4tH, the friendly Forth compiler

J.L. Bezemer

July 22,2021

Contents

1 What’s new

I Getting Started

2 Overview

2.1
2.2
2.3
24

Introduction
History e e
Applications
Architecture L e
24.1 Thed4tHlanguage
242 H-code
243 H-codecompiler
244 Errorhandling o
24.5 InterfacingwithC

3 Installation Guide

3.1

32
33
34
3.5

Aboutthispackage
3.1.1 Examplecode
3.1.2 Mainprogram
3.1.3 Unixpackage
3.1.4 Linuxpackage
3.1.5 Androidpackage
3.1.6 MS-DOSpackage,
3.1.7 MS-Windows package
Setting up your working directory
Now what?
Pedigree

Contributors e e

19

24

25
25
25
26
26
28
28
29
30
30

CONTENTS

3.6

QueStions L e e
36.1 4tHwebsite
3662 4tHGooglegroup
363 Newsgroup o vt

4 A guided tour

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10

4tHInteractive e e e e
Startingup 4tH L
Running aprogram
Starting an editing session
Writing your first 4tH program o Lo
A more complex program L.
Advanced features L
Suspending a programo e e
Calculatormode

Epilogue e

5 Frequently asked questions

II Primer

6 Introduction

7 4tH fundamentals

7.1
7.2
7.3
7.4
7.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

Making calculations without parentheses
Manipulating the stack oo
Deep stack manipulators oL
Passing arguments to functions oL
Making yourown words
Addingcomment e
Text-formatof 4tHsource
Displaying string literals
Creating variables L
Using variables

Built-in variables

What is a literal expression? Lo

Declaring arrays of numbers L.

44
44
45
45

46
46
46
47
47
48
52
56
63
65
65

66

69

70

CONTENTS 3

7.15 Using arraysof numbers 78
7.16 Copying arrays of numbers 78
7.17 Declaring and using constants 78
7.18 Built-inconstants L. L oL 79
7.19 Usingbooleans 80
7.20 IF-ELSE constructst 80
7.21 FOR-NEXT constructs vt .. 80
7.22 WHILE-DO constructs 81
7.23 REPEAT-UNTIL constructs 82
7.24 Infinite loopso 82
7.25 Including source files L 82
7.26 Getting a number from the keyboard 0oL 83
8 4tH arrays 84
8.1 Aligningnumbers 84
8.2 Creating arraysofconstants 84
8.3 Usingarraysofconstants 84
84 Usingvalues. e 85
8.5 Creating string variables oL oL, 86
8.6 Whatisanaddress? 86
8.7 Stringliterals 87
8.8 Stringconstants 87
8.9 [Initializing string variables o oL 88
8.10 Initializing a NULL string variable 88
8.11 Getting the length of a string variable 88
8.12 Printing astring variable 89
8.13 Copyingastring variable L. 89
8.14 The string terminatoro e 89
8.15 Slicing strings 90
8.16 Appending Strings 91
8.17 Comparing Strings 91
8.18 Finding asubstring 92
8.19 Replacing substrings 93
8.20 Deleting substrings 93
8.21 Removing trailing spaces L. 94
8.22 Removing leading spaces o 94
8.23 Upperandlowercase v v v it it 95

CONTENTS 4

8.24 String literals and string variables, 95
8.25 Printing individual characters 0oL, 96
8.26 Distinguishing characters 96
8.27 Getting ASCIIvalues 97
8.28 Printing spaces e e e e 97
8.29 Fetching individual characters 98
8.30 Storing individual characters 98
8.31 Getting a string from the keyboard 100
9 Character Segment 101
9.1 The Character Segment 101
9.2 Whatisthe TIB? 101
9.3 Whatisthe PAD? 102
94 Howdoluse TIBandPAD? 102
9.5 Simpleparsing 102
9.6 Convertingastringtoanumber. 104
9.7 Controlling theradix 104
9.8 Pictured numericoutput. Lo 107
9.9 printf () likeformatting L. 110
9.10 Convertinganumbertoastring. 111
9.11 Aborting a programo 112
9.12 Openingafile 113
9.13 Reading and writing from/toafile 114
9.14 Closingafile e 115
9.15 Writing text-files 115
9.16 Readingtext-files 116
9.17 Readinglonglines 116
9.18 Readingbinary files 117
9.19 Writingbinary files Lo 117
9.20 Reading and writing block files 118
9.21 Parsingtextfiles 119
9.22 Parsingbinary files oL 120
9.23 Parsing comma-delimited files 121
9.24 Parsing fixed-width textfiles, 122
9.25 Advancedparsing 124
9.26 Appendingtoexistingfiles 124
9.27 USINEPIPES « « v v v v v e e e e e e e 125

CONTENTS

9.28 Opening a file in read/writemode
9.29 Usingrandomaccessfiles.
9.30 The layoutofthe /O system
9.31 Usingaprintero v v i it
9.32 The layout of the Character Segment

10 Integer Segment and Code Segment
10.1 The Code Segment vt
10.2 The address of a colon-definition
10.3 Vectored executiono
10.4 Executiontokenso
10.5 The Integer Segment
10.6 A portable way to access application variables
10.7 Returning a result to the host program
10.8 Using commandline arguments
10.9 The layout of the Variable Area
10.10The stacks L
10.11Saving temporary values
10.12The Return Stack and the DO.LOOP
10.130ther Return Stack manipulations
10.14 Altering the flow with the Return Stack
10.15Leaving a colon-definition
10.16The layout of the Stack Area
10.17Booleans and numberso
10.18Using > with othernames
10.19Deleting files
10.20Querying environment variables
10.21What is not implemented oL

10.22Known bugs and limitations oo L.

11 Advanced programming
11.1 Compiletime calculations
11.2 Conditional compilation
11.3 Checking the environment at compiletime
11.4 Checking a definition at compiletime
115 EXCeptions o v v i i e e e e

11.6 Enumerations o e e e e

126
126
128
129
129

131
131
131
132
133
133
134
134
135
135
136
137
138
139
139
141
141
142
143
144
144
145
145

CONTENTS 6

11.7 Forward declarations 154
11.8 Recursion L 155
11.9 Private declarations 156
IT.10ALases o oo e 157
11.11Changing behaviorof data 158
11.12Multidimensional arrays 159
11.13Binary string constants 160
11.14Binary string variables L. 162
I1.15Records and structures 162
11.16Unions o o e 164
11.17Complex control structures Lo 165
11.18 Alternative branch- and loop constructs 166
I1.19CASE-OF constructs 168
11.200ptimization oL 169
11.21Static variable pointers 173
TT.22AsSertions o o oo e e e e 174
11.23Breakpoints o ot e e e 175
11.24Debugging 176
11.25Running 4tH programs from the Unix shell 178
11.26Embedding 4tH programs in abatchfile 178
12 Standard libraries 180
12.1 Adding yourownlibrary L. 180
12.2 Addingtemplates 182
12.3 Parsingthecommandline 184
12.4 Mixing character and numberdata 185
12.5 Dynamic memory allocation 186
12.6 Usingtwoheaps e 188
12.7 Tweaking dynamic memoryo 188
12.8 Garbagecollection 190
12.9 Dynamic Strings e 191
12.10Dynamic arrays ou e e e e e e e e e e e e e 192
12.11Application stacks 193
12.12Local variables 194
12.13Random numbers 197
12.14S80rting e e e 199

12.15Bitfieldso 201

CONTENTS 7

12.16Bitarrays o . e e e e e 202
12.17 Associative arrays (using hashtables) 203
12.18 Associative arrays (using binary trees) 206
12.19Lookup tables with integer keys 206
12.20Lookup tables with stringkeys 209
12.21Lookup tables with multiple keys 210
12.22Lookup tables with duplicate keys 211
12.23Binary searchtables 212
12.24Dynamic binary searchtables 214
12.25Fixed point calculation 215
12251 Fractions 216
12.26Double numbers 217
12.27Floating point numbers (unified stack) 218
12.28Floating point numbers (separate stack) 220
12.29Floating point functions oo 223
12.30Floating point configurations 224
12.31Forth Scientific Library 225
12.328tatistical functions L. L 225
12.33Numerical integration L 226
13 Special libraries 233
13.1 Infix formula translation' 233
13.2 Evaluating infix formulas at runtime® 235
13.3 Converting infix formulas® 236
13.4 Interpreters o v v i e e e e e e e e e 236
135 Menuso 238
13.6 Finite state machines* 240
13.7 Virtual memory 242
13.8 Triplenumbers e 244
139 Timers o o e e e e 245
13.10Time & date 245
13.11Tokenizing stringso 247
13.12Regular eXpressions®o i e 248

! Article written and contributed by David Johnson.

2 Article written and contributed by David Johnson.

3 Article written and contributed by David Johnson.

4Part of this section is based on an article in Forthwrite UK by Jenny Brien.

SPart of this text is derived from http://http://misc.yarinareth.net/regex.html by Dorothea Salo under the "Cre-
ative Commons Attribution 3.0 United States License”.

CONTENTS 8

13.13String pattern matching 250
13.14Wildcard pattern matching 0oL 254
13.15Escape characters 254
13.16Internationalizationo oL 255
13.17Chinese characters 258
13.18Sequences 258
13.19Managing INIfileso 260
13.20Extract, transformandload 262
13.21 Writing spreadsheetfiles 264
13.22Writing other tabular formats 265
13.23Writing ISIEX files o o oL o 266
13.24Writing RTF files 269
13.25Writing HTML files 270
13.26Converting to XML and HTML 272
13.27Databases 273
13.28Indexing adatabase 275
13.29Binding theindexes o o 277
13.30Speech synthesis 279
13.31GUI applications v i vttt 279
1332Card games 281
14 Graphics libraries 282
14.1 Portable bitmap graphics L. 282
142 Morelines o 285
14.3 Circles, ellipsesand arcs o v i vt 286
144 Fillingshapes e 288
14.5 Turtle graphics 289
14.6 Annotating portable bitmap images L. L 290
147 Colorpalettes e e 291
14.8 Viewing and modifying bitmapimages 292
14.9 3Dplotting 293

14.103D turtle graphics L. 296

CONTENTS

15 Preprocessor libraries
15.1 Introduction
15.2 Stackinstructions
153 Coroutines
15.4 Interpretation L. e e
155 Closures o o i e
15.6 Objectorientationo
15.6.1 Encapsulation
15.6.2 Subtype polymorphism
15.6.3 Inheritance
15.6.4 Usingcurlybraces
15.6.5 Lazy initialization
15.6.6 Forward declarationof classes
15.6.7 Determining the type and size of anobject.
15.6.8 Namespace pollution
157 Thisistheend

III Reference guide
16 Glossary

17 Editor manual
17.1 Introduction
17.2 Selecting a screen and inputof text
173 Lineediting
17.4 Line editing commands Lo
17.5 Screen editingcommandso
17.6 Cursor control and string editing
17.7 Commands to position the cursor
17.8 String editing commands oL
17.9 Savingandexiting
17.10Calculatormode

18 Shell manual
18.1 Introduction
18.2 Loadingandsaving
18.3 Taskmanagement
18.4 Scripting e e
18.5 Stack, I/O and arithmetic

299
299
300
301
302
303
304
304
306
308
311
312
313
313
314
315

316

317

422
422
422
422
423
423
423
424
424
424
424

CONTENTS

19

20

21

Preprocessor manual
19.1 Introduction oL e e
19.2 Macros o o e e e
19.2.1 Backquotedstrings
19.2.2 RegiSters v v v v i e e e e
19.23 Parsingstrings
19.24 Thestringstack L
19.2.5 Phony variables
19.2.6 Branchingandlooping
19.2.7 Functions
19.3 Invocation (SCript) o ot
19.3.1 Options v v v it e e
19.4 Invocation (executable),
1941 Options oottt
19.5 Preprocessorcommands e
19.6 Error messages o it it e e e e e e e e e
19.7 Known bugs and limitations

19.8 Preprocessor libraries oo

uBasic manual

20.1 Introductiono
20.2 Statements e e e e
203 Functions e e e
20.4 Error messages v v e e et e e e e e e e e e e e e

20.4.1 System mesSages e e e e e e e e e e e

TopITSM manual

21.1 Introduction
2111 Classes v i e

21.2 Requirements

21.3 Installing TopITSM

21.4 Using TopITSM e e e e e e
2141 Help.
21.42 Calculator
21.4.3 TopITSMdocuments oo v v v v v i vt
2144 TopITSM VIEWS v o i v it e e e e e e e e

21.4.5 Generating documents

10

429
429
430
430
430
431
431
432
432
433
434
434
434
435
435
436
437
438

439
439
439
443
445
447

CONTENTS

21.4.6

21.5 Backup and restore

21.5.1
21.5.2
21.5.3

Error handling

Backup
Restore

Changing node properties

22 ANS Forth statement

22.1 ANS-Forth Label
22.2 Unsupported CORE words
22.3 Supported ANS Forth word sets

22.3.1
2232
2233
2234
2235
22.3.6
22.3.7
22.3.8
22.39

22.3.10 Programming-Tools word set

Core Extensions wordset.
Block Extensions word set
Double number word set
Double number Extensions word set . . .
Facility Extensions word set
File-Accesswordset
File-Access Extensions word set
Floating-Point wordset

Floating-Point Extensions word set . . .

22.3.11 Programming-Tools Extensions word set

22.3.12 String word set
22.3.13 XCHAR word set
22.3.14 XCHAR Extensions word set

23 Porting guide

23.1 Introduction
23.2 General guidelines
23.3 Differences between 4tH and ANS-Forth

23.3.1
23.3.2
23.33
2334
23.3.5
23.3.6
23.3.7
23.3.8

Strings
Double numbers

Booleans

Interpretation and compilation mode . . .

BEGIN.WHILE..REPEAT

CONTENTS

24

25

26

23.3.9 DO.LOOP
2331010 . o o
234 Easy4tH e
23.4.1 Enabling the String Space
23.4.2 Thestructureof Easy4tH
23.5 The preprocessor v v v v v i e e e e e e e e
23.6 Converting ANS-Forth programsto4tH

Errors guide

24.1 Howtousethismanual
24.2 Interpreter (exec_4th)
24.3 Compiler (comp_4th)
244 Loader (load_4th)
24.5 Saver (save_4th) Lo

4tH library

25.1 4tHlibrary files e
252 FOOS classes v v i i it s e
25.3 Library dependencies

Change log

26.1 What’'snewinversion3.62.5
26.2 What'snewinversion3.62.4
26.3 What'snewinversion3.62.3
264 What'snewinversion3.62.2
26.5 What'snewinversion3.62.1
26.6 What'snewinversion3.62.0
26.7 What'snewinversion3.61.5
26.8 What’'snewinversion3.61.4
269 What'snewinversion3.61.3
26.10What’'snew inversion3.61.2
26.11What’'snew inversion3.61.1
26.12What’'snew inversion3.61.0 L.
26.13What’'snew in version 3.60.1 L.
26.14What’'snew in version3.60.0 L.
26.15What’s new in version 3.5d, release 3
26.16 What’s new in version 3.5d, release 2

26.17What’snew inversion 3.5d o .

CONTENTS 13

26.18What’s new in version 3.5c,release 3. 545
26.19What’s new in version 3.5c,release 2., 545
26.20What’'snew inversion3.5co 547
26.21 What’s new in version 3.5b, release 2, 548
26.22What’snew in version 3.5bo Lo 549
26.23What’s new in version 3.5a,release 2. 550
26.24What’'snew inversion3.5a oL oL 551
26.25What’s new in version 3.3d, release 2, 555
26.26What’'snewinversion3.3d oL 557
26.27What’'snew inversion3.3c oL oo 559
26.28What’snew inversion3.3ao 560
26.29What’'snew inversion3.2eol 562
26.30What’'snew inversion3.1d oL 0oL 564
IV Development guide 568
27 Compiling the source 569
27.1 Introduction 569
27.2 Recommended and preferred compilers 569
273 Compiling4dth 570
27.4 Compiling thelibrary 571
27.5 Choosing Makefiles 572
27.6 Sharedlibrary 573
2777 64-bitplatformso 573
27.8 Regenerating the includefiles 574
27.9 Optimizations v it e e e e 575
27.10GCC specific optimizations L. 575
27.11Using the library 576
27.12Convert 4tH programs to native executables 577
28 Using the 4tH API 578
28.1 Introduction 578
282 Asampleprogram Lo e e 578
28.3 Afirstlookatopen_4th() L oo 580
28.4 AcloserlookatH-code 581
28.5 AcloserlookatHX-code 581

28.6 Afirstlookatcomp_4th(). 585

CONTENTS 14

28.7 Afirstlook atexec_4th() 586
28.8 Afirstlook atfree_4th(), 588
289 Afirstlookatsave_4th() 590
28.10A firstlook atload_4th() 591
28.11A first look at error-trapping 591
28.12A first look at dump_4th() L oo 592
28.13A firstlook atcgen_4th() L 595
28.14Converting HXfiles L oo 596
28.15A firstlook at fetch_4th() 596
28.16A first look at store_4th() 597
28.17Examples of embedded HX code 598
28.18Suspended execution e 599
28.19Useful variables o oo 604
29 Modifying 4tH 606
29.1 Introduction 606
29.2 Understanding 4tHs versioning 606
29.3 Acloserlookatcomp_4th(), . 607
29.4 Addingaconstant 609
29.5 Addingaword e 610
29.6 Acloserlookatexec_4th() 612
29.7 Afirstlookatname_4th(), 614
29.8 Extending thecompiler L oL 615
29.9 Making aliases 617
29.10Giving a name to an application variable 617
29.11Adding new variables 618
29.12Resizing the 4tH environment L. .. 620
29.13Tuning pipe failure detection 621
29.14 Adding new error messSages e e e e 623
29.15Sizing the Code Segment 624
29.16Adding inline macroso 626
29.17Adding string words L. e 627
29.18Adding words with arguments 629
29.19Packing several words intoonetoken L. 631
29.20Adding conditionalso oL 632
29.21Extending the /O subsystem 637

