the MACing key)

body certConf
 -- see Section 5.3.18, "PKI Confirmation Content", for the
 -- contents of the certConf fields.
 -- Note: two CertStatus structures are required if both an
 -- encryption and a signing certificate were sent.

protection present
 -- bits calculated using MSG_MAC_ALG

 Confirmation -- pkiconf

Field Value

sender present
 -- same as in ip
recipient present
 -- sender name from certConf
transactionID present
 -- value from certConf message
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
 -- value from senderNonce from certConf message
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this message.
senderKID referenceNum
body pkiconf
protection present
 -- bits calculated using MSG_MAC_ALG

 Certificate Request
 An (initialized) end entity requests a certificate from a CA (for any
reason). When the CA responds with a message containing a
certificate, the end entity replies with a certificate confirmation.
The CA replies with a pkiconf message to close the transaction. All
messages are authenticated.
 The profile for this exchange is identical to that given in ,
with the following exceptions:

 sender name SHOULD be present;

 protectionAlg of MSG_SIG_ALG MUST be supported (MSG_MAC_ALG MAY
also be supported) in request, response, certConf, and
pkiconf messages;

 senderKID and recipKID are only present if required for message
verification;

 body is cr or cp;

 body may contain one or two CertReqMsg structures, but either
CertReqMsg may be used to request certification of a
locally generated public key or a centrally generated public key
(i.e., the position-dependence requirement of is
removed); and

 protection bits are calculated according to the protectionAlg
field.

 Key Update Request
 An (initialized) end entity requests a certificate from a CA (to
update the key pair and/or corresponding certificate that it already
possesses). When the CA responds with a message containing a
certificate, the end entity replies with a certificate confirmation.
The CA replies with a PKIConfirm to close the transaction. All
messages are authenticated.
 The profile for this exchange is identical to that given in ,
	with the following exceptions:

 sender name SHOULD be present;

 protectionAlg of MSG_SIG_ALG MUST be supported (MSG_MAC_ALG MAY
 also be supported) in request, response, certConfirm, and
 PKIConfirm messages;

 senderKID and recipKID are only present if required for message
 verification;

 body is kur or kup;

 body may contain one or two CertReqMsg structures, but either
 CertReqMsg may be used to request certification of a locally generated
 public key or a centrally generated public key (i.e.,the
 position-dependence requirement of is removed);

 protection bits are calculated according to the protectionAlg
 field; and

 regCtrl OldCertId SHOULD be used (unless it is clear to both the
 sender and receiver -- by means not specified in this document --
 that it is not needed).

 PKI Management Message Profiles (OPTIONAL)
 This appendix contains detailed profiles for those PKIMessages that
 MAY be supported by implementations.
 Profiles for the PKIMessages used in the following PKI management
operations are provided:

 root CA key update

 information request/response

 cross-certification request/response (1-way)

 in-band initialization using external identity certificate

 Future versions of this document may extend the above to include
profiles for the operations listed below (along with other
operations, if desired).

 revocation request

 certificate publication

 CRL publication

 General Rules for Interpretation of These Profiles
 Identical to .

 Algorithm Use Profile
 Identical to .

 Self-Signed Certificates
 The table below is a profile of how a certificate structure may be
 "self-signed". These
structures are used for distribution of new root CA public keys. This can
occur in one of three ways (see above for a description
of the use of these structures):

 Type
 Function

 newWithNew
 a "self-signed" certificate; the contained public key MUST be usable to verify the signature (though this provides only integrity and no authentication whatsoever)

 oldWithNew
 previous root CA public key signed with new private key

 newWithOld
 new root CA public key signed with previous private key

 A newWithNew certificate (including relevant extensions) must contain
"sensible" values for all fields. For example, when present,
subjectAltName MUST be identical to issuerAltName, and, when present,
keyIdentifiers must contain appropriate values, et cetera.

 Root CA Key Update
 A root CA updates its key pair. It then produces a CA key update
announcement message that can be made available (via some transport
mechanism) to the relevant entities. A confirmation message is
not required from the end entities.
 ckuann message:

 Field
 Value
 Comment

 sender
 CA name CA name

 body
 ckuann(RootCaKeyUpdateContent)

 newWithNew
 optionally present
 see above

 newWithOld
 optionally present
 see above

 oldWithNew
 optionally present
 see above

 extraCerts
 optionally present
 can be used to "publish" certificates (e.g., certificates signed using the new private key)

 PKI Information Request/Response
 The end entity sends a general message to the PKI requesting details
that will be required for later PKI management operations. The RA/CA
responds with a general response. If an RA generates the response,
then it will simply forward the equivalent message that it previously
received from the CA, with the possible addition of certificates to
the extraCerts fields of the PKIMessage. A confirmation message is
not required from the end entity.
 Message Flows:

 Step#
 End
 entity
 PKI
 1
 format
 genm
 2
 genm
 3
 handle
 genm
 4
 produce
 genp
 5
 genp
 6
 handle
 genp

Step# End entity PKI

 1 format genm
 2 --> genm -->
 3 handle genm
 4 produce genp
 5 <-- genp <--
 6 handle genp

 genM:

Field Value

recipient CA name
 -- the name of the CA as contained in issuerAltName
 -- extensions or issuer fields within certificates
protectionAlg MSG_MAC_ALG or MSG_SIG_ALG
 -- any authenticated protection alg.
SenderKID present if required
 -- must be present if required for verification of message
 -- protection
freeText any valid value
body genr (GenReqContent)
GenMsgContent empty SEQUENCE
 -- all relevant information requested
protection present
 -- bits calculated using MSG_MAC_ALG or MSG_SIG_ALG

 genP:

Field Value

sender CA name
 -- name of the CA that produced the message
protectionAlg MSG_MAC_ALG or MSG_SIG_ALG
 -- any authenticated protection alg.
senderKID present if required
 -- must be present if required for verification of message
 -- protection
body genp (GenRepContent)
CAProtEncCert present (object identifier one
 of PROT_ENC_ALG), with relevant
 value
 -- to be used if end entity needs to encrypt information for
 -- the CA (e.g., private key for recovery purposes)

SignKeyPairTypes present, with relevant value
 -- the set of signature algorithm identifiers that this CA will
 -- certify for subject public keys
EncKeyPairTypes present, with relevant value
 -- the set of encryption / key agreement algorithm identifiers that
 -- this CA will certify for subject public keys
PreferredSymmAlg present (object identifier one
 of PROT_SYM_ALG) , with relevant
 value
 -- the symmetric algorithm that this CA expects to be used
 -- in later PKI messages (for encryption)
RootCaKeyUpdate optionally present, with
 relevant value
 -- Use RootCaKeyUpdate; if backward compatibility with cmp2000 is
 -- required, use CAKeyUpdateInfo.
 -- The CA MAY provide information about a relevant root CA
 -- key pair using this field (note that this does not imply
 -- that the responding CA is the root CA in question)
CurrentCRL optionally present, with relevant value
 -- the CA MAY provide a copy of a complete CRL (i.e.,
 -- fullest possible one)
protection present
 -- bits calculated using MSG_MAC_ALG or MSG_SIG_ALG
extraCerts optionally present
 -- can be used to send some certificates to the end
 -- entity. An RA MAY add its certificate here.

