BiocNeighbors 1.18.0
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 9662 3037 299 4397 726 5922 1325 7163 672 1337
## [2,] 1488 9290 7952 3676 4691 9474 3924 7058 4831 3837
## [3,] 844 4022 3508 6331 1039 7570 9114 7037 4939 3209
## [4,] 4885 5480 2471 3059 4728 9445 7564 9800 1160 4288
## [5,] 2498 123 7127 3073 4679 2648 1293 8873 4212 6237
## [6,] 4128 3969 1070 9264 5318 7792 2124 465 9227 262
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 1.0018635 1.0734630 1.1102037 1.1157204 1.1295308 1.1385425 1.1708193
## [2,] 0.8835352 0.9777583 1.0060213 1.0081369 1.0122799 1.0259368 1.0492104
## [3,] 0.8123723 0.8647476 0.9139982 0.9534140 0.9876873 0.9924435 0.9940631
## [4,] 0.9842315 0.9888017 1.0033739 1.0249933 1.0479329 1.0561618 1.0610654
## [5,] 0.8673671 0.9623174 0.9827742 0.9977949 1.0064403 1.0284088 1.0384618
## [6,] 0.7851849 0.8384334 0.9159828 0.9715101 0.9834490 1.0078323 1.0196633
## [,8] [,9] [,10]
## [1,] 1.1721100 1.1844047 1.185606
## [2,] 1.0585682 1.0604984 1.065688
## [3,] 0.9975992 0.9996915 1.002198
## [4,] 1.0628065 1.0649843 1.067426
## [5,] 1.0565158 1.0652058 1.067776
## [6,] 1.0235919 1.0277270 1.033206
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 3650 8442 28 3378 3349
## [2,] 328 7740 6927 2418 3180
## [3,] 4141 5745 2902 1041 5609
## [4,] 139 427 2301 422 4046
## [5,] 1557 7397 6540 5908 3096
## [6,] 8041 6676 871 7056 2647
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9686017 1.2081473 1.2145671 1.2264786 1.2347609
## [2,] 0.9217723 0.9357488 0.9521836 0.9589323 0.9655992
## [3,] 0.9635603 0.9915902 1.0060973 1.0188990 1.0341231
## [4,] 0.7947047 0.8804924 0.9119638 0.9358485 0.9468299
## [5,] 0.9376368 0.9625379 0.9931554 1.0463696 1.0515987
## [6,] 0.9765031 1.0734611 1.0976894 1.0983497 1.1001519
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "/tmp/RtmpvaDkk3/file30a4cf51edb153.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.3.0 RC (2023-04-13 r84269)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.18.0 knitr_1.42 BiocStyle_2.28.0
##
## loaded via a namespace (and not attached):
## [1] cli_3.6.1 rlang_1.1.0 xfun_0.39
## [4] jsonlite_1.8.4 S4Vectors_0.38.0 htmltools_0.5.5
## [7] stats4_4.3.0 sass_0.4.5 rmarkdown_2.21
## [10] grid_4.3.0 evaluate_0.20 jquerylib_0.1.4
## [13] fastmap_1.1.1 yaml_2.3.7 bookdown_0.33
## [16] BiocManager_1.30.20 compiler_4.3.0 codetools_0.2-19
## [19] Rcpp_1.0.10 BiocParallel_1.34.0 lattice_0.21-8
## [22] digest_0.6.31 R6_2.5.1 parallel_4.3.0
## [25] bslib_0.4.2 Matrix_1.5-4 tools_4.3.0
## [28] BiocGenerics_0.46.0 cachem_1.0.7