29.22Using the symbol table 638

CONTENTS 15

29.23Using variables and datatypes 640
29.240thertools 642
29.25Patching 4tH 642
29.25.1Tokens 643
29252Words 643
29.25.3 The virtual machine 644
29.25.4Immediate wordsl 645
29.25.5 Applying the patches 645

29.25.6 Error messageso i e e e e e e e e e e e e 646

List of Figures

2.1 Integer segmentlayout 27
2.2 Character segment layout 28
2.3 Hceodestructure oL e e e e 29
4.1 Editor architecture 48
9.1 Character segment 101
9.2 ThedtHI/Osystem o v i ittt e e 128
10.1 Integer segmento 134
13.1 GTKdemo e 280
14.1 Bézier curve with end points Py and P and control point P; 288
14.2 ASCII art view of a color bitmap image 293
143 Mirrored boxes 295
144 Twoboxes o e 298
25.1 Basic FParchitecture 509
25.2 Double, mixed and floating point word dependencies (ANS) 510
25.3 Double, mixed and floating point word dependencies (Zen) 511
28.1 Heodestructure ot it e 581

16

List of Tables

8.1 Character typingwords 96
9.1 Picture library formatting characters 110
9.2 Listofsupported printf () flags 112
9.3 Width and precisionof printf () 113
9.4 Listof supported printf () specifiers 114
12.1 NELL equivalents v i ittt e i e 186
12.2 gmkiss randomizers and their registers 199
12.7 Examples of single and double number counterparts 218
12.8 Range and digits of precision 220
12.9 Examples of single and floating point number counterparts 222
12.10IEEE 754 FP math errors 223
123 4tHrandomizerso 229
12.4 4tH sorting algorithms (addressbased) 230
12.5 4tH sorting algorithms (index based) 230
12.6 Fractionwords 231
12.11ANS-Forth functions 231
12.12Floating point configurations oL 231
12.13Statistical functions 232
13.1 KPRE supported metacharacters 249
13.2 KPRE characterclasses 249
13.3 Supported control characters oL 254
13.4 Spreadsheet formats supportedby 4tH 264
13.5 Example spreadsheet 265
13.6 Spreadsheetwords 266
13.7 Other tabular formats 266
13.8 IKgX table format oo 268

LIST OF TABLES 18

14.5 Viewing and modifying bitmapimages 294
14.6 3D plotting wordset 297
14.7 3D plotting examples 297
172 DCcommands i 425
18.1 4tshcommands L 428
23.1 Dumbwords. 466
26.1 Database index conversion 517
26.2 Forth-79to ANS conversion 564
27.1 Listofcompilers 570
28.1 APIfunctions e 579
28.2 HX type-byteencoding 582
29.1 comp_4th() variables 607
29.2 exec_4th()basic AP 612
29.3 comp_4th(basic APT 616
29.4 Examplesofaliases oL 617
29.5 Mapping between 4tH and C variables 618
29.6 Mapping between 4tH and C variablenames 618
29.7 Accessing4tHdatafromC 630
29.8 exec_4th()dataaccess API, 630
29.9 Example executionplan. Lo 633
29.10Branchresolving API 634
29.11Members of Stream[] structure 637
29.12Device Status MACTOS . . .+« v v v v v e e e e e e e e e e e e e e 637
29.13Symboltable API 638

29.14Table search API 640

Chapter 1

What’s new

What’s new in version 3.64.0

Words

o The words +TO, ; THEN,R"@, I’, ?EXIT, [NAMES],EXCEPT, UNLESS, THROW",
>Z7ERO, RDROP, 2RDROP, CASE, OF, ENDOF, ; ENDOF, ENDCASE and STOW were
added.

* The words R’ @, «/, UNLOOP and LEAVE were changed.

Functionality

» The words +TO, ; THEN,R"@, I’, ?EXIT, [NAMES], EXCEPT, UNLESS, THROW",
>Z7ZERO, RDROP, 2RDROP, CASE, OF, ENDOF, ; ENDOF, ENDCASE and STOW were
added.

* The preprocessor now supports single, double and floating point FORTRAN formu-
las.

 Destructors and constructors were added to FOOS (Forth Object Oriented Simple).
* An “expert mode” has been added to 4tH.

* The [NAMES] directive enables symbolic decompilation.

* The behavior of COMPARE can be influenced by issuing the appropriate pragmas.

* The library files now support Intel hex format.

* Global variables can be converted to local variables.

* New binary search libraries were added.

* Dynamic string support was added.

* Dynamic array support was added.

e CCITT-2 and CRC32 support were added.

* A new priority queue library was added.

19

CHAPTER 1. WHAT’S NEW 20

* A general purpose filename splitting library was added.

¢ Internationalization support (i18n) was added.

* A fast Levenshtein Distance library was added.

* A sequences library was added

* A floating point equivalent of >NUMBER was added.

* A fast >FLOAT implementation was added to ANS floating point.

* Fast single and double word exponentiation libraries were added.

* A fast fixed point exponentiation and natural logarithm library was added.
 Several mathematical functions were added to the fractions library.

* The graphics suite now includes routines for drawing circles, arcs, ellipses and dif-
ferent lines.

* The graphics suite now includes flood fill routines.
* MRG32k3a was added to the random number generators.
* Binary Insertionsort and a simple Timsort were added to the sort algorithms.

* Preprocessing is 2.5x times faster, compilation is 25% faster (on average).

Bugfixes

* A bugin the SHIFT opcode was fixed.

* Another bug in bsearch.4th was fixed.

* The Zen and ANS floating point libaries were tuned.
e The library st rstack.4th was rewritten.

e The library fpin.4th was rewritten.

Developer

¢ The words +TO, ; THEN,R"@, I’, ?EXIT, [NAMES],EXCEPT,UNLESS, THROW",
>Z7ERO, RDROP, 2RDROP, CASE, OF, ENDOF, ; ENDOF, ENDCASE and STOW were
added.

* The words R’ @, «/, UNLOOP and LEAVE were changed.

* The preprocessor now supports single, double and floating point FORTRAN formu-
las.

* Destructors and constructors were added to FOOS (Forth Object Oriented Simple).
* An “expert mode” has been added to 4tH.

* New optimizers were added, simplifying or eliminating "R> DROP”,”>R RDROP”,’>R
R>"and "R> >R” sequences.

e The [NAMES] directive enables symbolic decompilation.

CHAPTER 1. WHAT’S NEW 21
* The behavior of COMPARE can be influenced by issuing the appropriate pragmas
(compare.4th, icompare.4th).
* All library files now throw an exception instead of abort.
 The library files now support Intel hex format (intelhex.4th).
¢ Global variables can be converted to local variables (glocal. 4th).
* New binary search libraries were added (brow.4th, bstable.4th).
* Dynamic string support was added (dstring.4th,dstringt.4th,dstrarrt.4th).
e Dynamic array support was added (varray.4th).
e CCITT-2 and CRC32 support were added (ccitt2.4th, crc32.4th).
* A new priority queue library was added (prioqg.4th).
* A general purpose filename splitting library was added (splitpth.4th).
¢ Internationalization support (i18n) was added (118n.4th).
* A fast Levenshtein Distance library was added (1evensht . 4th).
* A sequences library was added (sequence. 4th);
* A floating point equivalent of >NUMBER was added (fpin.4th).
* A fast >FLOAT implementation was added to ANS floating point (tofloat.4th).

* Fast single and double word exponentiation libraries were added (power.4th,
dpower.4th).

* A fast fixed point exponentiation and natural logarithm library was added (fxexpln.4th).
* Several mathematical functions were added to the fractions library (fractext . 4th).

* The graphics suite now includes routines for drawing circles (gcircle. 4th), arcs
(gbezier.4th,garccirc.4th),ellipses (gellipse.4th)and different lines
(gburst.4th,dda.4th,glines.4th).

* The graphics suite now includes flood fill routines (g£i11.4th, gflood. 4th).
* MRG32k3a (mrg32k3a.4th) was added to the random number generators.

* Binary Insertionsort (binssort.4th) and a simple Timsort (timsort.4th)
were added to the sort algorithms.

e The gview. 4th library was replaced by gpic2txt.4th.
* The hiorder. 4th library was reorganized.

* Overhaul of some floating point libraries to use full 64-bit precision.

CHAPTER 1. WHAT’S NEW 22

Documentation

 All documentation now reflects the functionality of the current version;

¢ The ”overview” section was modified;

* The “guided tour” was completely overhauled;

* Several sections concerning CASE..ENDCASE were removed;

 Several sections concerning object orientation were modified and expanded;
¢ New sections on CASE..ENDCASE were added,;

» The graphics library got its own chapter. Several new sections were added to it;
» New sections on binary search tables were added;

* A section on dynamic strings was added;

* A section on dynamic arrays was added;

* A section on alternative loop- and branch constructs was added;

¢ A section on internationalization was added;

* A section on sequences was added;

* A chapter on TopITSM was added;

* The section on local variables was expanded;

» The section on exceptions was expanded;

* The section on optimization was expanded;

* The section on fractions was changed;

 All sections on dynamic memory were changed.

Hints

Porting your v3.62.5 programs to v3.64.0 shouldn’t be any problem. Source files will
compile correctly without modification. There are six things to consider:

COMUS.4PP

This preprocesor library was removed. The words RDROP and +TO are now natively sup-
ported by the compiler.

GVIEWA4TH

The library gview. 4th is now depreciated. It is replaced by gpic2txt.4th. If you
have any programs which still use gview. 4th, please rewrite them. gview.4th is no
longer supported and will be permanently removed in a future release.

CHAPTER 1. WHAT’S NEW 23

FPIN.4TH

In previous versions, this library could be used by zenfloat.4th. Now you have to
include zenans. 4th as well. This was always recommended practice anyway.

HIORDER.4TH

This library was reorganized. If you used zip in your programs, either change it to
reduce or add this definition to the top of your file:

aka reduce zip

The word . cells was converted into a comment. No other changes are required.

FOOS.4PP

In the previous version, a base class was declared like this:

:: <class>
class
end-class {}

In the current version this syntax is no longer supported:

:class <class>
extends Object
end-extends

;class

Please note the missing curly braces. Previously, methods were defined like this:

:method { word .. word } ;method

In the current version, the execution semantics of curly braces have been incorporated in all
of these keywords: END-EXTENDS, ; CLASS, :NEW, : DELETE, : VIRTUAL, : DEFAULT,
:METHOD and ; METHOD. They should be removed in order to avoid runtime errors:

:method word .. word ;method

No other changes should be required. Destructor-like methods will continue to work. How-
ever, it is advised to take advantage of the new destructor support. Current constructors will
continue to work properly without modifications.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are +TO, ; THEN, R"@, I’,
?EXIT, [NAMES], EXCEPT, UNLESS, THROW", >ZERO, RDROP, 2RDROP, CASE, OF,
ENDOF, ; ENDOF, ENDCASE and STOW.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed')
ANS-Forth standard, except for porting purposes.

' A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

Part I

Getting Started

24

Chapter 2

Overview

2.1 Introduction

In essence, 4tH is Forth without the typical Forth architecture - a conventional compiler
that compiles Forth to portable bytecode and will seamlessly blend in your C development
environment. You can bind 4tH to your own C-program and call it as if it were just another
function.

But most people regard 4tH as a standalone compiler - which is absolutely fine.

2.2 History

To understand 4tH you have to know how it came to be. As most things in life, 4tH
developed slowly. Its predecessor is a C-function called st rcalc (). This function is an
implementation of a RPN calculator in one very compact function (about 6 kB source). It
works with signed 32 (or 64) bits integers and has about 20 commands and 20 variables.
The C-programmer can add additional variables.

Using it in a C-program is very easy too. Just pass the source as a string and add any
variables you need. It will return the result of that calculation.

Well, although primitive it can still be very useful. You can implement an interactive RPN
calculator in less than 5 lines of C. It can also be used to make calculations from sources
stored elsewhere, like in a file or an environment-variable. If you can store a string there,
you can store strcalc () source.

But we were not satisfied. We wanted to create some successor to strcalc () that could
be used to create applets, small applications that can be embedded in an application. Like
strcalc () it had to be fast and compact and easy to use. All these requirements and
’Reverse Polish Notation’. What language comes to mind first? Forth.

There were a few advantages and disadvantages to that approach. First, if it looked like
Forth, it had to be compatible with Forth up to a certain point. Second, if it looked like
Forth, we wouldn’t have to write thick manuals and explain how to use the language. Third,
if it looked like Forth, could we make it crash-proof?

A user can easily crash a Forth-system. Store something at a wrong address and your
system hangs. We don’t like that, even when the user is at fault. So we had to make a few
concessions somewhere, since adding checks means the program will be less compact and
slower.

25

CHAPTER 2. OVERVIEW 26

For a very long time we just didn’t get the right idea. Then on a dark night in October 1994,
it happened. The baby was called 4tH and could do everything strcalc () did.

It took quite a while before 4tH had successfully got away from its strcalc () roots.
The very first version was very buggy and little more than an RPN calculator with (incom-
patible) flowcontrol and some string facilities. It required two passes to compile a source
and the resulting bytecode could not be saved. The I/O was C-based and very primitive.
There was no Character Segment.

The second version got string and file facilities. The I/O and flowcontrol was completely
rewritten, so they now were fully Forth-compatible. The second pass was discarded and
H-code could finally be saved. The first move to ANS-Forth was made.

The third version came to be when the H-code eXecutable was created. This fileformat
made it possible to port bytecode across platforms. At the same time, 4tH moved more and
more toward ANS-Forth. Exception-handling and assertions were introduced. And in the
spring of 1997, version 3.1c was released to the general public.

Of course, 4tH didn’t stop there. Since then, a lot of features have been added - up to the
development environment it is today.

2.3 Applications

4tH is an excellent platform to learn Forth. It looks and behaves like a conventional com-
piler, but essentially is Forth. A Forth that detects virtually every error and reports what
was wrong and where it went wrong, but still is quite fast and compact.

But like any good teacher 4tH is quite strict. Forth allows constructions that should be
avoided. 4tH on the other hand, either does not implement these words or restricts their
usage.

Other Forth concepts are hard to handle, like the different wordsets for different kinds of
numbers. Plain 4tH only uses signed 32 (or 64') bit integers, which enables the programmer
to make a wide range of applications without being bothered by overflow. Pointers, integers
and characters are transparently converted.

But for those who wish to venture into the world of Object Orientation, mixed, double,
triple or floating point numbers - rest assured, we have all the facilities you might need.
Just include the appropriate library.

2.4 Architecture

4tH is a segmented Forth. There are different segments for constant strings, characters,
cells and tokens. This shows you where each data-type is located:

* Return stack (Integer Segment)

* Data stack (Integer Segment)

* Variables & values (Integer Segment)
* Vectors (Integer Segment)

e String variables (Character Segment)

"When compiled on a 64 bit platform.

CHAPTER 2. OVERVIEW 27

e Temporary storage (Character Segment)
* Compiled code (Code Segment)

* Compiled constants (Code Segment)

* String constants (String Segment)

* Symbols (Symbol Table)

The return-stack, data-stack and variables are allocated in one large array of signed 32 (or
64) bit integers. On top of that 4tHs primitives check all parameters. This makes 4tH a
very safe environment.

4tH also propagates clean programming. E.g. storing and fetching of the data-stack is not
allowed. You can only store and fetch in the Variable Area.

In effect, as far as we know 4tH cannot be crashed by a user-program. The memory layout
of the Integer Segment looks like figure 2.1.

The allocation of variables is totally trans-
parent to the C-programmer. He can also
transfer C-variables to the user-program
(application variables). These variables
can be used like any other variable. User varables

Combining return- and data-stack means
the C-programmer only has to worry about
the size of the stack and not the sizes of
both stacks, thus allowing a wider range
of user-applications with different require-
ments. 4tH variables

Variable Area

C variables

The Code Segment contains words. A
word is a structure that contains an un-
signed byte (the token) and a signed long

Read only variables

System variables System Area

integer (the argument). Only the argument

can be accessed by the 4tH programmer. l

He cannot change the program in memory, Pt stack

since we never really liked self-modifying

code. Stack Area

Data stack

True, this scheme has some redundancy,
but a more elaborate scheme means a more T
code to encode and decode the tokens and

arguments. That means the memory-space

we saved by compacting the program-code Figure 2.1: Integer segment layout
will make the compiler and interpreter less

compact. And it certainly won’t run any

faster!

The String Segment contains all string constants. The words which use strings contain an
offset to the ASCIIZ strings in the String Segment. The 4tH programmer can copy strings
from this segment, but cannot write any. Constants are constants.

Finally there is a chunk of memory the user can manipulate at will. It contains the TIB, the
PAD and all string variables (if any). The memory layout of the Character Segment looks
like figure 2.2.

CHAPTER 2. OVERVIEW 28

The 4tH programmer can store and fetch anything here.
Since 4tH uses some C-functions ASCIIZ strings are used.
The words that act on counted strings take the same param-

eters and deliver functionally the same results. User strings

File I/O is supported too in a more Forth-like way than
Forth itself. You can have six concurrently open files
and/or pipes. 4tH has threads too. A thread can be saved PAD
to disk and reloaded. The only restriction is that all files m—
are closed when the execution of a thread is suspended.

Figure 2.2: Character seg-
2.4.1 The 4tH language ment layout

A Forth programmer has to know how much address-units

a cell takes. Since every data-type in 4tH has its own

segment, the address-unit of a segment is always one, re-

gardless the data-type. Consequently, ANS- Forth words like ’CELLS’ and ‘CHARS’ are
’NOOP’s. Which fits 4tH nicely.

Although 4tH has different words for storing and fetching different data- types, most of its
vocabulary is still compatible with Forth. E.g. the word "C!" takes an address in the Char-
acter Segment and "!" takes an address in the Integer Segment. Since the Code Segment
and String Segment do not allow any writing, there is no need for such operators.