 Cross-Certification Request/Response (1-way)
 This section describes the creation of a single cross-certificate (i.e.,
 not two at once). The
requesting CA MAY choose who is responsible for publication of the
cross-certificate created by the responding CA through use of the
PKIPublicationInfo control.
 Preconditions:

 Responding CA can verify the origin of the request (possibly
 requiring out-of-band means) before processing the request.

 Requesting CA can authenticate the authenticity of the origin of
 the response (possibly requiring out-of-band means) before
 processing the response.

 The use of certificate confirmation and the corresponding server
confirmation is determined by the generalInfo field in the PKIHeader
(see). The following profile does not mandate support
for either confirmation.
 Message Flows:

 Step#
 Requesting
 CA
 Responding
 CA
 1
 format
 ccr
 2
 ccr
 3
 handle
 ccr
 4
 produce
 ccp
 5
 ccp
 6
 handle
 ccp

Step# Requesting CA Responding CA

 1 format ccr
 2 --> ccr -->
 3 handle ccr
 4 produce ccp
 5 <-- ccp <--
 6 handle ccp

 ccr:

Field Value

sender Requesting CA name
 -- the name of the CA who produced the message
recipient Responding CA name
 -- the name of the CA who is being asked to produce a certificate
messageTime time of production of message
 -- current time at requesting CA
protectionAlg MSG_SIG_ALG
 -- only signature protection is allowed for this request
senderKID present if required
 -- must be present if required for verification of message
 -- protection
recipKID present if required
 -- must be present if required for verification of message
 -- protection
transactionID present
 -- implementation-specific value, meaningful to requesting CA.
 -- [If already in use at responding CA, then a rejection message
 -- MUST be produced by responding CA]
senderNonce present
 -- 128 (pseudo-)random bits
freeText any valid value
body ccr (CertReqMessages)
 only one CertReqMsg
 allowed
 -- if multiple cross-certificates are required, they MUST be
 -- packaged in separate PKIMessages
certTemplate present
 -- details follow
version v1 or v3
 -- v3 STRONGLY RECOMMENDED
signingAlg present
 -- the requesting CA must know in advance with which algorithm it
 -- wishes the certificate to be signed

subject present
 -- may be NULL-DN only if subjectAltNames extension value proposed
validity present
 -- MUST be completely specified (i.e., both fields present)
issuer present
 -- may be NULL-DN only if issuerAltNames extension value proposed
publicKey present
 -- the key to be certified (which must be for a signing algorithm)
extensions optionally present
 -- a requesting CA must propose values for all extensions
 -- that it requires to be in the cross-certificate
POPOSigningKey present
 -- see Appendix C.3: POP Profile
protection present
 -- bits calculated using MSG_SIG_ALG
extraCerts optionally present
 -- MAY contain any additional certificates that requester wishes
 -- to include

 ccp:

Field Value

sender Responding CA name
 -- the name of the CA who produced the message
recipient Requesting CA name
 -- the name of the CA who asked for production of a certificate
messageTime time of production of message
 -- current time at responding CA
protectionAlg MSG_SIG_ALG
 -- only signature protection is allowed for this message
senderKID present if required
 -- must be present if required for verification of message
 -- protection
recipKID present if required
transactionID present
 -- value from corresponding ccr message
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
-- senderNonce from corresponding ccr message
freeText any valid value
body ccp (CertRepMessage)
 only one CertResponse allowed
 -- if multiple cross-certificates are required, they MUST be
 -- packaged in separate PKIMessages
response present
status present

PKIStatusInfo.status present
 -- if PKIStatusInfo.status is one of:
 -- accepted, or
 -- grantedWithMods,
 -- then certifiedKeyPair MUST be present and failInfo MUST
 -- be absent

failInfo present depending on
 PKIStatusInfo.status
 -- if PKIStatusInfo.status is:
 -- rejection,
 -- then certifiedKeyPair MUST be absent and failInfo MUST be
 -- present and contain appropriate bit settings

certifiedKeyPair present depending on
 PKIStatusInfo.status
certificate present depending on
 certifiedKeyPair
 -- content of actual certificate must be examined by requesting CA
 -- before publication
protection present
 -- bits calculated using MSG_SIG_ALG
extraCerts optionally present
 -- MAY contain any additional certificates that responder wishes
 -- to include

 In-Band Initialization Using External Identity Certificate
 An (uninitialized) end entity wishes to initialize into the PKI with
a CA, CA-1. It uses, for authentication purposes, a pre-existing
identity certificate issued by another (external) CA, CA-X. A trust
relationship must already have been established between CA-1 and CA-X
so that CA-1 can validate the end entity identity certificate signed by CA-X.
Furthermore, some mechanism must already have been established within
the TEE, also known as
PSE, of the end entity that would allow it
to authenticate and verify PKIMessages signed by CA-1 (as one
example, the TEE may contain a certificate issued for the public key
of CA-1, signed by another CA that the end entity trusts on the basis of
out-of-band authentication techniques).
 The end entity sends an initialization request to start the transaction.
When CA-1 responds with a message containing the new certificate, the
end entity replies with a certificate confirmation. CA-1 replies
with a pkiconf message to close the transaction. All messages are signed
(the end entity messages are signed using the private key that corresponds to
the public key in its external identity certificate; the CA-1
messages are signed using the private key that corresponds to the
public key in a certificate that can be chained to a trust anchor in the end entity's TEE).
 The profile for this exchange is identical to that given in ,
with the following exceptions:

 the end entity and CA-1 do not share a symmetric MACing key (i.e., there
is no out-of-band shared secret information between these
entities);

 sender name in ir MUST be present (and identical to the subject
name present in the external identity certificate);

 protectionAlg of MSG_SIG_ALG MUST be used in all messages;

 external identity certificate MUST be carried in ir extraCerts field

 senderKID and recipKID are not used;

 body is ir or ip; and

 protection bits are calculated according to the protectionAlg
field.

 Variants of Using KEM Keys for PKI Message Protection
 As described in , any party in a PKI management operation may wish to use a KEM key pair for message protection. Possible cases are described below.
 For any PKI management operation started by a PKI entity with any type of request message, the following message flows describe the use of a KEM key. There are two cases to distinguish, namely whether the PKI entity or the PKI management entity owns a KEM key pair. If both sides own KEM key pairs, the flows need to be combined such that for each direction a shared secret key is established.
 In the following message flows, Alice indicates the PKI entity that uses a KEM key pair for message authentication and Bob provides the KEM ciphertext using Alice's public KEM key, as described in .

 Message Flow When the PKI Entity Has a KEM Key Pair and Certificate

 Step#
 PKI
 entity
 PKI
 management
 entity
 (Alice)
 (Bob)
 1
 format
 unprotected
 genm
 of
 type
 KemCiphertextInfo
 without
 value,
 and
 KEM
 certificate
 in
 extraCerts
 2
 genm
 3
 validate
 KEM
 certificate
 4
 perform
 KEM
 Encapsulate
 5
 format
 unprotected
 genp
 of
 type
 KemCiphertextInfo
 providing
 KEM
 ciphertext
 6
 genp
 7
 perform
 KEM
 Decapsulate
 8
 perform
 key
 derivation
 to
 get
 ssk
 9
 format
 request
 with
 MAC-based
 protection
 10
 request
 11
 perform
 key
 derivation
 to
 get
 ssk
 12
 verify
 MAC-based
 protection
 PKI
 entity
 authenticated
 by
 PKI
 management
 entity
 13
 format
 response
 with
 protection
 depending
 on
 available
 key
 material
 14
 response
 15
 verify
 protection
 provided
 by
 the
 PKI
 management
 entity
 16
 Further
 messages
 of
 this
 PKI
 management
 operation
 can
 be
 exchanged
 with
 MAC-based
 protection
 by
 the
 PKI
 entity
 using
 the
 established
 shared
 secret
 key
 (ssk)

Step# PKI entity PKI management entity
 (Alice) (Bob)

 1 format unprotected genm
 of type
 KemCiphertextInfo
 without value, and
 KEM certificate in
 extraCerts
 2 --> genm -->
 3 validate KEM certificate
 4 perform KEM Encapsulate
 5 format unprotected genp
 of type
 KemCiphertextInfo
 providing KEM ciphertext
 6 <-- genp <--
 7 perform KEM Decapsulate
 8 perform key derivation
 to get ssk
 9 format request with
 MAC-based protection
 10 --> request -->
 11 perform key derivation
 to get ssk
 12 verify MAC-based
 protection

-------- PKI entity authenticated by PKI management entity --------

 13 format response with
 protection depending on
 available key material
 14 <-- response <--
 15 verify protection
 provided by the
 PKI management entity

 16 Further messages of this PKI management operation
 can be exchanged with MAC-based protection by the PKI
 entity using the established shared secret key (ssk)

 Message Flow When the PKI Entity Knows That the PKI Management Entity Uses a KEM Key Pair and Has the Authentic Public Key

 Step#
 PKI
 entity
 PKI
 management
 entity
 (Bob)
 (Alice)
 1
 perform
 KEM
 Encapsulate
 2
 format
 request
 providing
 KEM
 ciphertext
 in
 generalInfo
 of
 type
 KemCiphertextInfo,
 and
 with
 protection
 depending
 on
 available
 key
 material
 3
 request
 4
 perform
 KEM
 Decapsulate
 5
 perform
 key
 derivation
 to
 get
 ssk
 6
 format
 response
 with
 MAC-based
 protection
 7
 response
 8
 perform
 key
 derivation
 to
 get
 ssk
 9
 verify
 MAC-based
 protection
 PKI
 management
 entity
 authenticated
 by
 PKI
 entity
 10
 Further
 messages
 of
 this
 PKI
 management
 operation
 can
 be
 exchanged
 with
 MAC-based
 protection
 by
 the
 PKI
 management
 entity
 using
 the
 established
 shared
 secret
 key
 (ssk)

Step# PKI entity PKI management entity
 (Bob) (Alice)

 1 perform KEM Encapsulate
 2 format request providing
 KEM ciphertext in
 generalInfo of type
 KemCiphertextInfo,
 and with protection
 depending on available
 key material
 3 --> request -->
 4 perform KEM Decapsulate
 5 perform key derivation
 to get ssk
 6 format response with
 MAC-based protection
 7 <-- response <--
 8 perform key derivation
 to get ssk
 9 verify MAC-based
 protection

-------- PKI management entity authenticated by PKI entity --------

 10 Further messages of this PKI management operation
 can be exchanged with MAC-based protection by the
 PKI management entity using the established
 shared secret key (ssk)

 Note: describes the situation where KEM-based message protection may not require more than one message exchange. In this case, the transactionID MUST also be used by the PKI entity (Bob) to ensure domain separation between different PKI management operations.

 Message Flow When the PKI Entity Does Not Know That the PKI Management Entity Uses a KEM Key Pair

 Step#
 PKI
 entity
 PKI
 management
 entity
 (Bob)
 (Alice)
 1
 format
 request
 with
 protection
 depending
 on
 available
 key
 material
 2
 request
 3
 format
 unprotected
 error
 with
 status
 "rejection"
 and
 failInfo
 "wrongIntegrity"
 and
 KEM
 certificate
 in
 extraCerts
 4
 error
 5
 validate
 KEM
 certificate
 6
 proceed
 as
 shown
 in
 the
 figure
 before

Step# PKI entity PKI management entity
 (Bob) (Alice)

 1 format request with
 protection depending
 on available key
 material
 2 --> request -->
 3 format unprotected error
 with status "rejection"
 and failInfo
 "wrongIntegrity" and KEM
 certificate in
 extraCerts
 4 <-- error <--
 5 validate KEM certificate

 6 proceed as shown in the figure before

 Compilable ASN.1 Definitions
 This section contains the updated 2002 ASN.1 module from , which
was updated in .
This module replaces the module in .
The module contains those changes to the normative ASN.1 module from
 that were specified in ,
 as well as changes made in this document. This module makes reference to ASN.1 structures defined in ,
 as well as the UTF-8 encoding defined in .