Each segment has its own allocation operators too. "VARIABLE’, ”ARRAY’ and "VALUE’
allocate space in the Integer Area. ’'STRING’ allocates space in the Character Area. Other
words like ”” and "CREATE’ have restricted functionality and compatibility with Forth.

4tH was originally loosely based on the Forth-79 standard, but now it supports most of the
CORE wordset of ANS-Forth. Note that compatibility never had the highest priority. 4tH
was designed to write applets, not to be the next "fully ANS-Forth compatible compiler
with a little difference". If that is what you want, 4tH is not for you.

2.4.2 H-code

Long before the dawn of the original IBM-XT there was a language called UCSD Pascal.
Like Forth, it was a compiler and an interpreter. In fact, it didn’t compile source into object-
code for some silicon-based processor. Instead it made P-code. So if you wanted to execute
it, you needed a P-code interpreter for your system.

Such an interpreter can run faster than an ordinary interpreter since it doesn’t interpret
source-statements with all of its symbolic labels intact, but optimized P-code. It seems
to have been discovered again, since Java and previous versions of Visual Basic work the
same way. Visual Basic hides the interpreter in a DLL, but basically it doesn’t work any
different.

The 4tH uses the same basic architecture. First the source is compiled into H-code. Then
the H-code interpreter is run. A token is a very simple structure. It’s got a single byte
instruction and an argument. Here’s a sample of disassembled H-code:

Addr| Opcode Operand Argument
62| cr 0
63| wvalue 2
64| +literal -1
65| dup 0
66| to 2

67| Obranch 62

CHAPTER 2. OVERVIEW 29

BTW, building a decompiler for tokenized code is quite simple. There is one for Visual Ba-
sic and it seems like one emerged for Java too. The H- code was the result after compiling
this little piece of source code:

cr begin times @ 1- dup times ! until

You can clearly see that everything is actually compiled. Flow-statements are compiled
into BRANCH and 0BRANCH instructions pointing to addresses in the Code Segment.

Compiled H-code can be used on
its own. It can be kept in mem-
ory, loaded, saved, decompiled
and executed. H-code is a combi- i i i

nation of the String Segment, the A Y., LY., LY,
Code Segment and a header (fig-
ure 2.3). The header contains all
the information to set up the run-
time environment and some in-
formation on the String- and the
Code Segments. The Integer Seg-
ment and the Character Segment
are created at runtime. You can
also force 4tH? to retain its Sym-
bol Table, so it can be used to re-
solve symbols when decompiling. :

*Hcode, > Hcode header

Y
<
Y

Q 5 = = ~ O
~ 3 ® 3@Q@ o On ® ao O

S 0@ ® ~ 35 —
®o —o o — o0 o 3< W

~ 3> 0o 3Q o »
~ 3 ® 3Q o W

Although speed was an issue - S R
when 4tH was designed and de-

veloped, it is beaten by some Figure 2.3: Hcode structure

other Forths. There are several

possible explanations.

e 4tH uses 32 (or 64) bit numbers, while some Forths still use 16 bit numbers;

e 4tH checks all parameters, while other Forths depend on signals or don’t do any
checking at all;

¢ 4tH is written in C, while some other Forths are written in assembler.

When 4tH is compiled with a 32 (or 64) bit compiler it outruns Python, Ruby, Perl and most
other C-based Forths (upto 4 times) or has a comparable performance (with the possible
exception of GCC optimized Forth compilers). In real life applications the difference is
barely noticeable.

To make compiled H-code portable, a separate scheme was developed: the Hcode-eXecutable.
Or HX-file for short. It contains all the information in the header, a compacted Code Seg-
ment, the String Segment and some additional information on compatibility and integrity.
Numbers are stored in an architecture-independant way. Optionally, you can also save the
Character- and Integer Segments - but not the Symbol Table.

2.4.3 H-code compiler

The H-code compiler looks a lot like any conventional compiler or assembler. Basically
it is a simple one-pass compiler. In order to understand the workings of 4tH you have to
know that not all H-code instructions are equal:

2Use the *[NAMES]’ directive.

CHAPTER 2. OVERVIEW 30

¢ Immediate words (flow control, declarations, etc.)
¢ Predefined constants (addresses, aliases, etc.)

» Simple words (do not require an argument)

Symboltable entries (user-definitions)

To determine the initial size of both the Code Segment and the Symbol Table the source
is parsed first and the actual number of words counted. This determines the initial size of
the Code Segment with a high degree of accuracy, so extending the Code Segment is never
necessairy. After compilation the Code Segment will be shrunk to its actual size.

The parser can distinguish between directives and string constants. The size of the Symbol
Table is determined by simply counting all definitions. Every definition needs one Symbol
Table entry. That makes determining the size of the Symbol Table very easy.

During compilation all simple words are compiled into tokens without a valid argument.
When a definition is encountered, like a colon-definition or a variable-declaration, a symbol
is added to the symbol-table.

There are four compiler directives which determine how a number is interpreted. ’[BI-
NARYT interprets numbers as binary numbers, '[HEX]’ interprets them as hexadecimal
numbers. '[DECIMAL] and ’[OCTAL] are available too. The "simple words" "HEX,
"DECIMAL’ and "OCTAL’ only act during execution and do not determine how a number
is interpreted during compilation.

During compilation the compiler also resolves all flow words. It simply matches the cor-
rect instruction and enters the jump-address into the argument of the 'BRANCH’, *?DO’,
"LOOP’, *+LOOP’, "CALL’ or ’'0OBRANCH’ word. The way 4tH handles flow control is
almost completely identical to Forth.

It may sound strange, but colon-definitions are also treated like flow-words. The colon
simply compiles into a ’'BRANCH’ instruction that skips the colon definition.

When the user calls a colon definition, it simply compiles into a ’"CALL’ instruction that
puts the current address on the return-stack and jumps inside the colon definition, after the
"BRANCH’. The semi-colon works like a RETURN instruction that pops the return address
from the return-stack. Yes, like a subroutine in BASIC or assembler!

2.4.4 Error handling

When 4tH finds an error during compilation or execution it stops and sets the H-code mem-
ber ErrNo. It works like errno in C. You can optionally link in an array of error-messages.
ErrNo is an index to this array, which makes issuing the correct error message very simple.
The instruction pointer is frozen at the point where the error occured, so it is very easy to
find out where the error occured.

2.4.5 Interfacing with C

A minimal compiler would take only a few lines of C-code. The C-programmer can send
C-variables to the interpreter, just like strcalc ().

E.g. a compile takes a string-pointer as argument and returns a pointer to H-code:

object = comp_4th (source);

CHAPTER 2. OVERVIEW 31

Executing H-code is easy too:

ReturnVal = exec_4th (object, argc, argv, 3, Varl, Var2, Var3);

Which would preload variables Varl, Var2 and Var3. You must specify how many
variables are preloaded. Also argc and «xargv are available from the 4tH program.

The value returned by exec_4th () and stored into ReturnVval is the value of the 4tH
variable ’OUT’, which initially contains CELL_MIN. If an error occurs exec_4th () will
always return CELL_MIN, regardless the value stored in "OUT".

Chapter 3

Installation Guide

3.1 About this package

4tH will compile ordinary text-files (MS-DOS and Unix) as well as block-files produced by
the 4tH editor. The user-interface of this line-editor is highly compatible with conventional
Forth block-editors.

4tHs special architecture almost forces you to write "clean" code, so you will learn Forth
the proper way. This does not mean that you can’t write portable code with 4tH. In fact,
because Forth is so flexible you can usually write a small interface to your well-written
4tH-code in a matter of minutes.

You can use 4tH in virtually every environment, from Linux to MS-Windows. You don’t
even have to recompile your applications since 4tH uses a special executable format, that
is interpreted by the 4tH virtual machine.

3.1.1 Example code

There are a lot of example programs, written in 4tH. From line-editors and calculators
to adventure-games. Not all have been especially written for 4tH. There are quite a few
programs from the hand of people like Professor C.H. Ting and Leo Brodie that started
their existence as Forth-programs.

Most are available in source. That means they have the extension ".4¢h’. You can examine
or edit them like any other source-file. Source-files written with the 4tH editor get the
extension ".scr’. They can only be edited with the 4tH editor or other Forth blockfile editors.
Executables have the extension ".six’ (Hcode eXecutable).

3.1.2 Main program

You will find a binary program within this package called 4tH. You can copy this binary
to any directory. 4tH is a small development system by itself. When you start it, it will
automatically enter interactive mode and show you a menu not unlike early versions of
Turbo Pascal. You can edit, compile, run and debug programs from the 4tH prompt. Please
read chapter 4 for more details.

You can also use 4tH from the commandline:

32

CHAPTER 3. INSTALLATION GUIDE

4th <commands> <file> [file | argument .. argument]

It takes most combinations of these ten commands:

m enter interactive mode

e edit a 4tH screenfile

¢ load a sourcefile (.4th) and compile it
1 load an objectfile (.hx)

d decompile a 4tH program

g generate a C sourcefile (default: out.c)
s save a 4tH program (default: out.hx)

x execute a 4tH program

v enter verbose mode

q suppress copyright message

A few examples:

33

* To compile a 4tH program and save the object code: 4th csv <source.4th>

[object.hx]
* To compile a 4tH program and execute it: 4th cx <source.4th>
* To decompile object code: 4th 1d <object.hx>
* To convert object code to C source: 4th 1lg <object.hx> [source.c]
* To load and execute object code: 4th 1x <object.hx> [arguments]
* To load and execute object code without arguments: 4th <object.hx>
* To edit a 4tH screenfile: 4th e <source.scr>
* To enter interactive mode: 4th m <source.scr>

¢ To enter interactive mode (without loading a screenfile): 4th

Note: don’t include the "[]" and "<>" in your commandline. They are just there to show

whether an argument is optional ([arg]) or mandatory (<arg>).

3.1.3 Unix package

It is not possible for us to provide Unix binaries for all possible platforms, not now and not
in the future, simply because we don’t have access to them all. Here is a list of the Unix

(like) platforms that are known to compile 4tH:

¢ Intel - FreeBSD
¢ Intel - Coherent

¢ Intel - BeOS

CHAPTER 3. INSTALLATION GUIDE 34

* Intel - Plan9

* RS/6000 - AIX

e NeXT - NS

* Apple - OS/X

* Sun - Solaris

¢ ARM - RISC/OS

* ARM - Android

¢ Intel - Linux

e Zaurus - Linux

» Raspberry Pi - Linux
* Ben Nanonote - Linux
* Zipit Z2 - Linux

* Nokia N810 - Linux
* Apple - Linux

If your platform is not listed, give it a try anyway. The chances are it will compile flaw-
lessly, since we’ve never had a report of a Unix platform that refused to compile or run 4tH.
Please send us an email with your results, so we can add it (or remove it) from our list.

You have to compile 4tH yourself, which is not difficult if you read the *Developers Guide’.
Usually this will do the trick:

make
make install

If you have any special needs, feel free to edit the makefile.

3.1.3.1 Updating

Simply install the package. Unless you’ve used a different location or different options the
previous time, it will simply overwrite the previous executables. If you still have 4thd,
4thg, 4thx or 4thc somewhere on your drive, delete them. That’s ancient stuft!

3.1.4 Linux package

You will find Linux binaries in this package. They will run under most modern Linux
distributions for Intel. If the Linux binary doesn’t run, you can easily recompile it. Just
enter:

make
make install

You don’t have to run ’./configure’. If you have any special needs, feel free to edit the
makefile, e.g. compiling for the Zaurus means you have to add the *-DZAURUS’ option.

You’ll also find some icons for KDE or GNOME and a ’'man’ page. However, you have to
install them manually. If you want to embed 4tH in KDE or GNOME you have to do that
manually as well. Please consult your KDE or GNOME documentation.

You can place the 4tH executable any place you want. It doesn’t require any external files.

CHAPTER 3. INSTALLATION GUIDE 35

3.1.4.1 Copying the tarball to your platform
If you’re using an exotic platform like the ones listed here, you may experience some

problems getting the tarball onto your device. We will give you some directions on selected
platforms.

Ben Nanonote
The easiest way is to copy the tarball onto a micro-SD card and boot your Ben Nanonote.

You’ll find the tarball under /card. Copy it to the location of your choice and proceed as
usual.

If not, perform this procedure. First, be sure you have set the password of ’root” under your
Ben Nanonote. Second, you have to connect the Ben Nanonote to the USB port of your
host computer. Finally, enter the following commands (as root) on your host computer:

ifconfig usb0 192.168.254.100
scp <4tH tarball> root@192.168.254.101:~/

The 4tH tarball will end up in the $SHOME directory of “root” on your Ben Nanonote.
Proceed as usual.

3.14.2 /etc/magic

If you want Linux to recognize your 4tH files, you have to add the following lines to your
/etc/magic file:

From The.Beez.speaks@gmail.com
These are the magic numbers for 4tH HX files

0 belong 0x01020400 4tH eXecutable
>9 leshort x \b, version %x

E.g. if you enter:
file editor.hx

It will respond:

editor.hx: 4tH eXecutable, version 364

N.B.: if you’re working on a 64 bit Operating System these values may be completely
different. You’l get the proper signature by submitting od -tx1 example.hx:

0000000 01 02 04 00 £f f£f £f 7f 04 64 03 08 02 09 08 08

The relevant sequence should stop shortly after the bytes 04, ”64” and ”03”.

CHAPTER 3. INSTALLATION GUIDE 36

3.1.4.3 Using binfmt_misc

There is a module in Linux that will allow you to execute 4tH programs from the prompt
without explicitly calling the 4tH interpreter. It is called ’binfmt_misc’. 4tH has built-in
support for this module. Just add the following lines to your *boot.local’! file:

insmod binfmt_misc

cd /proc/sys/fs/binfmt_misc

echo /:HX:M::\x01\x02\x04\x00\xff\xff\xff\x7f\x04\x64\x03\x08:
:/usr/local/bin/4thx:’ >register

If you use a kernel version later than 2.4.13 you have to add these lines:

insmod binfmt_misc

mount -t binfmt_misc none /proc/sys/fs/binfmt_misc

cd /proc/sys/fs/binfmt_misc

echo /:HX:M::\x01\x02\x04\x00\xff\xff\xEff\x7f\x04\x64\x03\x08:
:/usr/local/bin/4thx:’ >register

You can find out whether 4tH support has been properly installed by issuing:

cd /proc/sys/fs/binfmt_misc
cat HX

And Linux should answer:

enabled

interpreter /usr/local/bin/4thx
offset 0

magic 01020400fffff£f7£04640308

Finally, you should go to the directory where 4tH has been installed (usually /usr/local/bin)
and enter:

In -s 4th 4thx

Now, after you’ve compiled a program you should make it executable and it will run like it
is a native executable, e.g.:

4th cs asc2html.4th asc2html
chmod 755 asc2html
asc2html ascii7.4th ascii7.html

Note you have to be root in order to run some of these commands! N.B.: if you’re working
on a 64 bit Operating System these values may be completely different. You’l get the proper
signature by submitting od -tx1l example.hx:

0000000 01 02 04 00 f£f £f £f 7f 04 64 03 08 02 09 08 08

The relevant sequence should stop shortly after the bytes 04, 764" and ”03”.

'0n SuSE "boot.local’ is located in the /sbin/init.d directory.

CHAPTER 3. INSTALLATION GUIDE 37

3.1.4.4 DIR4TH environment variable

This variable is used to indicate where 4tHs default directory is. If a sourcefile cannot
be found in the current directory, the compiler® will try to get it here. You can set this
environment variable in your .profile or .bashrc file. Simply login into your default

user account and type:

cd
vi .profile

or:

cd
vi .bashrc

This will launch the editor and allow you to edit the appropriate file. In this example your
default 4tH directory is /home/ joe/4th:

export DIR4ATH=/home/joe/4th/

If 4tH is unable to find a sourcefile, e.g. 1ib/anscore.4th,itwill try toload /home/joe/4th-
/lib/anscore. 4th. Do not forget to add the trailing slash. If you do, it will not work

properly.

3.1.4.5 EDIT4TH environment variable
This variable is used by the 4tH executable to launch an external editor, e.g. vi, instead
of the built-in block editor. You can set this environment variable in your .profile or

.bashrc file. Simply login into your default user account and type:

cd
vi .profile

or:

cd
vi .bashrc

This will launch the editor and allow you to edit the appropriate file. In this example the
external editor is vi:

export EDIT4TH=vi

It works exactly the same as the familiar EDI TOR environment variable>.

3.1.4.6 Updating

Simply install the package. Unless you’ve used a different location or different options the
previous time, it will simply overwrite the previous executables. If you still have 4thd,
4thg, 4thx or 4thc somewhere on your drive, delete them. That’s ancient stuff!

That is: the compiler, not the editor or anything else.
3https://en.wikibooks.org/wiki/Guide_to_Unix/Environment_Variablcs#EDITOR

CHAPTER 3. INSTALLATION GUIDE 38

3.1.5 Android package
First, install the ”Android Terminal Emulator” by Jack Palevich*. Note that on some de-

vices /sdcard can only be accessed by /mnt/sdcard. Unzip the archive on your
Linux, OS/X or Windows PC if your Android device lacks this capability.

3.1.5.1 Android 2.2

Support for Android 2.2 is experimental. Follow the instructions in section 3.1.5.2. Please
report any problems you experience.

3.1.5.2 Android 2.3+

This version will be installed in the shared_prefs folder of ATE.

Important!
The shared_prefs folder is required. It

only exists after you change the preferences
in the terminal emulator. So before com-

mencing, change the text colour, font or
something.