PKIXCMP-2023
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-cmp2023-02(116) }
DEFINITIONS EXPLICIT TAGS ::=
BEGIN
IMPORTS

AttributeSet{}, SingleAttribute{}, Extensions{}, EXTENSION, ATTRIBUTE
FROM PKIX-CommonTypes-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkixCommon-02(57)}

AlgorithmIdentifier{}, SIGNATURE-ALGORITHM, ALGORITHM,
 DIGEST-ALGORITHM, MAC-ALGORITHM, KEY-DERIVATION
FROM AlgorithmInformation-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58)}

Certificate, CertificateList, Time, id-kp
FROM PKIX1Explicit-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-explicit-02(51)}

DistributionPointName, GeneralNames, GeneralName, KeyIdentifier
FROM PKIX1Implicit-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-implicit-02(59)}

CertTemplate, PKIPublicationInfo, EncryptedKey, CertId,
 CertReqMessages, Controls, RegControlSet, id-regCtrl
FROM PKIXCRMF-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-crmf2005-02(55) }
 -- The import of EncryptedKey is added due to the updates made
 -- in [RFC9480]. EncryptedValue does not need to be imported
 -- anymore and is therefore removed here.

CertificationRequest
FROM PKCS-10
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkcs10-2009(69)}
-- (specified in [RFC2986] with 1993 ASN.1 syntax and IMPLICIT
-- tags). Alternatively, implementers may directly include
-- the syntax of [RFC2986] in this module.

localKeyId
FROM PKCS-9
 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 modules(0) pkcs-9(1)}
 -- The import of localKeyId is added due to the updates made in
 -- [RFC9480]

EnvelopedData, SignedData
FROM CryptographicMessageSyntax-2010
 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-2009(58)}
 -- The import of EnvelopedData and SignedData from [RFC6268] is
 -- added due to the updates made in CMP Updates [RFC9480]

KEM-ALGORITHM
FROM KEMAlgorithmInformation-2023 -- [RFC9629]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-kemAlgorithmInformation-2023(109) }
 -- The import of KEM-ALGORITHM was added due to the updates made
 -- in [RFC9810]
;

-- History of the PKIXCMP ASN.1 modules
-- [RFC2510]
-- 1988 Syntax, PKIXCMP, 1.3.6.1.5.5.7.0.9 (id-mod-cmp)
-- Obsoleted by RFC 4210 PKIXCMP, 1.3.6.1.5.5.7.0.16
-- (id-mod-cmp2000)
-- [RFC4210]
-- 1988 Syntax, PKIXCMP, 1.3.6.1.5.5.7.0.16 (id-mod-cmp2000)
-- Replaced by RFC 9480 PKIXCMP, 1.3.6.1.5.5.7.0.99
-- (id-mod-cmp2021-88)
-- [RFC5912]
-- 2002 Syntax, PKIXCMP-2009, 1.3.6.1.5.5.7.0.50
-- (id-mod-cmp2000-02)
-- Replaced by RFC 9480 PKIXCMP-2021, 1.3.6.1.5.5.7.0.100
-- (id-mod-cmp2021-02)
-- [RFC9480]
-- 1988 Syntax, PKIXCMP, 1.3.6.1.5.5.7.0.99 (id-mod-cmp2021-88)
-- 2002 Syntax, PKIXCMP-2021, 1.3.6.1.5.5.7.0.100
-- (id-mod-cmp2021-02)
-- Obsoleted by [RFC9810] PKIXCMP-2023, 1.3.6.1.5.5.7.0.116
-- (id-mod-cmp2023-02)
-- [RFC9810]
-- 2002 Syntax, PKIXCMP-2023, 1.3.6.1.5.5.7.0.116
-- (id-mod-cmp2023-02)

-- The rest of the module contains locally defined OIDs and
-- constructs:

CMPCertificate ::= CHOICE { x509v3PKCert Certificate, ... }
-- This syntax, while bits-on-the-wire compatible with the
-- standard X.509 definition of "Certificate", allows the
-- possibility of future certificate types (such as X.509
-- attribute certificates, card-verifiable certificates, or other
-- kinds of certificates) within this Certificate Management
-- Protocol, should a need ever arise to support such generality.
-- Those implementations that do not foresee a need to ever support
-- other certificate types MAY, if they wish, comment out the
-- above structure and "uncomment" the following one prior to
-- compiling this ASN.1 module. (Note that interoperability
-- with implementations that don't do this will be unaffected by
-- this change.)

-- CMPCertificate ::= Certificate

PKIMessage ::= SEQUENCE {
 header PKIHeader,
 body PKIBody,
 protection [0] PKIProtection OPTIONAL,
 extraCerts [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
 OPTIONAL }

PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage

PKIHeader ::= SEQUENCE {
 pvno INTEGER { cmp1999(1), cmp2000(2),
 cmp2021(3) },
 sender GeneralName,
 -- identifies the sender
 recipient GeneralName,
 -- identifies the intended recipient
 messageTime [0] GeneralizedTime OPTIONAL,
 -- time of production of this message (used when sender
 -- believes that the transport will be "suitable", i.e.,
 -- that the time will still be meaningful upon receipt)
 protectionAlg [1] AlgorithmIdentifier{ALGORITHM, {...}}
 OPTIONAL,
 -- algorithm used for calculation of protection bits
 senderKID [2] KeyIdentifier OPTIONAL,
 recipKID [3] KeyIdentifier OPTIONAL,
 -- to identify specific keys used for protection
 transactionID [4] OCTET STRING OPTIONAL,
 -- identifies the transaction, i.e., this will be the same in
 -- corresponding request, response, certConf, and pkiconf
 -- messages
 senderNonce [5] OCTET STRING OPTIONAL,
 recipNonce [6] OCTET STRING OPTIONAL,
 -- nonces used to provide replay protection, senderNonce
 -- is inserted by the creator of this message; recipNonce
 -- is a nonce previously inserted in a related message by
 -- the intended recipient of this message.
 freeText [7] PKIFreeText OPTIONAL,
 -- this may be used to indicate context-specific instructions
 -- (this field is intended for human consumption)
 generalInfo [8] SEQUENCE SIZE (1..MAX) OF
 InfoTypeAndValue OPTIONAL
 -- this may be used to convey context-specific information
 -- (this field is not primarily intended for human consumption)
}

PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String
 -- text encoded as UTF-8 string [RFC3629]

PKIBody ::= CHOICE { -- message-specific body elements
 ir [0] CertReqMessages, --Initialization Request
 ip [1] CertRepMessage, --Initialization Response
 cr [2] CertReqMessages, --Certification Request
 cp [3] CertRepMessage, --Certification Response
 p10cr [4] CertificationRequest, --imported from [RFC2986]
 popdecc [5] POPODecKeyChallContent, --pop Challenge
 popdecr [6] POPODecKeyRespContent, --pop Response
 kur [7] CertReqMessages, --Key Update Request
 kup [8] CertRepMessage, --Key Update Response
 krr [9] CertReqMessages, --Key Recovery Request
 krp [10] KeyRecRepContent, --Key Recovery Response
 rr [11] RevReqContent, --Revocation Request
 rp [12] RevRepContent, --Revocation Response
 ccr [13] CertReqMessages, --Cross-Cert. Request
 ccp [14] CertRepMessage, --Cross-Cert. Response
 ckuann [15] CAKeyUpdContent, --CA Key Update Ann.
 cann [16] CertAnnContent, --Certificate Ann.
 rann [17] RevAnnContent, --Revocation Ann.
 crlann [18] CRLAnnContent, --CRL Announcement
 pkiconf [19] PKIConfirmContent, --Confirmation
 nested [20] NestedMessageContent, --Nested Message
 genm [21] GenMsgContent, --General Message
 genp [22] GenRepContent, --General Response
 error [23] ErrorMsgContent, --Error Message
 certConf [24] CertConfirmContent, --Certificate Confirm
 pollReq [25] PollReqContent, --Polling Request
 pollRep [26] PollRepContent --Polling Response
}

PKIProtection ::= BIT STRING

ProtectedPart ::= SEQUENCE {
 header PKIHeader,
 body PKIBody }

id-PasswordBasedMac OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 usa(840) nt(113533) nsn(7) algorithms(66) 13 }
PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 -- Note: Implementations MAY wish to limit acceptable sizes
 -- of this string to values appropriate for their environment
 -- in order to reduce the risk of denial-of-service attacks.
 owf AlgorithmIdentifier{DIGEST-ALGORITHM, {...}},
 -- AlgId for the OWF
 iterationCount INTEGER,
 -- number of times the OWF is applied
 -- Note: Implementations MAY wish to limit acceptable sizes
 -- of this integer to values appropriate for their environment
 -- in order to reduce the risk of denial-of-service attacks.
 mac AlgorithmIdentifier{MAC-ALGORITHM, {...}}
 -- AlgId of the MAC algorithm
}

id-DHBasedMac OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 usa(840) nt(113533) nsn(7) algorithms(66) 30 }
DHBMParameter ::= SEQUENCE {
 owf AlgorithmIdentifier{DIGEST-ALGORITHM, {...}},
 -- AlgId for an OWF
 mac AlgorithmIdentifier{MAC-ALGORITHM, {...}}
 -- AlgId of the MAC algorithm
}

-- id-KemBasedMac and KemBMParameter were added in [RFC9810]

id-KemBasedMac OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 usa(840) nt(113533) nsn(7) algorithms(66) 16 }
KemBMParameter ::= SEQUENCE {
 kdf AlgorithmIdentifier{KEY-DERIVATION, {...}},
 -- AlgId of the Key Derivation Function algorithm
 kemContext [0] OCTET STRING OPTIONAL,
 -- MAY contain additional algorithm-specific context information
 len INTEGER (1..MAX),
 -- Defines the length of the keying material output of the KDF
 -- SHOULD be the maximum key length of the MAC function
 mac AlgorithmIdentifier{MAC-ALGORITHM, {...}}
 -- AlgId of the MAC algorithm
}

PKIStatus ::= INTEGER {
 accepted (0),
 -- you got exactly what you asked for
 grantedWithMods (1),
 -- you got something like what you asked for; the
 -- requester is responsible for ascertaining the differences
 rejection (2),
 -- you don't get it, more information elsewhere in the message
 waiting (3),
 -- the request body part has not yet been processed; expect to
 -- hear more later (note: proper handling of this status
 -- response MAY use the polling req/rep PKIMessages specified
 -- in Section 5.3.22; alternatively, polling in the underlying
 -- transport layer MAY have some utility in this regard)
 revocationWarning (4),
 -- this message contains a warning that a revocation is
 -- imminent
 revocationNotification (5),
 -- notification that a revocation has occurred
 keyUpdateWarning (6)
 -- update already done for the oldCertId specified in
 -- CertReqMsg
}

PKIFailureInfo ::= BIT STRING {
-- since we can fail in more than one way!
-- More codes may be added in the future if/when required.
 badAlg (0),
 -- unrecognized or unsupported algorithm identifier
 badMessageCheck (1),
 -- integrity check failed (e.g., signature did not verify)
 badRequest (2),
 -- transaction not permitted or supported
 badTime (3),
 -- messageTime was not sufficiently close to the system time,
 -- as defined by local policy
 badCertId (4),
 -- no certificate could be found matching the provided criteria
 badDataFormat (5),
 -- the data submitted has the wrong format
 wrongAuthority (6),
 -- the authority indicated in the request is different from the
 -- one creating the response token
 incorrectData (7),
 -- the requester's data is incorrect (for notary services)
 missingTimeStamp (8),
 -- when the timestamp is missing but should be there
 -- (by policy)
 badPOP (9),
 -- the POP failed
 certRevoked (10),
 -- the certificate has already been revoked
 certConfirmed (11),
 -- the certificate has already been confirmed
 wrongIntegrity (12),
 -- KEM ciphertext missing for MAC-based protection of response,
 -- or not valid integrity of message received (password based
 -- instead of signature or vice versa)
 badRecipientNonce (13),
 -- not valid recipient nonce, either missing or wrong value
 timeNotAvailable (14),
 -- the TSA's time source is not available
 unacceptedPolicy (15),
 -- the requested TSA policy is not supported by the TSA
 unacceptedExtension (16),
 -- the requested extension is not supported by the TSA
 addInfoNotAvailable (17),
 -- the additional information requested could not be
 -- understood or is not available
 badSenderNonce (18),
 -- not valid sender nonce, either missing or wrong size
 badCertTemplate (19),
 -- not valid cert. template or missing mandatory information
 signerNotTrusted (20),
 -- signer of the message unknown or not trusted
 transactionIdInUse (21),
 -- the transaction identifier is already in use
 unsupportedVersion (22),
 -- the version of the message is not supported
 notAuthorized (23),
 -- the sender was not authorized to make the preceding
 -- request or perform the preceding action
 systemUnavail (24),
 -- the request cannot be handled due to system unavailability
 systemFailure (25),
 -- the request cannot be handled due to system failure
 duplicateCertReq (26)
 -- certificate cannot be issued because a duplicate
 -- certificate already exists
}

PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL }

OOBCert ::= CMPCertificate

OOBCertHash ::= SEQUENCE {
 hashAlg [0] AlgorithmIdentifier{DIGEST-ALGORITHM, {...}}
 OPTIONAL,
 certId [1] CertId OPTIONAL,
 hashVal BIT STRING
 -- hashVal is calculated over the DER encoding of the
 -- self-signed certificate with the identifier certID.
}

POPODecKeyChallContent ::= SEQUENCE OF Challenge
-- One Challenge per encryption or key agreement key certification
-- request (in the same order as these requests appear in
-- CertReqMessages).

-- encryptedRand was added in [RFC9810]

Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier{DIGEST-ALGORITHM, {...}}
 OPTIONAL,
 -- MUST be present in the first Challenge; MAY be omitted in
 -- any subsequent Challenge in POPODecKeyChallContent (if
 -- omitted, then the owf used in the immediately preceding
 -- Challenge is to be used).
 witness OCTET STRING,
 -- the result of applying the OWF to a
 -- randomly generated INTEGER, A. (Note that a different
 -- INTEGER MUST be used for each Challenge.)
 challenge OCTET STRING,
 -- MUST be used for cmp2000(2) popdecc messages and MUST be
 -- the encryption of Rand (using a mechanism depending on the
 -- private key type).
 -- MUST be an empty OCTET STRING for cmp2021(3) popdecc messages.
 -- Note: Using challenge omitting the optional encryptedRand is
 -- bit-compatible to the syntax without adding this optional
 -- field.
 encryptedRand [0] EnvelopedData OPTIONAL
 -- MUST be omitted for cmp2000(2) popdecc messages.
 -- MUST be used for cmp2021(3) popdecc messages and MUST contain
 -- the encrypted value of Rand using CMS EnvelopedData using the
 -- key management technique depending on the private key type as
 -- defined in Section 5.2.2.
}

-- Rand was added in [RFC9480]

Rand ::= SEQUENCE {
-- Rand is encrypted involving the public key to form the content of
-- challenge or encryptedRand in POPODecKeyChallContent
 int INTEGER,
 -- the randomly generated INTEGER A (above)
 sender GeneralName
 -- the sender's name (as included in PKIHeader)
}

POPODecKeyRespContent ::= SEQUENCE OF INTEGER
-- One INTEGER per encryption or key agreement key certification
-- request (in the same order as these requests appear in
-- CertReqMessages). The retrieved INTEGER A (above) is returned to
-- the sender of the corresponding Challenge.

CertRepMessage ::= SEQUENCE {
 caPubs [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
 OPTIONAL,
 response SEQUENCE OF CertResponse }

CertResponse ::= SEQUENCE {
 certReqId INTEGER,
 -- to match this response with the corresponding request (a value
 -- of -1 is to be used if certReqId is not specified in the
 -- corresponding request, which can only be a p10cr)
 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair OPTIONAL,
 rspInfo OCTET STRING OPTIONAL
 -- analogous to the id-regInfo-utf8Pairs string defined
 -- for regInfo in CertReqMsg [RFC4211]
}

CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedKey OPTIONAL,
 -- See [RFC4211] for comments on encoding.
 -- Changed from EncryptedValue to EncryptedKey as a CHOICE of
 -- EncryptedValue and EnvelopedData due to the changes made in
 -- [RFC9480].
 -- Using the choice EncryptedValue is bit-compatible to the
 -- syntax without this change.
 publicationInfo [1] PKIPublicationInfo OPTIONAL }

CertOrEncCert ::= CHOICE {
 certificate [0] CMPCertificate,
 encryptedCert [1] EncryptedKey
 -- Changed from Encrypted Value to EncryptedKey as a CHOICE of
 -- EncryptedValue and EnvelopedData due to the changes made in
 -- [RFC9480].
 -- Using the choice EncryptedValue is bit-compatible to the
 -- syntax without this change.
}

KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] CMPCertificate OPTIONAL,
 caCerts [1] SEQUENCE SIZE (1..MAX) OF
 CMPCertificate OPTIONAL,
 keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
 CertifiedKeyPair OPTIONAL }

RevReqContent ::= SEQUENCE OF RevDetails

RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g., for cases in which serialNumber is not available)
 crlEntryDetails Extensions{{...}} OPTIONAL
 -- requested crlEntryExtensions
}

RevRepContent ::= SEQUENCE {
 status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
 -- in same order as was sent in RevReqContent
 revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL,
 -- IDs for which revocation was requested
 -- (same order as status)
 crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList OPTIONAL
 -- the resulting CRLs (there may be more than one)
}

CAKeyUpdAnnContent ::= SEQUENCE {
 oldWithNew CMPCertificate, -- old pub signed with new priv
 newWithOld CMPCertificate, -- new pub signed with old priv
 newWithNew CMPCertificate -- new pub signed with new priv
}

-- CAKeyUpdContent was added in [RFC9810]
CAKeyUpdContent ::= CHOICE {
 cAKeyUpdAnnV2 CAKeyUpdAnnContent, -- deprecated
 cAKeyUpdAnnV3 [0] RootCaKeyUpdateContent
}
-- With cmp2021, the use of CAKeyUpdAnnContent is deprecated, use
-- RootCaKeyUpdateContent instead.