Copy the following files from the install directory to any directory on the SD card of
your ARM Android device:

* 4th

* 4tsh

* pp4th

* install23.sh

Start up the ”Android Terminal Emulator” and issue the following command:

cd /sdcard
cd <your directory>
sh install23.sh

You will be asked two vital questions:

1. Arethe 4th, 4tsh and pp4th files in your current working directory;

2. Is there an OK file in the ATE directory under /data/data.

If you can answer these questions affirmative, press the Enter” key, otherwise exit ATE.
Finally, you will be given a last chance to quit the installation script. If you want to con-
tinue, press “Enter”. The application should respond:

(INFO) Installing Android 4tH..
(INFO) Android 4tH installed..

4tH is now installed on your Android device and you can close the ”Android Terminal
Emulator”. You can remove the files from the SD card if you wish.

“You can find this free application in your Android Market. Homepage: https://github.com/—
jackpal/Android-Terminal-Emulator/wiki

CHAPTER 3. INSTALLATION GUIDE 39

3.1.5.3 Android 3+ and later

This version will be installed in the app_ HOME folder of ATE.

Important!

Some Android 3+ devices don’t feature a full

shell, so in some cases the following proce-
dure won’t work and the script will fail with a
shell error. This is not harmful to your device.
If that happens to you, please use the script
install23. sh instead and follow the pro-
cedure described in section 3.1.5.2.

Copy the following files from the install directory to the /sdcard/Download di-
rectory of your ARM Android device:

e 4th
e 4tsh
* pp4th

* install.sh
Start up the ”Android Terminal Emulator” and issue the following command:

cd /sdcard/Download
sh install.sh

The application should respond:

(INFO) Installing Android 4tH..
(INFO) Android 4tH installed..

4tH is now installed on your Android device and you can close the ”Android Terminal
Emulator”. You can remove the files from /sdcard/Download if you wish.

3.1.5.4 Postinstallation
Copy the 4th subdirectory to your Android device, e.g. /sdcard/4th. Start up the
”Android Terminal Emulator” and choose “Preferences” from the top right menu. Scroll to

”Shell” and choose Initial command”. Edit it so it reads:

export PATH=<original setting>:/data/data/jackpal.androidterm/
shared_prefs:$PATH; export DIR4TH=/sdcard/4th/

When you installed the 2.3+ version. Or, when you installed the Android 3+ version:

export PATH=<original setting>:/data/data/jackpal.androidterm/
app_HOME : SPATH; export DIR4TH=/sdcard/4th/

Make sure $PATH is declared only once, e.g.:

CHAPTER 3. INSTALLATION GUIDE 40

export PATH=/data/local/bin:/data/data/jackpal.androidterm/
app_HOME: $PATH; export DIR4TH=/sdcard/4th/

The installation is finished now. You can now restart the ” Android Terminal Emulator” and
access 4tH by simply typing:

4th

At the prompt. If you use 4tH on a tablet you may also consider installing the "Hackers
keyboard” by Klaus Weidner’. Working with the ” Android Terminal Emulator” becomes a
lot easier that way!

3.1.5.5 DIR4TH environment variable

This variable is used to indicate where 4tHs default directory is. If a sourcefile cannot
be found in the current directory, the compiler® will try to get it here. If 4tH is un-
able to find a sourcefile, e.g. 1ib/anscore.4th, it will try to load /sdcard/4th-
/lib/anscore. 4th. Do not forget to add the trailing slash. If you do, it will not work

properly.

3.1.5.6 EDIT4TH environment variable

This variable is used by the 4tH executable to launch an external editor, instead of the
built-in block editor. Use only if you exactly know what you are doing.

3.1.5.7 Updating

Simply install the package. Unless you’ve used a different location or different options the
previous time, it will simply overwrite the previous executables.

3.1.6 MS-DOS package

The "4th.exe" that is included in the MS-DOS package is a 32-bit MS-DOS version of the
main Unix utility. It will only run on 80386 class machines and up. It allows you to compile
and run very large 4tH programs. It requires CWSDPMI.EXE somewhere in your path. It
is also available as "4th86.exe", which will run on any IBM-PC with 256 KB memory. This
version is a bit slower and you may experience some memory restrictions.

3.1.6.1 DIR4TH environment variable

This variable is used to indicate where 4tHs default directory is. If a sourcefile cannot be
found in the current directory, the compiler’ will try to get it here. You can set this envi-
ronment variable in your autoexec.bat file. In this example your default 4tH directory
isC:\4th:

Shttp://code.google.com/p/hackerskeyboard/ Note Android will issue a warning about keyloggers. Don’t
worry, it always does that when you install a non-standard input device. The "Hackers keyboard” is Open Source
and there are no indications it contains any malware.

That is: the compiler, not the editor or anything else.

"That is: the compiler, not the editor or anything else.

CHAPTER 3. INSTALLATION GUIDE 41
set DIR4TH=C:\4th\

If 4tH is unable to find a sourcefile, e.g. 1ib/anscore.4th,itwilltrytoload C:\4th\-
lib\anscore.4th. Do not forget to add the trailing backslash. If you do, it will not
work properly.

3.1.6.2 EDIT4TH environment variable

This variable is used to indicate which external editor the 4tH executable should load if you
do not want to use its built-in block editor. You can set this environment variable in your
autoexec.bat file. In this example you’re using edit:

set EDIT4TH=edit

If the external editor is not in the PATH, you should provide the entire path.

3.1.6.3 Updating

Simply install the package. Unless you’ve used a different location or different options
the previous time, it will simply overwrite the previous executables. If you still have
4thd.com, 4thg.com, 4thx.com or 4thc.com somewhere on your drive, delete
them. That’s ancient stuff!

3.1.7 MS-Windows package

Run "setup.exe" to install the package. It runs with Windows 95 OSR2 and up, Windows
NT 4.0, Windows 2000, Windows XP, Windows Vista, Windows 7 and Windows 10.

You can launch Explorer and double-click an HX-file. Windows will complain it doesn’t
recognize the file and tell you what to do. Browse to "4th.exe" and select it. After that you
can click on an HX-file and it will be executed. You can even add HX-files to your desktop
where they will start and run like ordinary Windows applications.

This is a true 32-bit version, so it does take long filenames, but you can’t run it with Win-
dows V3.x and early versions of Windows 95. It is a console application, so you’ll need
an MS-DOS box to run and use it. Note that it will exit immediately once a program has
halted. We recommend you run 4tH from the MS-DOS prompt when you’re using 4tH as
a development environment.

3.1.7.1 Environment variables
The DIRATH variable is used to indicate where 4tHs default directory is. If a sourcefile
cannot be found in the current directory, the compiler® will try to get it here. In this example

your default 4tH directory is C: \4th:

set DIR4TH=C:\4th\

8That is: the compiler, not the editor or anything else.

CHAPTER 3. INSTALLATION GUIDE 42

If 4tH is unable to find a sourcefile, e.g. 1ib/anscore.4th,itwilltrytoload C:\4th\—-
lib\anscore.4th. Do not forget to add the trailing backslash. If you do, it will not
work properly.

The EDIT4TH variable is used to indicate which external editor the 4tH executable should
load if you do not want to use its built-in block editor. In this example you’re using
notepad:

set EDIT4TH=notepad

If the external editor is not in the PATH, you should provide the entire path.

MS-Windows 9x While it is possible to set environment variables in the same way as for
MS-DOS by editing aut oexec .bat, itis easier touse msconfig. Firstrunmsconfig
from the task bar by selecting ”Run .

Select the "Autoexec.bat" pane, then go to the bottom of the window, select the last entry
and click the "New" button. A small input window appears below the last entry, and in this
you should type a new entry with the exact syntax as shown in the example above. Then
click "OK" and a small pen appears against the entry, indicating that aut cexec .bat will
be modified. You may have to reboot afterwards.

MS-Windows NT+ Click on the "My computer” icon or the ”’Start” menu, then click on
the ”Control panel”. Click on the "System" icon to get the "System Properties" dialog box.
For Windows NT+ use the "Environment" tab instead of the "Advanced" tab. Click on the
"Environment Variables" button and select "New”. Enter the DIR4TH and its value in the
boxes and then click "OK". You can repeat the procedure for EDIT4TH if you wish.

If there are several users on the PC, it is probably better to set the variables as "System
variables", rather than "User variables" since they will then automatically be accessible for
all users. You will need to have Administrator rights to do this.

MS-Windows 10 Open the Start Search, type in “env” and choose “Edit the system en-
vironment variables”. Click on the "Environment Variables..." button and select "New”.
Enter the DIR4TH and its value in the boxes and then click "OK". You can repeat the
procedure for EDIT4TH if you wish.

If there are several users on the PC, it is probably better to set the variables as "System
variables", rather than "User variables" since they will then automatically be accessible for
all users. You will need to have Administrator rights to do this.

3.1.7.2 Updating

Be sure to properly uninstall the previous package before installing the new one. If you
don’t it may suggest to overwrite the package and simply refresh the group. Be sure the
installation is verbatim. If there are any changes, the uninstaller may refuse to uninstall the
package.

CHAPTER 3. INSTALLATION GUIDE 43
3.2 Setting up your working directory

The best thing to do is to create a directory under your home directory. In Windows, your
home directory is called My documents, in Unix-like environments simply type "cd’
and you’re there.

The rest largely depends whether you are the only one developing 4tH programs on your
system or whether you want a system wide installation. If you are the only one develop-
ing programs you could create a 1ib subdirectory and copy all library files there. Your
DIR4TH environment variable can now simply point at your own 4tH directory.

If you want a system wide installation or your Linux distribution already installed the li-
brary files for you, the smartest thing is to let your DIR4TH environment variable point to
the 4tH system directory, e.g. /usr/share/4th or C:\Program files\4tH. Do
not forget to add the trailing slash when setting the your DIR4TH environment variable.

Most people find it a lot easier to use 4tH from the prompt, so if you want to start a session,
start up your favorite command line shell and navigate manually to your personal 4tH
directory. When you just want to run a 4tH program, it depends on whether you want to
run it as a script, a bytecode image, a shell script or a native executable. Please consult
either your Operating System manual or the appropriate sections of this document.

3.3 Now what?

After you’ve installed and played around with the utilities, we suggest you either click the
4tH icon on your desktop or start an interactive session by entering:

4th m sessionl.scr

And start reading chapter 6, the Primer. When you’ve thoroughly read and understood the
very first section you’re ready to go on. Start up your favourite editor (or use the built-in
editor if you don’t have a favorite one) and make your own very first 4tH program using
chapter 4.

If you encounter an error during compilation or execution, refer to chapter 24, the *Errors
Guide’ for a detailled description what it means, what probable causes are and how you
can fix it.

3.4 Pedigree

4tH is basically an original work. However, some concepts have been derived from the
work of other, much smarter people.

* The pictured numeric output and flow-control routines are based on Abersoft Forth.
* The exception handler is based on the dpANS-6 implementation.
* The enumerations are based on the Swift-Forth implementation.

* The structures are based on the GForth implementation and suggested by Stephen
Pelc.

The *ASSERT(’ and ’)’ words are based on an idea implemented in GForth.

CHAPTER 3. INSTALLATION GUIDE 44

e The implementation of '[DECIMALY]’, '[HEX]’, ’[OCTAL] and ’'[BINARY] was
suggested by William Tanksley.

* The implementation of :REDQO’ and "DOES>’ was suggested by Astrobe.

¢ The implementation of unions was suggested by Tim Trussel and Bruce McFarlane.
* The binding of the Symbol Table into the 4tH structure was suggested by Ron Aaron.
* The HX-format was suggested by Mikael Cardell.

4tH was discussed in Volume XVIII, Number 3 of Forth Dimensions. Thank you, Marlin
Ouverson for giving me that opportunity.

3.5 Contributors

You may get the suggestion that I did all this myself, but that is hardly true:

Will Baden 4tH to ANS-Forth interface;

G.B. Stott 4tH Makefile;

AltLinux team Shared libraries;

Ed ANS-Forth compatible floating point I/O libraries;
Bill Cook George Marsaglia random number libraries;

David Johnson Zenfloat floating point, Zenfloat SQRT, Gem4tH, Portable Bitmap graph-
ics, Turtle graphics, 3D plotting, infix formula translation, selected li-
brary members and example programs.

Furthermore, I’d like to thank all those people who have helped me to port 4tH to different
machines, expecially Wim Slangewal, Zbigniew, Ron K. Jeffries, Rubén Berenguel and
Greg Schmidt. Finally, I humbly apologize to all those who have been forgotten in the
course of 4tH’s 25+ years history or whose contributions have been superseded by other
developments.

3.6 Questions

We tried to provide you with all the documentation you’ll probably ever need. That doesn’t
mean that you’ll never have any questions. NEVER EMAIL THE PEOPLE WHOSE SITE
YOU GOT THIS FROM! THEY DON’T KNOW EITHER! INSTEAD, MAIL TO:

the.beez.speaks@gmail.com
You’ll usually get fast answers, although when your question is very complex we’ll proba-

bly give you just some general directions. We have to stress that any comment is welcome,
always.

3.6.1 4tH website

You can visit our website, which is dedicated to 4tH:

http://thebeez.home.xsd4all.nl/4tH/

CHAPTER 3. INSTALLATION GUIDE 45

3.6.2 4tH Google group

We’ve got a Google group for discussions about 4tH. You will find all the latest information
there, including additions and bugfixes. If you want to interact with other 4tH users, we
recommend you subscribe to this group. You will also have to become a Google member
if you are not already, e.g. when you already have a gmail account:

http://groups.google.com/group/4th-compiler

Important! Your posts will not be accepted by the server if you don’t subscribe first! Your
first messages will be moderated.

3.6.2.1 Conditions of use

This group has been created as a service to, and in support of, the 4tH (and Forth) commu-
nity. As in most discussion groups, there are a few rules to ensure the survivability of the
group for the future.

1. This group is for discussions of 4tH problems, 4tH questions and answers. It is not
to be used for non-4tH discussions.

2. This is not an 4tH advocacy group. Stick to 4tH questions and problem-solving or
move your discussion to an appropriate channel. i.e. alternative site or private e-mail.

3. Flames, insults, foul language will not be tolerated. You will be unsubscribed and
barred from re-subscribing under your present e-mail address.

3.6.2.2 What to discuss?

Well, Problems, wishes, needs, solutions (how you did something) basically anything 4tH
related.

3.6.3 Newsgroup

There is no special newsgroup for 4tH. However, comp.lang.forth will prove to be able to
answer most of your questions.

Chapter 4

A guided tour

4.1 4tH interactive

4tH’s interactive mode is fully compatible with even the most ancient versions, so you can
continue to use all your external IDE’s and script files. The interactive mode is especially
useful when you are using an environment where other tools are not available or impossible
to use. This document shows you how to use interactive mode and get the most out of it.

Note we assume you have fully installed 4tH according to the instructions, including setting
the DIR4 TH environment variable. If you haven’t you may not be able to complete this tour
due to unexpected errors.

4.2 Starting up 4tH

You can enter 4tH’s interactive mode by just clicking the icon (when you are using MS-
Windows) or by issuing this command on the Unix or MS-DOS commandline:

4th

If you’re using a recent version of Linux, you may want to use the r 1wrap utility! to make
your life easier, especially when editing:

rlwrap 4th

4tH will respond by showing you this screen:

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R) un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>

This is the main menu. It is slightly reminiscent to the earlier versions of Turbo Pascal. At
the bottom is the prompt. Just press the appropriate key and hit enter, e.g. "S", which stands
for the name of the screenfile. 4tH will now prompt you for the name of the screenfile. Note
that 4tH is not case sensitive, so both "s" and "S" will do.

Tt provides persistent history, completion and line editing using the cursor keys. Issue: sudo apt
install rlwrap to install. See also: https://github.com/hanslub42/rlwrap

46

CHAPTER 4. A GUIDED TOUR 47
4.3 Running a program

We assume you’ve installed 4tH according to the instructions”. If not, this might not work.
Now press ’S” and hit enter. 4tH will prompt you for the name of a screenfile:

Screen file name:

Answer by typing “examples/romans.scr’”® and hit answer. 4tH will return to the menu:

Screen file name: examples/romans.scr

(S)creen file: examples/romans.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>

Now hit "R” and press enter. What now appears is your program that is actually running:

>r
Enter number: 2005
Roman number: MMV

After the program has ended, you will return to the menu. Well, that wasn’t too hard, was
it? You can quit 4tH by pressing ’q” and hitting the enter key.

4.4 Starting an editing session

93 99

After we’ve started 4tH again, we enter the editor mode by typing “e” and hitting enter.
Ignore any file opening errors, you’re fine. The "OK” prompt shows you you’re now in the
editor. Now type:

0 clear

This will erase the first screen and select it for editing. 4tH’s editor is a typical Forth editor.
Forth organizes its mass storage into "screens" of 1024 characters. Forth may have one

screen in memory at a time for storing text. The screens are numbered, starting with screen
0.

Each screen is organized as 16 lines with 64 characters*. The Forth screens are merely an
arrangement of virtual memory and do not correspond to the screen format of the target
machine.

Depending on memory model and operating system, you have either 28, 32 or 64 screens
available. This will be sufficient in most situations. These screens correspond to a region
in memory, which acts like a RAM drive.

The actual editing is done in an area that is called the *workspace’. With the word ’clear’
you wipe all information in the workspace. With the word ’list’ you can select a certain
screen for editing and load its information from the RAM disk into the workspace. The

CHAPTER 4. A GUIDED TOUR 48

Screen 1
flush a write a
Workspace Screen 2 File
g list < (editor)
Y
Screen n

Figure 4.1: Editor architecture

figure below shows you how to transfer information between the screenfile, the RAM disk
and the workspace (figure 4.1).

When you enter the editor the file is automatically loaded into the RAM disk. With ’list’
you transfer the source from a screen in the RAM disk into the workspace. Since we started
a new file (that’s why you got the error message) all screens are empty. To make absolutely
sure a screen is fit to receive new code we cleared screen 0 and selected it for editing. You

93 99

can quit the editor by pressing ”’q” and hitting the enter key. This will discard any changes.

95 99

You can quit 4tH by pressing ”q” again and hitting the enter key.

4.5 Writing your first 4tH program

99,99
S

After we’ve started 4tH again, we start by giving our new program a name. Press and
enter "hello.scr”. Now we’re going to enter the source text, so we start up the editor by

pressing “e” (you know by now you have to press the enter key afterwards). Again, ignore
any file opening errors. Then we select screen O for editing by entering:

0 clear

If you want to know what you’ve entered so far you can list the editing screen by entering:

The editor will now show you a full listing:

Scr # 0
0
1
2

2That means you’ve installed 4tH using make install or - if you used a binary package - placed all the
executables and libraries in their proper directories.

3This works for both Windows and Unix type Operating Systems. Note that quotes are simply there to separate
what you have to type at the prompt from the rest of the text. Don’t enter them.

4Except when you’re working with a small screens like the Zaurus or the Ben Nanonote. These have typically
8 lines with 32 character screens.

CHAPTER 4. A GUIDED TOUR 49

O J o U bW

11
12
13
14
15

~ 0 OK

The first line will tell you which screen you’re working on, which is screen 0. Then all
sixteen lines are listed, all blank of course. Finally it will show you the current line, which
is line 0. The ”*” is the cursor, which is at the beginning of the line. You can move the
cursor around with the ”m” command. Try:

10 m

The editor will respond with:

~ 0 OK

And shows you this way that the cursor has moved 10 positions. If you want to move the
cursor backwards, you can do that too. Just enter a negative value, like:

-5m

And the cursor will move back five positions:

” 0 OK

If you enter a larger value, that is perfectly acceptable too:

128 m

Note that every line is 64 characters long, so the editor will tell you you’ve just moved to
line 2:

Don’t be afraid that you’ll do something wrong and lose your source. Note that this is 4tH,
not Forth. If you try something funny like entering a very large value, the editor will just
issue an error message:

1024 m
Off screen OK

CHAPTER 4. A GUIDED TOUR 50

You just tried to go beyond the workspace and the editor won’t allow you to do that. Okay,
we’ve moved around enough. How about writing that program? After all that moving
around, let’s start by doing something sane:

top

93199

That moves the cursor to its "home” position. You can enter text with the ”p” command,
which stands for "PUT”. Just provide the editor with the appropriate linenumber and the
text:

0 p ."Hello world!" cr

Let’s list our screen:

1

Scr # 0
0 ."Hello world!" cr

O J oUW N

9
10
11
12
13
14
15

~."Hello world!" cr 0 OK

That’s it. That’s it? What about all that red tape like “Program Hello” or int main()”,
opening parenthesis or closing braces? Hey, this is Forth, not C or something. You’ve just
told the compiler it has to print the text "Hello world!” and write a newline. Isn’t that what
you wanted?

According to figure 4.1, we first have to save the workspace to the RAM disk by entering
“flush”, then save the whole shebang to disk by entering “write” and subsequently leave

33 99

the editor by entering ’q”.

Although perfectly correct, it is a lot of typing for just saving and exiting. You can do that
a lot faster by just entering ”wq”, which stands for "Write and Quit”:

wq

Now we’re back in the main menu and we want to see our program run. Just hit "R” and
press enter:

r

SIf you are not familiar with Forth and want to learn it, please read the primer. Everything you want to know
is explained there in detail.

CHAPTER 4. A GUIDED TOUR 51

Don’t we have to compile it first? Sure, but 4tH will notice your program hasn’t been com-
piled yet and will compile it automatically for you. You’ll probably get an error message
like this:

Compiling; Word 0O: Undefined name

Then you know you’ve just made a classical beginners error: there is no space between . "
and the text. You’ll have to go back to the editor to correct it. Reload screen 0 by entering:

e
0 list

Scr # 0
0 ."Hello world!" cr

Now let’s see where our cursor is:

0 m
~."Hello world!" cr 0 OK
Now we know we have to move our cursor two positions and enter a space. Entering text at

the cursor position is done by the ”’c” command, which stands for "COPY”. Note that you
have to add a space after each command, so adding a space at the cursor position is done

39 9%

by entering a ’c” with two spaces:

2 m

.""Hello world!" cr 0 OK
." "Hello world!" cr 0 OK

Well, did that work out for you? Or were you a naughty boy and forgot to enter a ’c” with
two spaces? If so, just do it again - but this time right. A ”c” with two spaces will do the
trick.

Now we can exit the editor again and rerun our program. Yes, 4tH will know you’ve
changed the text and recompile your program automatically:
wq

(S)creen file: new.scr

CHAPTER 4. A GUIDED TOUR 52

(O)bject file: out

(E)dit (C)ompile (R) un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile
>r

Hello world!

That’s it! You’ve just successfully entered, compiled and ran your very first 4tH program!

53 99

You can quit 4tH by pressing ”q” and hitting the enter key.

4.6 A more complex program

Note that this is not a tutorial on Forth. If you do not know the language you’ll probably
won’t understand the statements we’re going to enter. You don’t have to, but if you need to
please refer to our highly acclaimed 4tH primer.

Okay, let’s presume you’re looking at your 4tH prompt. We want to write a program which
converts Unix ASCII files to DOS ASCII files. Unix ASCII files use a single linefeed to
signify the end of a line while DOS ASCII files use an carriage return/linefeed pair for that

purpose.

First, we need to name our program, so we press ’s” to enter the name of the screen file.

99 .99

We’ll call it “convert.scr”. Then we enter the editor by pressing “’e” and are greeted by the
”OK” prompt. First we’ll define a word (that’s what a subroutine is called in Forth) that
converts a file. You type the commands, which are bold:

0 clear

OK

0 p : ProcessFile

OK

lp begin

OK

2 p refill

OK

3 p while

OK

4 p 0 parse-word
OK

5p type 13 emit 10 emit
OK

6 p repeat

OK

Tp i

OK

Note that 4tH confirms you after each line that everything is "OK”, but we left those mes-
sages out. When we list our program it looks like this:

1
Scr #
0 : ProcessFile
1 begin
2 refill
3 while
4 0 parse-word
5 type 13 emit 10 emit

CHAPTER 4. A GUIDED TOUR 53

repeat

A

ProcessFile 0 OK

It is a good custom to start each screen with a comment line, so others will know what
we’ve been doing. However, line 0 is already taken. To insert a blank line we use the ”’s”
command, which stands for "SPREAD”. All lines following it will move down. If you
happen to use line 15 you’re in trouble since that one will be lost:

0s0s 1

Scr # 0

2 ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit
8 repeat

~ 0 OK

Yes, as long as you’re not entering a command with a trailing text parameter, you can enter
multiple commands on a single line. So this one tells the editor ”spread at line 0, spread at
line 0, list”. Now we’re going to enter our comment line:

0 p (Conversion from UNIX ASCII files to DOS ASCII files - I)

OK
1
Scr # 0

0 (Conversion from UNIX ASCII files to DOS ASCII files - I)

1

2 ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9

10

11

12

13

14

CHAPTER 4. A GUIDED TOUR 54

15

~(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

That will do nicely. Although this word will do the job, we still have to open the input- and
the output file. Since we want to test our program quickly we make a quick and dirty word
that will do the job:

11 p : test s" code.txt" inpud open s" out.txt" outpud open
12 p error? rot error? rot or abort" Error!" use use;
13 p ttest ProcessFile

wq

99 99

When we try to compile this program by entering c”, it doesn’t work:

Compiling; Word 16: Undefined name

Oops, we’ve obviously made an error, but where? Word 16? Where is word 16? We can
find that out by decompiling the program and see where it went wrong. Just press ’d”:

>d

4tH message: Undefined name at word 16
Object size: 16 words

String size: 9 chars

Variables : 0 cells
Strings : 0 chars
Symbols : 0 names
Reliable : No
Addr| Opcode Operand Argument
71 type 0
8| literal 13
9| emit 0
10| literal 10
11| emit 0
12| branch 0
13| exit 0
14| branch 0
151 s" 0 code.txt

The last thing it compiled was the start of the "TEST’ definition. It must have gone wrong

right after that one. So we go back to the editor by pressing ’e” and find out. Sure, ”inpud”
must be “input”. We can even find out it we made more errors like this:

f pud
: test s" code.txt" inpud” open s" out.txt" outpud open 11 OK
n
test s" code.txt" inpud open s" out.txt" outpud” open 11 OK
n

Not found OK

And yes, we did. On line eleven to be exact. Twice. With the ”f” command (which stand
for "FIND”’) we can find a string. By entering "n” (which stands for "NEXT"”’) we can find
the same text again. Now we have to correct it. We’ll get back to the top of the screen and
find the offending word:

CHAPTER 4. A GUIDED TOUR 55

top £ pud

test s" code.txt" inpud” open s" out.txt" outpud open 11 OK

Note that the cursor is positioned at the end of “inpud”. We only have to wipe one character
and insert the correct one:

lwet
test s" code.txt" inpu” open s" out.txt" outpud open 11
test s" code.txt" input” open s" out.txt" outpud open 11 OK

Of course, we could destructively backup the cursor by one position by issuing 1 w” and
then enter the ’t” at the cursor position by using the ’c” command. However, we won’t do
that, since there is a quicker way:

x pud

test s" code.txt" input open s" out.txt" out” open 11 OK
c put

test s" code.txt" input open s" out.txt" output” open 11 OK

The ”x” command works very much like ’f”, but it does not only find the string, it also
deletes it. Still, there are other errors left in the source:

f test

ttest” ProcessFile 13 OK
b

t~test ProcessFile 13 OK
1w

“test ProcessFile 13 OK

Yes, “test” has an extra ’t”. So we find the next occurrance of ”test”. Note that a search is
always performed from the cursor position, so the definition of "test” is not found. The ”b”
command will move the cursor backwards up to the point where “’test” begins and we can
delete the superfluous ”t” with the command 1 w”. The final typo we have to correct is a
lacking space between “use” and the semicolon. That can be fixed pretty quickly:

top f use

error? rot error? rot or abort" Error!" use” use; 12 OK
n

error? rot error? rot or abort" Error!" use use”; 12 OK
till ;

error? rot error? rot or abort" Error!" use use” 12 OK

The till” command deletes everything from the current cursor position (indicated by the
caret, remember?) to the end of the following string. In this case the semicolon but you can
use any string. Finally, we copy the correct string into the text, which is a space followed by
a semicolon. Don’t forget you need an extra space to separate ’c” from the space and the
semi-colon following it. So that is ”’c”, followed by fwo spaces and finally a semi-colon:

CHAPTER 4. A GUIDED TOUR 56

c

error? rot error? rot or abort" Error!" use use ;" 12 OK

If that didn’t work, you didn’t add two spaces as indicated. Four errors corrected. Let’s
write the screen back to RAM disk and see what we have got:

flush 1
Scr # 0

0 (Conversion from UNIX ASCII files to DOS ASCII files - 1I)

1

2 : ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9

10

11 : test s" code.txt" input open s" out.txt" output open

12 error? rot error? rot or abort" Error!" use use ;

13 test ProcessFile

14

15

error? rot error? rot or abort" Error!" use use ;" 12 OK

Seems to be okay. Let’s go back to the main 4tH screen by issuing the "wq” command. We

93 99

recompile the source by pressing ’c” and presto: we got a program!

But first we have to stress that you don’t have to use 4tHs editor. You can use any editor
you like. Shame you’ve already entered and saved your source. But there is a way out. And

99 .99

you don’t have to go too far. Just start up the editor again by entering e’ and enter:

OK
export convert.4th
OK

You’ll find an ordinary file called “convert.4th” in your working directory hat you can
modify with any text editor you like. You’re still in the editor now, of course. We assume

you know by now how to get out of here. Ok, you win: type ”q”, press enter, type ~’q
again, press enter.

4.7 Advanced features

Important!

We assume you have fully and correctly in-
stalled 4tH. If you haven’t you may not be
able to complete this tour due to unexpected
erTors.

What we actually want is a program we can run from the prompt, something like:

convert in.txt out.txt

CHAPTER 4. A GUIDED TOUR 57

And if you do not provide the required parameters it has to issue an error message:

Usage: convert infile outfile

We will get there, but we still have some coding to do. First of all, we have to structure our
program. We already have a working word® called ”ProcessFile”. It seems like a good idea
to define two others, one that opens the files and one that closes the files. And we have to
get rid of our “’test” word.

93,99 99 .99

So let’s start 4tH, enter “convert.scr” after issuing ”’s” and fire up the editor by issuing “e”.
You type the commands, which are bold:

OK
0 list
Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9
10

11 : test s" code.txt" input open s" out.txt" output open
12 error? rot error? rot or abort" Error!" use use ;
13 test ProcessFile

14
15
OK
11 d1
Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - 1I)
1
2 ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9 ;
10
11 error? rot error? rot or abort" Error!" use use ;
12 test ProcessFile
13
14
15
~(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

You can remove lines with the ”’d” command, which stands for "DELETE”. This will re-
move the line and move all remaining lines up. Line 15 becomes blank. But there is another
way to get rid of unwanted lines:

ll1 el

A subroutine in Forth is called a ”word”, remember?

CHAPTER 4. A GUIDED TOUR

Scr # 0

0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1

2 ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit
8 repeat

9 ;

10

11

12 test ProcessFile

13

14

15

~(Conversion from UNIX ASCII files to DOS ASCII files - I)

58

0 OK

The ”e” command, which stands for "ERASE”, will leave every line at exactly the same

position. It just blanks that line. Let’s finish this:

11 p : Convert OpenFiles ProcessFile ;

OK
12 e
OK
13 p Convert
OK
1
Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - 1I)
1
2 ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9
10
11 : Convert OpenFiles ProcessFile ;
12
13 Convert
14
15

~(Conversion from UNIX ASCII files to DOS ASCII files - I)

0 OK

Seems neat enough, but we still haven’t got a "OpenFiles” word. This has to be defined
before ”Convert”, but do we have still have room for that on screen 0? No, we haven’t.
Fortunately, you can insert screens with the 4tH editor’. Don’t forget to flush. That is not
only a good practice when you’ve visited the bathroom, but also when you’re working with

a Forth editor:

flush 0 insert
OK

We start our screen with a comment of course. We’ll use the same comment as in our

previous screen, so why not copy it?

"Note that this command is usually not available in other Forth editors!

CHAPTER 4. A GUIDED TOUR 59
1 1list 0 h 0 1list O r

That produced a lot of output! What happened here? First, we switched to screen 1, which
is our previous screen 0. Then we used the ”h”® command, which copied line 0 into PAD.
PAD is a buffer, which is able to hold the contents of a single line. Note that line O of screen
1 remains intact. It is only copied.

9999

Then we switched back to screen O and issued the ’r” command, which stands for "RE-
PLACE”. It replaces whatever is on line 0 with the contents of the PAD. Finally, we listed
the screen. Let’s play around a little with this PAD thing:

lr1lt

~(Conversion from UNIX ASCII files to DOS ASCII files - I) 1 OK

Yes, the line we copied was still in PAD! We also used the command “’t” to "TYPE” line 1.
This command is very similar to ’h”, since it copies line 1 to PAD. But is also moves the
cursor to the beginning of the line and types it. Let’s see if you can explain this one:

l1d2r2t

~(Conversion from UNIX ASCII files to DOS ASCII files - I) 2 OK

9999

Sure, the ”’d” command not only deletes the line, it also copies it to PAD. So when the ’r
command is issued, it replaces line 2 with the contents of the line we deleted. Let’s do one
final test:

0il

Scr # 0
(Conversion from UNIX ASCII files to DOS ASCII files - I)
(Conversion from UNIX ASCII files to DOS ASCII files - I)

(Conversion from UNIX ASCII files to DOS ASCII files - I)

N 2 OK

Here we used the ”i” command, which stands for “INSERT”. It inserted the contents of
PAD at line 0 and moved all the remaining lines down. Note that the cursor didn’t move a
bit. That’s enough play for one day, let’s get back to work:

le 3e2p : OpenFile

OK

3p args 2dup 2>r rot open error?
OK

81n case you wondered, ’h” stands for "THOLD”.

CHAPTER 4. A GUIDED TOUR 60

4 p
OK
5p
OK
6 p
OK
7p
OK
8 p
OK
9p
OK
1

Sc

0 J o U b w N OR

i el el
U WN oW

A

if
drop ." Cannot open " 2r> type cr abort
else
dup use 2r> 2drop
then
;
0
(Conversion from UNIX ASCII files to DOS ASCII files - I)
OpenFile
args 2dup 2>r rot open error?
if
drop ." Cannot open " 2r> type cr abort
else
dup use 2r> 2drop
then
OpenFile 2 OK

Hmm, it seems like we’re going to need another screen. It is always wise to leave some
room for future extensions, so this screen is full enough. But don’t forget the commentline.
We don’t want to enter that one again, so let’s store it in PAD:

O h flush 1 insert 0 r 1

Sc

O J oy Ul W OR

e e el el
g W oW

#

(

1
Convert UNIX ASCII files to DOS ASCII files - 1I)

2 OK

Hold the line in PAD, flush the screen, insert screen 1 and replace line O with the contents
in PAD. But the commentline is not entirely correct, so let’s fix it:

top x I)

CHAPTER 4. A GUIDED TOUR

(Convert UNIX ASCII files to DOS ASCII files - *
c II)

(Convert UNIX ASCII files to DOS ASCII files - II)"

61

OK

OK

The cursor is still on line 2, so we move it to the top again. Then we find and delete T)”.
Finally we copy in "II)”. We can do that since the cursor is at the right position. Now let’s
enter our final word:

2 p OpenFiles
OK
3 p argn 3 < abort" Usage: convert infile outfile"
OK
4 p input 1 OpenFile
OK
5p output 2 Openfile
OK
6p;
OK
1
Scr # 1

0 (Conversion from UNIX ASCII files to DOS ASCII files - II)

1

2 OpenFiles

3 argn 3 < abort" Usage: convert infile outfile"

4 input 1 OpenFile

5 output 2 Openfile

6 ;

9

8

9

10

11

12

13

14

15

(Conversion from UNIX ASCII files to DOS ASCII files - II)"

Almost there! We just have to fix the commentline in screen 2:

flush 2 list

Scr # 2

0 (Conversion from UNIX ASCII files to DOS ASCII files - I)

1

2 ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9 ;

10

11 Convert OpenFiles ProcessFile ;

12

13 Convert

14

15
OK

top x I)

OK

CHAPTER 4. A GUIDED TOUR 62

(Convert UNIX ASCII files to DOS ASCII files - * 0 OK
c III)
(Convert UNIX ASCII files to DOS ASCII files - III)" 0 OK

The current screen is flushed, then screen 2 is listed. We position the cursor at the top, find
and delete ’I)” and copy “III)” in at the cursor position. Done! Let’s leave the editor and
see what we have got:

wq
It compiles cleanly (type “’c” in the menu) and when we run it (type “r” in the menu) it
answers:

Usage: convert infile outfile

Sure, but what we actually want is to convert a file. Well, you can do that too without
leaving 4tH. Just press ”a” and enter the filenames, just like you would do at the prompt.
In this example we have chosen “code.txt” and “out.txt” - which probably aren’t there in
your PC, but you catch my drift:

(S)creen file: convert.scr
(O)bject file: out

(E)dit (C)ompile (R) un (A) rguments
(Q)uit (G) enerate (B)uild (D)ecompile
>a

Arguments: code.txt out.txt

9999

When you press ’r”” now, the arguments entered will be passed to your 4tH program, just
like they would at the prompt. To clear the arguments, press ”a” again and just hit enter
when prompted for arguments.