CertAnnContent ::= CMPCertificate

RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions{{...}} OPTIONAL
 -- extra CRL details (e.g., crl number, reason, location, etc.)
}

CRLAnnContent ::= SEQUENCE OF CertificateList

PKIConfirmContent ::= NULL

NestedMessageContent ::= PKIMessages

-- CertReqTemplateContent, AttributeTypeAndValue,
-- ExpandedRegControlSet, id-regCtrl-altCertTemplate,
-- AltCertTemplate, regCtrl-algId, id-regCtrl-algId, AlgIdCtrl,
-- regCtrl-rsaKeyLen, id-regCtrl-rsaKeyLen, and RsaKeyLenCtrl
-- were added in [RFC9480]

CertReqTemplateContent ::= SEQUENCE {
 certTemplate CertTemplate,
 -- prefilled certTemplate structure elements
 -- The SubjectPublicKeyInfo field in the certTemplate MUST NOT
 -- be used.
 keySpec Controls OPTIONAL
 -- MAY be used to specify supported algorithms
 -- Controls ::= SEQUENCE SIZE (1..MAX) OF AttributeTypeAndValue
 -- as specified in CRMF [RFC4211]
 }

AttributeTypeAndValue ::= SingleAttribute{{ ... }}

ExpandedRegControlSet ATTRIBUTE ::= { RegControlSet |
 regCtrl-altCertTemplate | regCtrl-algId | regCtrl-rsaKeyLen, ... }

regCtrl-altCertTemplate ATTRIBUTE ::=
 { TYPE AltCertTemplate IDENTIFIED BY id-regCtrl-altCertTemplate }

id-regCtrl-altCertTemplate OBJECT IDENTIFIER ::= { id-regCtrl 7 }

AltCertTemplate ::= AttributeTypeAndValue
 -- specifies a template for a certificate other than an X.509v3
 -- public key certificate

regCtrl-algId ATTRIBUTE ::=
 { TYPE AlgIdCtrl IDENTIFIED BY id-regCtrl-algId }

id-regCtrl-algId OBJECT IDENTIFIER ::= { id-regCtrl 11 }

AlgIdCtrl ::= AlgorithmIdentifier{ALGORITHM, {...}}
 -- SHALL be used to specify supported algorithms other than RSA

regCtrl-rsaKeyLen ATTRIBUTE ::=
 { TYPE RsaKeyLenCtrl IDENTIFIED BY id-regCtrl-rsaKeyLen }

id-regCtrl-rsaKeyLen OBJECT IDENTIFIER ::= { id-regCtrl 12 }

RsaKeyLenCtrl ::= INTEGER (1..MAX)
 -- SHALL be used to specify supported RSA key lengths

-- RootCaKeyUpdateContent, CRLSource, and CRLStatus were added in
-- [RFC9480]

RootCaKeyUpdateContent ::= SEQUENCE {
 newWithNew CMPCertificate,
 -- new root CA certificate
 newWithOld [0] CMPCertificate OPTIONAL,
 -- X.509 certificate containing the new public root CA key
 -- signed with the old private root CA key
 oldWithNew [1] CMPCertificate OPTIONAL
 -- X.509 certificate containing the old public root CA key
 -- signed with the new private root CA key
 }

CRLSource ::= CHOICE {
 dpn [0] DistributionPointName,
 issuer [1] GeneralNames }

CRLStatus ::= SEQUENCE {
 source CRLSource,
 thisUpdate Time OPTIONAL }

-- KemCiphertextInfo and KemOtherInfo were added in [RFC9810]

KemCiphertextInfo ::= SEQUENCE {
 kem AlgorithmIdentifier{KEM-ALGORITHM, {...}},
 -- AlgId of the KEM algorithm
 ct OCTET STRING
 -- Ciphertext output from the Encapsulate function
 }

KemOtherInfo ::= SEQUENCE {
 staticString PKIFreeText,
 -- MUST be "CMP-KEM"
 transactionID OCTET STRING,
 -- MUST contain the values from the message previously received
 -- containing the ciphertext (ct) in KemCiphertextInfo
 kemContext [0] OCTET STRING OPTIONAL
 -- MAY contain additional algorithm-specific context information
 }

INFO-TYPE-AND-VALUE ::= TYPE-IDENTIFIER

InfoTypeAndValue ::= SEQUENCE {
 infoType INFO-TYPE-AND-VALUE.
 &id({SupportedInfoSet}),
 infoValue INFO-TYPE-AND-VALUE.
 &Type({SupportedInfoSet}{@infoType}) }

SupportedInfoSet INFO-TYPE-AND-VALUE ::= { ... }

-- Example InfoTypeAndValue contents include, but are not limited
-- to, the following (uncomment in this ASN.1 module and use as
-- appropriate for a given environment):
--
-- id-it-caProtEncCert OBJECT IDENTIFIER ::= {id-it 1}
-- CAProtEncCertValue ::= CMPCertificate
-- id-it-signKeyPairTypes OBJECT IDENTIFIER ::= {id-it 2}
-- SignKeyPairTypesValue ::= SEQUENCE SIZE (1..MAX) OF
-- AlgorithmIdentifier{{...}}
-- id-it-encKeyPairTypes OBJECT IDENTIFIER ::= {id-it 3}
-- EncKeyPairTypesValue ::= SEQUENCE SIZE (1..MAX) OF
-- AlgorithmIdentifier{{...}}
-- id-it-preferredSymmAlg OBJECT IDENTIFIER ::= {id-it 4}
-- PreferredSymmAlgValue ::= AlgorithmIdentifier{{...}}
-- id-it-caKeyUpdateInfo OBJECT IDENTIFIER ::= {id-it 5}
-- CAKeyUpdateInfoValue ::= CAKeyUpdAnnContent
-- - id-it-caKeyUpdateInfo was deprecated with cmp2021
-- id-it-currentCRL OBJECT IDENTIFIER ::= {id-it 6}
-- CurrentCRLValue ::= CertificateList
-- id-it-unsupportedOIDs OBJECT IDENTIFIER ::= {id-it 7}
-- UnsupportedOIDsValue ::= SEQUENCE SIZE (1..MAX) OF
-- OBJECT IDENTIFIER
-- id-it-keyPairParamReq OBJECT IDENTIFIER ::= {id-it 10}
-- KeyPairParamReqValue ::= OBJECT IDENTIFIER
-- id-it-keyPairParamRep OBJECT IDENTIFIER ::= {id-it 11}
-- KeyPairParamRepValue ::= AlgorithmIdentifier{{...}}
-- id-it-revPassphrase OBJECT IDENTIFIER ::= {id-it 12}
-- RevPassphraseValue ::= EncryptedKey
-- - Changed from Encrypted Value to EncryptedKey as a CHOICE
-- - of EncryptedValue and EnvelopedData due to the changes
-- - made in [RFC9480]
-- - Using the choice EncryptedValue is bit-compatible to
-- - the syntax without this change
-- id-it-implicitConfirm OBJECT IDENTIFIER ::= {id-it 13}
-- ImplicitConfirmValue ::= NULL
-- id-it-confirmWaitTime OBJECT IDENTIFIER ::= {id-it 14}
-- ConfirmWaitTimeValue ::= GeneralizedTime
-- id-it-origPKIMessage OBJECT IDENTIFIER ::= {id-it 15}
-- OrigPKIMessageValue ::= PKIMessages
-- id-it-suppLangTags OBJECT IDENTIFIER ::= {id-it 16}
-- SuppLangTagsValue ::= SEQUENCE OF UTF8String
-- id-it-caCerts OBJECT IDENTIFIER ::= {id-it 17}
-- CaCertsValue ::= SEQUENCE SIZE (1..MAX) OF
-- CMPCertificate
-- - id-it-caCerts added in [RFC9480]
-- id-it-rootCaKeyUpdate OBJECT IDENTIFIER ::= {id-it 18}
-- RootCaKeyUpdateValue ::= RootCaKeyUpdateContent
-- - id-it-rootCaKeyUpdate added in [RFC9480]
-- id-it-certReqTemplate OBJECT IDENTIFIER ::= {id-it 19}
-- CertReqTemplateValue ::= CertReqTemplateContent
-- - id-it-certReqTemplate added in [RFC9480]
-- id-it-rootCaCert OBJECT IDENTIFIER ::= {id-it 20}
-- RootCaCertValue ::= CMPCertificate
-- - id-it-rootCaCert added in [RFC9480]
-- id-it-certProfile OBJECT IDENTIFIER ::= {id-it 21}
-- CertProfileValue ::= SEQUENCE SIZE (1..MAX) OF
-- UTF8String
-- - id-it-certProfile added in [RFC9480]
-- id-it-crlStatusList OBJECT IDENTIFIER ::= {id-it 22}
-- CRLStatusListValue ::= SEQUENCE SIZE (1..MAX) OF
-- CRLStatus
-- - id-it-crlStatusList added in [RFC9480]
-- id-it-crls OBJECT IDENTIFIER ::= {id-it 23}
-- CRLsValue ::= SEQUENCE SIZE (1..MAX) OF
-- CertificateList
-- - id-it-crls added in [RFC9480]
-- id-it-KemCiphertextInfo OBJECT IDENTIFIER ::= {id-it 24}
-- KemCiphertextInfoValue ::= KemCiphertextInfo
-- - id-it-KemCiphertextInfo was added in [RFC9810]
--
-- where
--
-- id-pkix OBJECT IDENTIFIER ::= {
-- iso(1) identified-organization(3)
-- dod(6) internet(1) security(5) mechanisms(5) pkix(7)}
-- and
-- id-it OBJECT IDENTIFIER ::= {id-pkix 4}
--
--
-- This construct MAY also be used to define new PKIX Certificate
-- Management Protocol request and response messages or
-- general-purpose (e.g., announcement) messages for future needs
-- or for specific environments.

GenMsgContent ::= SEQUENCE OF InfoTypeAndValue

-- May be sent by end entity, RA, or CA (depending on message
-- content). The OPTIONAL infoValue parameter of InfoTypeAndValue
-- will typically be omitted for some of the examples given above.
-- The receiver is free to ignore any contained OIDs that it
-- does not recognize. If sent from end entity to CA, the empty set
-- indicates that the CA may send
-- any/all information that it wishes.

GenRepContent ::= SEQUENCE OF InfoTypeAndValue
-- The receiver MAY ignore any contained OIDs that it does not
-- recognize.

ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 -- implementation-specific error codes
 errorDetails PKIFreeText OPTIONAL
 -- implementation-specific error details
}

CertConfirmContent ::= SEQUENCE OF CertStatus

CertStatus ::= SEQUENCE {
 certHash OCTET STRING,
 -- the hash of the certificate, using the same hash algorithm
 -- as is used to create and verify the certificate signature
 certReqId INTEGER,
 -- to match this confirmation with the corresponding req/rep
 statusInfo PKIStatusInfo OPTIONAL,
 hashAlg [0] AlgorithmIdentifier{DIGEST-ALGORITHM, {...}} OPTIONAL
 -- the hash algorithm to use for calculating certHash
 -- SHOULD NOT be used in all cases where the AlgorithmIdentifier
 -- of the certificate signature specifies a hash algorithm
 }

PollReqContent ::= SEQUENCE OF SEQUENCE {
 certReqId INTEGER }

PollRepContent ::= SEQUENCE OF SEQUENCE {
 certReqId INTEGER,
 checkAfter INTEGER, -- time in seconds
 reason PKIFreeText OPTIONAL }

--
-- EKU extension for PKI entities used in CMP
-- operations, added due to the changes made in [RFC9480]
-- The EKUs for the CA and RA are reused from CMC, as defined in
-- [RFC6402]
--

-- id-kp-cmcCA OBJECT IDENTIFIER ::= { id-kp 27 }
-- id-kp-cmcRA OBJECT IDENTIFIER ::= { id-kp 28 }
id-kp-cmKGA OBJECT IDENTIFIER ::= { id-kp 32 }

END

 Acknowledgements
 The authors of this document wish to thank , ,
 , and , the original authors of , for their
 work.
 We also thank all reviewers of this document for their valuable
 feedback.
 Adding KEM support to this document was partly funded by the German
 Federal Ministry of Education and Research in the project Quoryptan
 through grant number 16KIS2033.

 Authors' Addresses

 Siemens

 Werner-von-Siemens-Strasse 1
 Munich
 80333
 Germany

 hendrik.brockhaus@siemens.com
 https://www.siemens.com

 Siemens

 Werner-von-Siemens-Strasse 1
 Munich
 80333
 Germany

 david.von.oheimb@siemens.com
 https://www.siemens.com

 Entrust

 1187 Park Place
 Minneapolis
 MN
 55379
 United States of America

 mike.ounsworth@entrust.com
 https://www.entrust.com

 Entrust

 1187 Park Place
 Minneapolis
 MN
 55379
 United States of America

 john.gray@entrust.com
 https://www.entrust.com