EIPRT)

But how do we run it from the prompt? Easy, just press ”0” and enter "convert.hx” at the
prompt. Now press ’b”:

(S)creen file: convert.scr
(O)bject file: convert.hx

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile
>b

If 4tH has nothing to complain about, it doesn’t complain, so you can safely assume that
everything is okay. Now we can go to the prompt® by pressing ”q” and run it:

user@linux:~ > 4th lxq convert.hx code.txt out.txt
Cannot open code.txt
user@linux:~ >

9Windows users can do this by starting an MS-DOS session.

CHAPTER 4. A GUIDED TOUR 63

That was to be expected. It is always a good idea to test all exceptions as well. There
could be a bug in that code too. Well, it seems to work.. But what we really want is a
standalone program. One that can be run without invoking 4tH and shared with our friends
and families. Why this ”.hx” thing? HX-files do have their merits. First of all, it is very
small, a little over 150 bytes. But most importantly, you can take this file and run it on
a Windows NT, MS-DOS or other Unix machine without modification or recompilation,

provided a 4tH is available for that platform'?,

If you still want a standalone program, startup 4tH, press ”’s” and enter “convert.scr” at the
prompt. Then press "0” and enter “convert.c”. Isn’t that the extension of a C-program?

Yes, it is. 4tH is able to generate C code. Just press ’g” and you’ve created a C program.
You don’t even have to know C.

If you know how to compile a C program that’s more than enough'!. In case you want to
try, you should have installed the 4tH library and header files, since those are needed to
compile “convert.c”!?.

Is that all? No that’s not all 4tH can do. We have a few surprises left.

4.8 Suspending a program

We’ve entered this program:

Scr # 0
0 ." Is everybody in? The ceremony is about to begin.." cr
1 44596 36 base !
2 pause
3 ." Wake up! Do you remember where it was?" cr
4 ." Has this dream stopped? " . cr
5
6
7
8
9
10
11
12
13
14
15

The first line is simply a string we print to screen. The next line, we push a number on the
stack and we change the radix. Then we go to sleep. After that, we wake up again, print a
few lines and retrieve the number on the stack. Let’s quit the editor by pressing “wq” and
run it:

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R) un (A) rguments
(Q)uit (G) enerate (B)uild (D)ecompile
>r

1032 bit platforms and 64 bit platforms are usually not interchangeable.

Windows users need to consult the documentation that came with their C compiler. MS-DOS users are
encouraged to use the "'DJGPP’ compiler, which is free. Most Linux users already have “gcc” installed.

12Read the "Developers Guide” if you are not sure how to do this.

CHAPTER 4. A GUIDED TOUR 64

Is everybody in? The ceremony is about to begin..

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>

At first, it seems like "PAUSE’ is nothing more than an alias for ’ABORT”, but that is not
entirely true. Let’s save the executable and enter ”r”” one more time:

>b

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile
>r

Wake up! Do you remember where it was?
Has this dream stopped? YES

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R) un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>

Now the second part of the program is run, that is the part after 'PAUSE’. Note that both
the stack and the radix have remained intact. Every time "PAUSE’ is invoked, it will return

you to the prompt. When you enter 1" again, it will continue where it left off, until it meets
one of the following three conditions:

1. It encounters another "'PAUSE’; entering “r”” will continue where it left off.
2. It encounters ’ABORT’, ’QUIT’ or ’ABORT”’; entering “r”” will restart the program.

3. There are no more instructions to execute; entering “’r”” will restart the program.

But why did we save an executable? We’ll have to go back to the shell to show you:

user@linux:~> 4th lxq out

Wake up! Do you remember where it was?
Has this dream stopped? YES
user@linux:~>

Entering ”b” during suspension will save the program in its suspended state. When you run
the resulting executable, it will behave like you’ve entered 1. That’s neat, isn’t it?

CHAPTER 4. A GUIDED TOUR 65
4.9 Calculator mode

Startup 4tH. If you feel quite confident now and this large menu is starting to annoy you,
you can enable the “expert mode” by pressing ’x”. This will just leave a tiny prompt. Don’t
worry - make an error and the menu will reappear. BTW, just pressing <ENTER> will do
the trick as well.

99 99

Now enter the editor by pressing ’e”. We’re going to show you this baby can do a lot more
than just editing:

OK

. (Hello world!) cr
Hello world!

OK

Hey, that is a lot like the very first program we ran! Yes, it is. You can enter a subset of
the 4tH language at the editor prompt, so you can test simple programs like this without
getting into the “edit-compile-run” cycle. You can even make some simple calculations:

OK
23 45 + .
68 OK

Simple? Aren’t the operators and operands entered in the wrong order? No, they aren’t.
4tH uses Reverse Polish Notation, which is also used by HP calculators and the Unix “dc”
command. 4tH has even eight built-in variables in which you can store numbers:

23 45 + A. !
OK

A. ?

68 OK

It even understands binary, hexadecimal and octal numbers:

23 45 + binary .

1000100 OK

1000011111 hex FACE octal 765 + + decimal .
65250 OK

This is called the “calculator mode” and you don’t have to do anything if you want to use
it. It is part of the editor command set. You can mix editor commands and calculations'?
as you like. Nice extra, isn’t it?

4.10 Epilogue

This concludes our tour of the 4tH interactive mode. We hope we’ve shown you what you
can do with it and how to use it. Of course, you don’t have to use 4tH’s interactive mode. It
will happily reside and cooperate with existing external IDE’s, editors and the like. But if
memory is tight and you have nothing else, 4tH will prove to be a completely selfcontained
environment.

If you’re still wondering what you can do with Forth and 4tH in particular, let me tell you
this: if you worked your way through this tour, you’ve been working with Forth all the
time. The entire editor is a 4tH program, embedded in the 4tH executable, taking up less
than 3 KB. It is run by the very same interpreter as your initial "Hello world!” program.
Have fun!

13The full calculator command set is listed in the “Editor reference guide”.

Chapter 5

Frequently asked questions

QUESTION: Why has exec_4th () this enormous switch () statement? Why
wasn’t a structure used with pointers to functions?

ANSWER: That one was built too, but it proved to be upto four times slower on all
platforms. Which is perfectly understandable, because every time you
evaluate a token, you have to take the overhead of calling a function into

account.
QUESTION: Why are the tokens of exec_4th () listed in a random order?
ANSWER: We have statistically analyzed which tokens are used more often. They

are up front. Some C-compilers generate a jumptable. Others generate
a repeated "if .. elif .. endif" construction. Compilants produced by the
latter perform better when tokens are ordered this way.

QUESTION: Do I have to use 4tHs builtin editor?

ANSWER: No. You can use any editor you like. 4tH will happily compile all vanilla
MS-DOS, MS-Windows and Unix text files and most block files as well.
Just use your favorite editor to create your source and compile it at the
command line. Note the editor is capable of exporting vanilla text files.
You can also set the environment variable EDIT4TH to your favorite edi-
tor,e.g. "export EDIT4TH=vi”or”’set EDIT4TH=notepad.exe”.
Note that - exactly like the built in editor - you have to save your work
and exit the editor before you can continue.

QUESTION: Iget”I/0 error” all the time. What am I doing wrong?

66

CHAPTER 5. FREQUENTLY ASKED QUESTIONS 67

ANSWER:

If you’re working with Windows and you’re trying to compile some ex-
ample programs, type ’S’ and enter the relative path to the example file,
e.g. "examples/romans.scr”. Note you can only compile, decom-
pile or run it. If you're working on some other Operating System, be
sure you’ve also installed the library files. Now go to the directory where
you have installed them, e.g. "cd /home/john/4th/1ib” and type
”cd ..”. From this working directory use the relative or absolute path
to your source file when you compile it. Be sure the path of the environ-
ment variable DIR4TH is correct.

QUESTION:

ANSWER:

When I use 4tHs builtin editor and try to save my file I get "Cannot
open file” all the time. What am I doing wrong?

This happens most often to Windows users, who either try to update
one of the example files, e.g. "examples/romans.scr”, or fail to
override 4tHs default file setting using ’S’. In both cases, you try to write
a file to a protected directory, which Windows does not allow. It’s quite
easy to fix. Copy any example programs you want to change to your
home directory. If you want to create a new file, type ’S’ and give the
full path to a file in your home directory. If you don’t know what your
home directory is, open CMD . EXE and type "cd’.

QUESTION:

ANSWER:

When 1 first open 4tHs builtin editor I get "Cannot open file”.
What am I doing wrong?

Probably nothing. 4tH just informs you it cannot load the file you issued
at the main menu or the command line. This is always the case when you
start a new file.

QUESTION:

ANSWER:

When I try to use 4tHs builtin editor or run 4tsH I get "Bad object”
all the time. What am I doing wrong?

You're probably running 4tH under a 64 bit operating system. The only
thing you can do is to recompile 4tH (see sections 27.7 and 27.8).

QUESTION:

ANSWER:

When I try to load a screen file or execute an .hx file, 4tH doesn’t seem
to take the DIR4TH environment variable into account.

The DIR4TH environment variable is used by the compiler when it tries
to pull all source files from their different locations at compiletime. Note
that it only reads files. When the editor would start writing files where
you don’t expect it to, things might get very dangerous. The .kx files are
executables and your Operating System already offers several ways to
find them.

CHAPTER 5. FREQUENTLY ASKED QUESTIONS 68

QUESTION: The DIR4TH environment variable doesn’t work.

ANSWER: The DIR4TH environment variable requires a trailing slash or backslash
- depending on your operating system. If you forget it, then, yes, the
DIR4TH environment variable doesn’t work. So, ”’set DIR4TH=c:/users/myname”
doesn’t work, but ’set DIR4TH=c:/users/myname/” does. I promise.

QUESTION: When I open up the editor in 4tH, it takes most 4tH code like an actual
Forth compiler, but not my colon definitions. Why?

ANSWER: The 4tH editor mimics Forth, that’s true. But it is actually a Forth like
environment on top of 4tH. It may seem like you’re working on a Forth
prompt, but you’re not. You can use the editor only for editing or some
quick calculations, but if you want to use the full capability of 4tH, you’re
stuck to the menu.

QUESTION: Can I load shared libraries with 4tH and call the external functions de-
fined there?

ANSWER: No. 4tH is (almost) entirely composed of ANSI-C and since ANSI-C
doesn’t define loading and using shared libraries you can’t. Furthermore,
it would violate 4tH’s uncrashable” design objective, since it is impossi-
ble to trap all possible errors when you call external functions. However,
if you know C, it shouldn’t be too difficult to add that functionality your-
self.

QUESTION: When I compile a 4tH program, I get messages like: "Word 381:
Undefined name”. How do I know where that is?

ANSWER: 4tH is a single pass compiler and keeps the partial compilant in memory
for you to examine. Simply decompile it by pressing "D’ or add the ’d”
option to the command line. Section 11.24 will give you all the details.

Part 11

Primer

69

Chapter 6

Introduction

Don’t you hate it? You’ve just got a new programming language and you’re trying to write
your first program. You want to use a certain feature (you know it’s got to be there) and
you can’t find it in the manual.

I’ve had that experience many times. So when I wrote 4tH I promised myself, that would
not happen to 4tH-users. In this manual you will find many short features on all kind of
topics. How to input a number from the keyboard, what a cell is, etc.

I hope this will enable you to get quickly on your way. If it didn’t, email me at ’the.beez.-
speaks@gmail.com’. You will not only get an answer, but you will help future 4tH users
as well.

You can use this manual two ways. You can either just get what you need or work your
way through. Every section builds on the knowledge you obtained in the previous sections.
All sections are grouped into levels. We advise you to use what you’ve learned after you’ve
worked your way through a level.

First, 4tH fundamentals. It assumes a working knowledge of programming and covers the
basics. Second, 4tH arrays. We’ll try to explain to you what an address is and teach you
basic string handling.

Third, 4tHs Character Segment. We’ll explain you how it is laid out and what you can do
with it. Fourth, 4tHs Integer Segment and Code Segment. We’ll explain you how it is laid
out and what you can do with it.

Finally, advanced programming techniques. First the builtin facilities 4tH offers and after
that the extra features the 4tH library offers. We’ll teach you how to program multilevel
exits, write interpreters, use jump-tables, emulate floating point calculation and a whole lot
more!

It’s gonna be a wild ride. So strap in and have fun!

70

Chapter 7

4tH fundamentals

7.1 Making calculations without parentheses

To use 4tH you must understand Reverse Polish Notation. This is a way to write arithmetic
expressions. The form is a bit tricky for people to understand, since it is geared towards
making it easy for the computer to perform calculations; however, most people can get used
to the notation with a bit of practice.

Reverse Polish Notation stores values in a stack. A stack of values is just like a stack of
books: one value is placed on top of another. When you want to perform a calculation,
the calculation uses the top numbers on the stack. For example, here’s a typical addition
operation:

When 4tH reads a number, it just puts the value onto the stack. Thus 1 goes on the stack,
then 2 goes on the stack. When you put a value onto the stack, we say that you push it onto
the stack. When 4tH reads the operator ’+’, it takes the top two values off the stack, adds
them, then pushes the result back onto the stack. This means that the stack contains:

after the above addition. As another example, consider:

2 34 + %

(The **’ stands for multiplication.) 4tH begins by pushing the three numbers onto the stack.
When it finds the '+, it takes the top two numbers off the stack and adds them. (Taking a
value off the stack is called popping the stack.) 4tH then pushes the result of the addition
back onto the stack in place of the two numbers. Thus the stack contains:

When 4tH finds the **’ operator, it again pops the top two values off the stack. It multiplies
them, then pushes the result back onto the stack, leaving:

14

71

CHAPTER 7. 4TH FUNDAMENTALS 72

The following list gives a few more examples of Reverse Polish expressions. After each,
we show the contents of the stack, in parentheses.

72 - (5)
27 - (=95)
12 3/ (4)
-12 3 / (—4)
4 5 + 2 % (18)
4 52 + % (28)
4 52 % - (-6)

7.2 Manipulating the stack

You will often find that the items on the stack are not in the right order or that you need a
copy. There are stack-manipulators which can take care of that.

To display a number you use ’.’, pronounced "dot". It takes a number from the stack and
displays it. ’'SWAP’ reverses the order of two items on the stack. If we enter

4tH answers:

If you want to display the numbers in the same order as you entered them, you have to
enter:

2 3 swap . . Cr

In that case 4tH will answer:

You can duplicate a number using 'DUP”’. If you enter:

4tH will complain that the stack is empty. However, if you enter:

2 dup . . cr

4tH will display:

Another way to duplicate a number is using ’'OVER’. In that case not the topmost number
of the stack is duplicated, but the number beneath. E.g.

23 dup . . . cr

will give you the following result:

CHAPTER 7. 4TH FUNDAMENTALS 73

But this one:

2 3 over . . . cCr
will give you:

2 32

Sometimes you want to discard a number, e.g. you duplicated it to check a condition, but
since the test failed, you don’t need it anymore. 'DROP’ is the word we use to discard
numbers. So this:

2 3 drop .

will give you "2" instead of "3", since we dropped the "3".

The final one I want to introduce is 'ROT’. Most users find 'ROT’ the most complex one
since it has its effects deep in the stack. The thirdmost item to be exact. This item is taken
from its place and put on top of the stack. It is 'rotated’, as this small program will show
you:

\ 1 is the thirdmost item
. cr \ display all numbers
(This will display "3 2 1’ as expected)
123 \ same numbers stacked
rot \ performs a ’ROT’
\ same operation
(This will display "1 3 2'1!)

. Cr

7.3 Deep stack manipulators

No, there are no manipulators that can dig deeper into the stack. A stack is NOT an array!
So if there are some Forth-83 users out there, I can only tell you: learn Forth the proper
way. Programs that have so many items on the stack are just badly written. Leo Brodie
agrees with me.

If you are in ’deep’ trouble you can always use the returnstack manipulators. Check out
that section.

7.4 Passing arguments to functions

There is no easier way to pass arguments to functions as in 4tH. Functions have another
name in 4tH. We call them "words". Words take their "arguments" from the stack and leave
the "result" on the stack.

Other languages, like C, do exactly the same. But they hide the process from you. Because
passing data to the stack is made explicit in 4tH it has powerful capabilities. In other
languages, you can get back only one result. In 4tH you can get back several!

All words in 4tH have a stack-effect-diagram. It describes what data is passed to the stack
in what order and what is returned. The word **’ for instance takes numbers from the stack,
multiplies them and leaves the result on the stack. It’s stack-effect-diagram is:

CHAPTER 7. 4TH FUNDAMENTALS 74
nl n2 —- n3

Meaning it takes number nl and n2 from the stack, multiplies them and leaves the product
(number n3) on the stack. The rightmost number is always on top of the stack, which means
it is the first number which will be taken from the stack. The word ’.” is described like this:

Which means it takes a number from the stack and leaves nothing. Now we get to the most
powerful feature of it all. Take this program:

2 (leaves a number on the stack)

3 (leaves a number on the stack on top of the 2)

* (takes both from the stack and leaves the result)
(

takes the result from the stack and displays it)

Note that all data between the words **’ and *.” is passed implicitly! Like putting LEGO
stones on top of another. Isn’t it great?

7.5 Making your own words

Of course, every serious language has to have a capability to extend it. So has 4tH. The
only thing you have to do is to determine what name you want to give it. Let’s say you
want to make a word which multiplies two numbers and displays the result.

Well, that’s easy. We’ve already seen how you have to code it. The only words you need
are **” and ’.’. You can’t name it **’ because that name is already taken. You could name
it “'multiply’, but is that a word you want to type in forever? No, far too long.

Let’s call it **.”. Is that a valid name? If you’ve programmed in other languages, you’ll
probably say it isn’t. But it is! The only characters you can’t use in a name are whitespace
characters (<CR>, <LF>, <space>, <TAB>). Note that 4tH is not case-sensitive!

So ’*. is okay. Now how do we turn it into a self-defined word. Just add a colon at the
beginning and a semi-colon at the end:

That’s it. Your word is ready for use. So instead of:

We can type:

And we can use our ’*.” over and over again. Hurray, you’ve just defined your first word in
4tH!

CHAPTER 7. 4TH FUNDAMENTALS 75
7.6 Adding comment

Adding comment is very simple. In fact, there are two ways to add comment in 4tH. That
is because we like programs with a lot of comments.

You’ve already encountered the first form. Let’s say we want to add comment to this little
program:

. This will multiply and print two numbers

4tH will not understand this. It will desperately look for the words ’this’, *will’, etc. How-
ever the word ’\’ will mark everything up to the end of the line as comment. So this will
work:

koox L \ This will multiply and print two numbers

There is another word called (" which will mark everything up to the next ’)” as comment.
Yes, even multiple lines. Of course, these lines may not contain a ’)’ or you’ll make 4tH
very confused. So this comment will be recognized too:

O (This will multiply and print two numbers)

Note that there is a whitespace-character after both *\" and ’(’. This is mandatory! However
the closing paren) does not have to have a leading blank space. It is optional.

7.7 Text-format of 4tH source

4tH source is a simple ASCII-file. And you can use any layout as long a this rule is fol-
lowed:

All words are separated by at least one whitespace character!

Well, in 4tH everything is a word or becoming a word. Yes, even '\’ and ’(’ are words!
And you can add all the empty lines or spaces or tabs you like, 4tH won’t care and your
harddisk supplier either.

7.8 Displaying string literals

Displaying a string is as easy as adding a comment. Let’s say you want to make the ultimate
program, one that is displaying "Hello world!". Well, that’s almost the entire program. The
famous "hello world” program is simply this in 4tH:

CHAPTER 7. 4TH FUNDAMENTALS 76

." Hello world!"

Compile this and it works. Yes, that’s it! No declaration that this is the main function and
it is beginning here and ending there. May be you think it looks funny on the display. Well,
you can add a carriage return by adding the word *CR’. So now it looks like:

." Hello world!" cr

Still pretty simple, huh?

7.9 Creating variables

One time or another you’re going to need variables. Declaring a variable is easy.

variable one

The same rules for declaring words apply for variables. You can’t use a name that already
has been taken. A variable is a word too! And whitespace characters are not allowed. Note
that 4tH is not case-sensitive!

7.10 Using variables

Of course variables are of little use when you could not assign values to them. This assigns
the number 6 to variable ’'ONE’:

6 one !

We don’t call ’!” bang or something like that, we call it ’store’. Of course you don’t have
to put a number on the stack to use it, you can use a number that is already on the stack. To
retrieve the value stored in "ONE’ we use:

one (@

The word * @’ is called "fetch’ and it puts the number stored in one’ on the stack. To
display it you use .’

one @ .

There is a shortcut for that, the word *?’, which will fetch the number stored in ’ONE’ and
displays it:

one ?

7.11 Built-in variables

4tH has only three built-in variables. They are called " BASE’, >IN’ and ’OUT’. 'BASE’
controls the radix at run-time, *>IN’ is used by "’PARSE’ and *OUT" returns a value to the
host program.

CHAPTER 7. 4TH FUNDAMENTALS 71

7.12 Whatis a cell?

A cell is simply the space a number takes up. So the size of a variable is one cell. The size
of a cell is important since it determines the range 4tH can handle. It also helps make code
portable across machines with different cell sized, for example 16 bit and 32 big systems.
We’ll come to that further on.

7.13 What is a literal expression?

A literal expression is simply anything that compiles to a literal. All numbers, all defined
constants and some expressions are compiled to a literal. In the glossary you can find what
compiles to a literal, but we list them here too:

’ <name>
["] <name>
[DEFINED] <name>

[UNDEFINED] <name>

CHAR <char>

[CHAR] <char>

<literal> [NOT]
<literal> [SIGN]
<literal> NEGATE
<literal> 1+

<literal> 1-

<literal> 2x

<literal> /FIELD
<literal> +FIELD <name>
<literal> ENUM <name>
<literal> <literal> «*
<literal> <literal> /
<literal> <literal> +
<literal> <literal> -
<literal> <literal> [=]
<literal> <literal> [MAX]

7.14 Declaring arrays of numbers

You can make arrays of numbers very easily. It is very much like making a variable. Let’s
say we want an array of 16 numbers:

16 array sixteen

That’s it, we’re done! You must omit the word "CELLS’, since ’ARRAY’ implicates that
you want an array of numbers, not characters. The size is a literal expression. You can’t
take it from the stack, so this is invalid:

3 dup + array sixteen

4tH will let you know that this is not a valid construction, but in case you wonder..

CHAPTER 7. 4TH FUNDAMENTALS 78
7.15 Using arrays of numbers

You can use arrays of numbers just like variables. The array cells are numbered from O to
N, N being the size of the array minus one. Storing a value in the Oth cell is easy. It works
just like a simple variable:

5 sixteen 0 th !

Which will store ’5’ in the Oth cell. So storing °7’ in the 8th cell is done like this:

7 sixteen 8 th !

Of course when you want to store a value in the first, second or third cell you have to
use 'TH’ too, since it is a word. If you don’t like that try defining *ST’, ’ND’ and 'RD’
yourself:

: st th ;
: nd th ;
: rd th ;
4 sixteen 1 st !
sixteen 2 nd !
6 sixteen 3 rd !

w

Isn’t 4tH wonderful? Fetching is done the same of course:

sixteen 0 th @
sixteen 4 th @

Plain and easy.

7.16 Copying arrays of numbers

If you want to move chunks of data around, there is ’SMOVE’:

1024 array a
1024 array b

a b 512 smove

This will define two arrays of 1024 cells. ’SMOVE’ will move the first 512 cells of array
”a” to array "b”.

7.17 Declaring and using constants

Declaring a simple constant is easy too. Let’s say we want to make a constant called
”FIVE”:

5 constant five

Now you can use "FIVE” like you would ’5’. E.g. this will print five spaces:

CHAPTER 7. 4TH FUNDAMENTALS 79

five spaces

The same rules for declaring words apply for constants. You can’t use a name that already
has been taken. A constant is a word too! And whitespace characters are not allowed. Note
that 4tH is not case-sensitive. By the way, ’5’ is a literal expression. You can’t take it from
the stack or calculate it.

A special kind of constant is the so-called "plus-constant”. This constant will automatically
add itself to the top of the stack when executed, e.g.:

10 +constant tenplus
20 tenplus .

Will print ”30”. First we define a ’"+CONSTANT’ named “tenplus”, then we throw 720" on
the stack, finally we execute “tenplus” and print the result. It is equivalent to:

10 constant ten
20 ten + .

Yes, you guessed it, a ’”+CONSTANT"’ is a constant with built-in addition! Cool, huh? And
if you thought it couldn’t get any better, there are also **CONSTANT’ and */CONSTANT’,
which have built-in multiplication and division.

7.18 Built-in constants

There are several built-in constants. Of course, they are all literals in case you wonder.
Here’s a list. Refer to the glossary for a more detailed description:

/PAD
/TIB
/HOLD
/CELL
/CHAR
MAX-N
MAX-CHAR
CHAR-BITS
(ERROR)
BL
FALSE
ife)
APP
PAD
STACK-CELLS
TIB
TRUE
VARS
WIDTH
INPUT
OUTPUT
STDOUT
STDIN
APPEND
PIPE
FILES
4TH#

CHAPTER 7. 4TH FUNDAMENTALS 80
7.19 Using booleans

Booleans are expressions or values that are either true or false. They are used to condition-
ally execute parts of your program. In 4tH a value is false when it is zero and true when it
is non-zero. Most booleans come into existence when you do comparisons. This example
will determine whether the value in variable VAR’ is greater than 5. Try to predict whether
it will evaluate to true or false:

variable var
4 var !
var @ 5 > .

No, it wasn’t! But hey, you can print booleans as numbers. Well, they are numbers. But
with a special meaning as we will see in the next section.

7.20 IF-ELSE constructs

Like most other languages you can use IF-ELSE constructs. Let’s enhance our previous
example:

variable var

4 var !

var @ 5 >

if ." Greater" cr

else ." Less or equal" cr
then

So now our program tells you when it’s greater and when not. Note that contrary to other
languages the condition comes before the 'IF’ and "THEN’ ends the IF-clause. In other
words, whatever path the program takes, it always continues after the "THEN’. A tip: think
of "THEN’ as ’ENDIF’..

7.21 FOR-NEXT constructs

4tH has FOR-NEXT constructs as well. The number of iterations is known in this construct.
E.g. let’s print the numbers from 1 to 10:

11 1 do i . cr loop

The first number represents the limit. When the limit is reached or exceeded the loop
terminates. The second number presents the initial value of the index. That’s where it
starts off. So remember, this loop iterates at least once! You can use *?DO’ instead of
’DO’. That will not enter the loop if the limit and the index are the same to begin with:

0 0 ?2do i . cr loop

’1’ represents the index. It is not a variable or a constant, it is a predefined word, which puts
the index on the stack, so ’.” can get it from the stack and print it.

But what if I want to increase the index by two? Or want to count downwards? Is that
possible. Sure. There is another construct to do just that. Okay, let’s take the first question:

CHAPTER 7. 4TH FUNDAMENTALS 81
11 1 do i . cr 2 +loop

This one will produce exactly what you asked for. An increment by two. This one will
produce all negative numbers from -1 to -10:

-11 -1 do i . cr -1 +loop

Note that the step is not a literal expression. You can change the step if you want to, e.g.:

32767 1 do 1 . i +loop

This will print: 1, 2, 4, 8, all up to 16384. Pretty flexible, I guess. You can break out of a
loop by using "LEAVE’. Note that 'TLEAVE’ only sets the index to the value of the limit:
it doesn’t branch or anything. Make sure that there is no code left between 'LEAVE’ and
’LOOP’ that you don’t want to execute. So this is okay:

10 0 do i dup 5 = if drop leave else . cr then loop

And this is not:

10 0 do i dup 5 = if drop leave then . cr loop

Since it will still get past the *.” before leaving. In this case you will catch the error quickly,
because the stack is empty.

7.22 WHILE-DO constructs

A WHILE-DO construction is a construction that will perform zero or more iterations. First
a condition is checked, then the body is executed. Then it will branch back to the condition.
In 4tH it looks like this:

BEGIN <condition> WHILE <body> REPEAT

The condition will have to evaluate to TRUE in order to execute the body. If it evaluates to
FALSE it branches to just after the REPEAT. This example does a Fibbonaci test.

: fib 0 1
begin
dup >r rot dup r> > \ condition
while
rot rot dup rot + dup . \ body
repeat
drop drop drop ; \ after loop executed

You might not understand all of the commands, but we’ll get to that. If you enter "20 fib"
you will get:

1235813 21

This construct is particularly handy if you are not sure that all data will pass the condition.

CHAPTER 7. 4TH FUNDAMENTALS 82
7.23 REPEAT-UNTIL constructs

The counterpart of WHILE-DO constructs is the REPEAT-UNTIL construct. This executes
the body, then checks a condition at "UNTIL’. If the expression evaluates to FALSE, it
branches back to the top of the body (marked by "BEGIN’) again. It executes at least once.
This program calculates the largest common divisor.

: led
begin
swap over mod \ body
dup 0= \ condition

until drop . ;

If you enter "27 21 lcd" the programs will answer "3".

7.24 Infinite loops

In order to make an infinite loop one could write:

begin ." Diamonds are forever" cr 0 until

But there is a nicer way to do just that:

begin ." Diamonds are forever" cr again

This will execute until the end of times, unless you exit the program another way.

7.25 Including source files

4tH has a vocabulary of over 200 words. If you use them in one of your 4tH programs 4tH
will recognize them instantly. These words are internal.

But if you take a look at the glossary, you’ll find that there are a lot of other words too.
Words that 4tH will not recognize; they have to be included first. These words are external.

These words are defined in an include file. An include file is just an ordinary ASCII file
with 4tH source. You can read them if you want. In order to use these words, you have to
tell 4tH where it can find the include file.

This is done by the '[NEEDS’ directive, which is equivalent to the COMUS word ’IN-
CLUDE’ (which 4tH also supports). Everything up to the next ’]” is considered to be a
filename, so the path may contain embedded spaces. You can use absolute paths or rela-
tive paths, just make sure that you're starting 4tH from the proper directory. E.g. this one
includes additional ANS-Forth CORE-words from the directory just above ’lib’!:

[needs lib/anscore.4th]

include lib/anscore.4th

4tH comes with a rich library of words, which covers a large part of ANS-Forth and CO-
MUS? standard words and beyond. They are all located in the ’lib’ directory. In the next
level we’re going to need a lot of these words, so you’d better know how to include them.

'If you’re not sure where that is, enter the lib’ directory and execute “cd ..”.
21n case you wonder, COMUS stands for COMmon USage.

CHAPTER 7. 4TH FUNDAMENTALS 83
7.26 Getting a number from the keyboard

The word to enter a number from the keyboard can be found in the ’lib’ directory and
is defined in the enter. 4th file. To include it you have to tell 4tH. We assume your
working directory is just above the ’lib’ directory?:

[needs lib/enter.4th]

That’s all! Now you can use ’ENTER’ just like any 4tH word. This will allow you to enter
a number and print it:

[needs lib/enter.4th]
enter . cr

By the way, this is the end of the first level. Take our advise and give it a try!

3 As a matter of fact, we will always assume that! If you don’t know what we mean, execute “cd <path to lib
directory>" and then “cd ..”. Now you’re there for sure! Note none of this is any concern to you if you set the
DIR4TH variable.

Chapter 8

4tH arrays

8.1 Aligning numbers

You may find that printing numbers in columns (I prefer "right-aligned") can be pretty
hard. That is because the standard word to print numbers (’.”) prints the number and then a
trailing space. That is why *.R’ was added.

The word *.R’ works just like *.” but instead of just printing the number with a trailing
space *.R’ will print the number right-aligned in a field of N characters wide. Try this and
you will see the difference:

140 . cr
150 5 .r cr

In this example the field is five characters wide, so 150’ will be printed with two leading
spaces.

8.2 Creating arrays of constants

Making an array of constants is quite easy. First you have to define the name of the array
by using the word "TABLE’ or ’CREATE’ (which is ANS-Forth). Then you specify all its
elements. Note that every element is a literal expression. All elements (even the last) are
terminated by the word ’,’. An example:

create sizes 18 , 21 , 24 , 27 , 30 , 255,

Please note that ’,” is a word! It has to be separated by spaces on both ends.

8.3 Using arrays of constants

Accessing an array of constants is very much like accessing an array of numbers. In an
array of numbers you access the Oth element like this:

sixteen 0 th @

84

CHAPTER 8. 4TH ARRAYS 85

When you access the first element of an array of constants you use this construction:

sizes 0 th Qc

The only difference is the word *@C’, which is exclusively used to access arrays of con-
stants.

8.4 Using values

A value is a cross-over between a variable and a constant. May be these examples will give
you an idea:

declaration:

variable a
1 constant b
2 b + value c

No initial value)
Literal expression assigned at compiletime)
Expression assigned at runtime)

fetching:

a @ (Variable throws address on stack)

b (Constant throws value on stack)

c (Value throws value on stack)
storing:

2 b+ a! (Expression can be stored at runtime)

(Constant cannot be reassigned)

2 b+ toc (Expression can be stored at runtime)
adding:

2 b+ a +! (Expression can be added at runtime)

Constant cannot be reassigned)

2 b + +to ¢ Expression can be added at runtime)

In many aspects, values behave like variables and can replace variables. The only thing you
cannot do is make arrays of values. A value is not a literal expression either, so you can’t
use them to size arrays. In fact, a value is a variable that behaves in certain aspects like a
constant.

Note that although *VALUE’ and *'TO’ are aliases, it is more portable and more readable to
use "VALUE’ for declaration and *"TO’ for reassignment.

If you wonder whether it’s better to use a value or a variable, just don’t. Internally, 4tH
switches between a value representation and a variable representation as it sees fit. A clear
case is when you want to initialize a value just once. In that case you take a value - not a
variable.

CHAPTER 8. 4TH ARRAYS 86
8.5 Creating string variables

In 4tH you have to define the maximum length of the string, like Pascal:

10 string name

You cannot add the 'CHARS’ keyword, since ’STRING’ already implies that you are cre-
ating an array of characters. Note that the string variable includes the terminator. That is a
special character that tells 4tH where the string ends (see section 8.14). You usually don’t
have to add that yourself because 4tH will do that for you. But you will have to reserve
space for it.

That means that the string "name" we just declared can contain up to nine characters AND
the terminator. These kind of strings are usually referred to as ASCIIZ strings.

E.g. when you want to define a string that has to contain "Hello!" (without the quotes) you
have to define a string that is at least 7 characters long:

7 string hello

8.6 What is an address?

An address is a location in memory. Usually, you don’t need to know addresses, because
4tH will take care of that. But if you want it, you can retrieve them as we will show you
later. Think of memory like a city. It has roads and houses and inhabitants. There are three
roads in 4tH city:

1. INTEGER SEGMENT, that is where the cells live;
2. CHARACTER SEGMENT, that is where the strings live;
3. CODE SEGMENT, that is where the instructions that form your program live.
If you want to visit a certain person, you go to the city where he lives, find the right street

and knock on the door. If you want to retrieve a certain string or integer, you do the same.

When you define a string, you actually create a constant with the address of that string.
When you later refer to the string you just defined its address is thrown on the stack. An
address is simply a number that refers to its location. As you will see you can work with
string-addresses without ever knowing what that number is. But because it is a number you
can manipulate it like any other number. E.g. this is perfectly valid:

16 string hello

hello \ address of string on stack
dup \ duplicate it
drop drop \ drop them both

Later, we will tell you how to get "Hello!" into the string.

CHAPTER 8. 4TH ARRAYS 87
8.7 String literals

In 4tH a string literal is created by the word ’S””’. The word ’S"’ is very much like ’.", but
instead of printing it to the screen you will just be defining a string literal.

s" This is a string"

4tH is a stack oriented language, so what does ’S™’ leave on the stack? In 4tH, a string
is usually represented by on the stack by its address and its count. So in order to get its
length, you only have to get the first value on the stack. In order to get its address you have
to get the second value on the stack, which is demonstrated by this small program:

s" This is a string" \ create a temporary string
." Length : " . cr \ show the length
." Address: " . cr \ show the address

And what about string literals with quotes. Easy, there is an equivalent to ’S”” that does the
same thing:

s| "This is a string with quotes"|
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Instead of a quote, the string is delimited by a bar. And what about string literals that
include them both? Bad luck? Well, almost but not quite. Just take a look at section 13.15.

8.8 String constants

String constants work the same way as numeric constants:

10 constant ten \ define a string constant
ten . cr \ equivalent to: 10 . cr

In fact, you give a name to a literal value. After that, you can refer to that literal throughout
your program by using its name. String constants do the same thing. Take a look at this
little piece of code:

s" This is a string" \ create a temporary string
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Now we do the same thing, but this time we define a string constant by using *SCON-
STANT’:

s" This is a string" sconstant mystring
\ define a string constant

mystring \ now we use the string constant
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Why use string constants? Well, first of all, if you use a string constant throughout your
program, it will save you some editing when you have to change your program for one
reason or another. Second, it will make your program a little smaller.

CHAPTER 8. 4TH ARRAYS 88
8.9 Initializing string variables

You can initialize a string with the ’S"” word. If you want the string to contain your first
name use this construction:

s" Hello!" name place

The word "PLACE’ copies the contents of a string literal into a string-variable.

If you still don’t understand it yet, don’t worry. As long as you use this construction, you’ll
get what you want. Just remember that assigning a string literal to a string that is too short
will result in an error or even worse, corrupt other strings.

8.10 Imitializing a NULL string variable

If you’re not sure what that means, it means we’re initializing a string variable to an empty
string. Well, that’s very easy:

0 name c!
pad 0 name place
0 dup name place

Choose any of these three. And all these constucts are compatible with ANS-Forth.

8.11 Getting the length of a string variable

You get the length of a string variable by using the word ’"COUNT". It will not only return
the length of the string variable, but also the string address. It is illustrated by this short
program:

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to ’'Hello!’
greeting count \ get string length

." String length: " . cr \ print the length

drop \ discard the address

Most string handling words return or take an address/count pair. One of the exceptions
is the string variable itself (see section 8.9). To copy the contents of an address/count
pair represented string into a string variable, we use "'PLACE’. In order to convert a string
variable back to an address/count pair represented string, we use "COUNT’:

32 string my-string \ create a string variable
\ create an address/count
s" This is a string" \ pair represented string
my-string place \ copy it into the variable
my-string count \ convert it into an address/count pair
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Note that the contents of the string variable do not change by a "COUNT’ conversion!

CHAPTER 8. 4TH ARRAYS 89
8.12 Printing a string variable

Printing a string variable is pretty straight forward. The word that is required to print a
string variable is *"TYPE’. It requires an address/count pair. Yes, that are the values that
are left on the stack by "TCOUNT’! So printing a string means issuing both "COUNT’ and
"TYPE’:

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to ’Hello!’
greeting count type cr \ print the string

If you don’t like this you can always define a word like "PRINTS’:

: print$ count type ;

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to 'Hello!’
greeting print$ cr \ print the string

8.13 Copying a string variable

You might want to copy one string variable to another. Let’s take a look at this example:

32 string one \ define the first string

32 string two \ define the second string

s" Greetings!" one place \ initialize string one

one count \ get the length of string one
two place \ and copy it into string two
two count type cr \ print string two

First we place the string ”Greetings!” into a string variable. ’S™” will put an address/count
pair on the stack, that is consumed by 'PLACE’. Variable "ONE” only puts its address
on the stack, that is converted into an address/count pair by 'TCOUNT’. After it has been
consumed again by 'PLACE’ we need "COUNT’ again to provide "'TYPE’ with an ad-
dress/count pair.

8.14 The string terminator

In order for ’'COUNT’ to work, it has to know where the string stops. So a special character
at the end of the string, the string terminator, is used to indicate the end of an ASCIIZ string.
It has nothing to do with Arnold Schwarzenegger obliterating innocent strings! It is simply
a character, having the ASCII value zero. It may also be referred to as the NULL-character.
Although most strings in 4tH will be terminated automatically it is considered bad style to
rely on that.

If you have doubts, you can always convert an address/count pair to a terminated string
by applying *>STRING’, although you have to take care that nothing is overwritten and
enough space is available. As a rule of the tumb you might say that >>STRING’ can safely
be applied to all string variables.

CHAPTER 8. 4TH ARRAYS 90
8.15 Slicing strings

Slicing strings is just like copying strings. We just don’t copy all of it and we don’t always
start copying at the beginning of a string. We’ll show you what we mean:

32 string one \ define string one

s" Hans Bezemer" one place \ initialize string one

one count 2dup type cr \ duplicate and print it

1 /string \ move one character forward
2dup type cr \ duplicate and print it again
1 /string \ move one character forward
2dup type cr \ duplicate and print it again
1 /string \ move one character forward
type cr \ print it for the last time

First it will print "Hans Bezemer", then "ans Bezemer", then "ns Bezemer" and finally
"s Bezemer". The word */STRING’ adjusts the address/count pair by a given number of
characters, in this case one character. The word *2DUP’ is much like "'DUP’, but it copies
the top fwo values on the stack. It is functionally equivalent to:

over over

If we want to discard the first name at all we could even write:

32 string one \ define string one
s" Hans Bezemer" one place \ initialize string one
one count 5 /string type cr \ print sliced string

The five characters we want to skip are the first name (which is four characters) and a space
(which adds up to five). There is a special word for slicing strings in the library member
slice.4th. You call it with:

address count position-to-start position-to-end

Both positions start counting at zero. So this will copy the first name to string "two" and
print it:

[needs lib/slice.4th]

declare string one
declare string two
initialize string one
slice the first name
copy it to string two
print string two

32 string one

32 string two

s" Hans Bezemer" one place
one count 0 3 slice

two place

two count type cr

s s s s

This will slice the last name off and store it in string "two":

[needs lib/slice.4th]

declare string one
declare string two
initialize string one
slice the last name
copy it to string two
print string two

32 string one

32 string two

s" Hans Bezemer" one place
one count 5 11 slice

two place

two count type cr

~ s s s s

Since the last name is seven characters long and starts at position five (start counting with
zero!).

CHAPTER 8. 4TH ARRAYS 91
8.16 Appending strings

The word *+PLACE!” appends two strings. In this example string "one" holds the first
name. The second string literal is appended to string "one" to form the full name. Finally
string "one" is printed.

32 string one \ define string one

s" Hans " one place \ initialize first string

s" Bezemer" one +tplace \ append ’'Bezemer’ to string
one count type cr \ print first string

8.17 Comparing strings

If you ever sorted strings you know how indispensable comparing strings is. As we men-
tioned before, there are very few words in Forth that act on strings. Here is a word that can
compare two strings. It is located in the library member compare.4th.

[needs lib/compare.4th]

compare two chars
define string one
initialize string one
define string two
initialize string two

32 string one
s" Hans Bezemer" one place
32 string two
s" HANS BEZEMER" two place

~ s s

one count two count compare \ compare two strings

if

." Strings differ" \ message: strings ok
else

." Strings are the same" \ message: strings not ok
then
cr \ send CR

Simply pass two strings (represented by their address/count pairs) to "COMPARE’ and it
will return a TRUE flag when the strings are different. This might seem a bit odd, but
strcmp () does exactly the same. If you don’t like that you can always add '0=" to the
end of "COMPARE’ to reverse the flag.

You’ll soon find out that ANS-Forth’s ’COMPARE’ is case sensitive. Lucky for you, you
can modify the behaviour of 4tH’s "COMPARE’. Just define this before the *[NEEDS’
directive:

[pragma] casesensitive
[needs lib/compare.4th]
\ compare two chars
32 string one \ define string one
s" Hans Bezemer" one place \ initialize string one
32 string two \ define string two
s" HANS BEZEMER" two place \ initialize string two

one count two count compare \ compare two strings

if

." Strings differ" \ message: strings ok
else

." Strings are the same" \ message: strings not ok
then
cr \ send CR

IThere is a COMUS word called ’APPEND’ which works exactly the same.

CHAPTER 8. 4TH ARRAYS 92

Now "COMPARE’ will do a case sensitive comparison.

Note that 4tH’s "COMPARE’ also differs in other ways from an ANS-Forth compliant
’COMPARE’. That one requires ”’-1” when the string is smaller, ”0” when it matches and
”1” when it’s larger. True, most of the time it doesn’t matter: you use *0<’ to sort it and
0= to see if it matches. Which works both ways. Except that the default is a bit shorter
and faster. But if you really require an ANS-compliant implementation you deserve to get
it - just use the '[PRAGMA]’ JANSCOMPARE”.

However, if you want a COMUS-like "ICOMPARE”, just use the '[PRAGMA]’ “USE-
ICOMPARE?”. If you need a case sensitive’COMPARE’ as well, justinclude i compare. 4th.
It’s your choice.

8.18 Finding a substring

Sometimes you need to find a string within a string. ANS-Forth has defined a word for that
too. It is called "'SEARCH’. You need to include search. 4th in order to use it. Now lets
find "the” in this string:

[needs lib/search.4th]

s" How the cow catches the hare"

s" the" search \ search for ’the’
0= if ." not " then ." found: "
type \ print the result

"SEARCH’ always returns a flag and a address/count pair. If it returns true, the substring
was found; if it returns false, the substring was not found. Now that’s pretty straightfor-
ward, isn’t it? That means that the small program above will print:

found:

When the substring was found and:

not found:

When the substring was not found. But what kind of string does it return when the substring
was not found? Well, the entire string you fed it, so this would have been its output if we
had been looking for the substring “now” instead of ”the”:

not found: How the cow catches the hare

But in this specific example we are looking for “the”. When found, ’SEARCH’ returns the
string after the first occurrence of the substring we were looking for:

found: the cow catches the hare
Why that? Why not a position? Well, first of all, you can look for the same substring again:

[needs lib/search.4th]

s" How the cow catches the hare"

s" the" search drop \ drop the flag

2dup type \ print the string
s" the" search drop \ now search again
type \ print the string

CHAPTER 8. 4TH ARRAYS 93
This will print:

the cow catches the hare
the hare

But if you still want to see a position instead of a string, you can simply define this:

[needs lib/search.4th]
: position
2>r over swap 2r> search 0= >r drop swap - r> if 1- then

’

s" How the cow catches the hare"
s" the" position . cr

That will take care of your problems. If the substring was found, "POSITION” will return a
positive number. If it wasn’t found, it will return a negative number. Note that ’'SEARCH’
can be persuaded to do a case-sensitive comparison, just like 'COMPARE’:

[pragma] casesensitive
[needs lib/search.4th]

Now "SEARCH’ will do a case sensitive comparison, just like ’'COMPARE’.

8.19 Replacing substrings

Sometimes finding is not enough. You have replace it by something else. You can do that
very easily with 4tH. Just include replace. 4th. It contains a word that will do all that.
Take this example:

[needs lib/replace.4th]

s" How the cow catches the hare" s" the" s" a"
replaceall type cr

It will print:
How a cow catches a hare

Yes, this one replaces all occurrences of ’the” by ”a”. Note that like "COMPARE’ and
"SEARCH?” this one can be made case sensitive too:

[pragma] casesensitive
[needs lib/replace.4th]

8.20 Deleting substrings

Yes, we even got a word for ’search-and-destroy’ missions. You only have to include
replace.4th:

CHAPTER 8. 4TH ARRAYS 94

[needs lib/replace.4th]

s" How the cow catches the hare" s" the"
deleteall type cr

This will print:
How cow catches hare

Yes, it deletes all occurrences of ’the”. Note that like ’"COMPARE’, ’'SEARCH’ and 'RE-
PLACE’ this one can be made case sensitive too:

[pragma] casesensitive
[needs lib/replace.4th]

8.21 Removing trailing spaces

You probably know the problem. The user of your well-made program types his name and
hits the spacebar before hitting the enter-key. There you go. His name will be stored in
your datafile with a space and nobody will ever find it.

In 4tH there is a special word called *~-TRAILING’ that removes the extra spaces at the end
with very little effort. Just paste it after "COUNT"’. Like we did in this example:

32 string one \ define a string
s" Hans Bezemer " \ string with trailing spaces
one place \ now copy it to string one

one dup \ save the address

Lo \ print a bracket
count type \ old method of printing
"IN ocer \ print bracket and newline

A \ print a bracket
count -trailing type \ new method of printing
"1 cer \ print a bracket and newline

You will see that the string is printed twice. First with the trailing spaces, second without
trailing spaces.

8.22 Removing leading spaces

And what about leading spaces? Patience, old chap. You’ve got a lot of ground to cover.
There is no built-in word for that, but we can use a library member like we did in this
example:

[needs lib/leading.4th]

32 string one \ define a string
s" Hans Bezemer" string with leading spaces
one place \ now copy it to string one

—~

one dup \ save the address

CHAPTER 8. 4TH ARRAYS 95

LT \ print a bracket
count type old method of printing
"1 ocer \ print bracket and newline

—

LT \ print a bracket
count -leading type new method of printing
A S o \ print a bracket and newline

—~

You will see that the string is printed twice. First with the leading spaces, second without
leading spaces. Happy?

8.23 Upper and lower case

Sometimes you will have to convert a string to upper or lower case. 4tH has a library
member for that too. Just include:

[needs lib/ulcase.4th]

This will define several easy to use conversion words. E.g. in order to convert a string to
upper case, just enter:

s" Convert this!" s>upper \ convert addr/count string to uppercase
type cr \ type the string

Its lower case counterpart is:

s" Convert this!" s>lower \ convert addr/count string to lowercase
type cr \ type the string

Like most string words it takes and returns an address/count pair. Note that the string in
question is modified, so if you still need the original, copy it first. You can also convert an
individual character:

char A char>lower emit \ convert a character and show it

And consequently, its counterpart is:

char a char>upper emit \ convert a character and show it

These words take an ASCII value from the stack, convert it and put the converted ASCII
value back on the stack. If the value does not represent a alphabetic character, it is left
unchanged.

8.24 String literals and string variables

Most computer languages allow you to mix string literals and string variables. Not in 4tH.
In 4tH they are two distinct datatypes. To print a string literal you use the word *."’. To
print a string variable you use the ’"COUNT TYPE’ construction.

There are only three different actions you can do with a string literal. First, you can define
one using ’S"’. Second, you can print one using *."” Finally, you can compile a string into

EIRTE]

your program using ’,

This may seem a bit mind-boggling to you now, but we’ll elaborate a bit further on this
subject later.

CHAPTER 8. 4TH ARRAYS 96
8.25 Printing individual characters

"[already know that!"

Sure you do. If you want to print "G" you simply write:
. " Gll

Don’t you? But what if you want to use a TAB character (ASCII 9)? You can’t type in that
one so easily, huh? You may even find it doesn’t work at all!

Don’t ever use characters outside the ASCII range 32 to 127 decimal. It may or may not
work, but it won’t be portable anyway. the word ’EMIT’ may be of some help. If you want
to use the TAB-character simply write:

9 emit

That works!

8.26 Distinguishing characters

Like in a novel, not all characters are created equal. There are upper case characters, lower
case characters, control characters, whitespace, etc. Sometimes it is necessary to find out
what kind of character we are dealing with. Of course, 4tH can help you there. You need
to include i stype. 4th in order to use it:

char a is-lower . cr
char a is-upper . cr

4tH will first print a TRUE value (because ’a’ is a lower case character) and then a FALSE
value. This table tells you what words 4tH offers and the ranges of valid characters:

WORD RANGE (ASCII) DESCRIPTION

IS-ASCII 0-127 All 7-bit ASCII characters
IS-PRINT 32-127 As above, without control characters
IS-WHITE | 0-32 All control characters plus space
IS-DIGIT 0 -9 All digits

IS-LOWER | ’a’ -’7’ All lower case characters

IS-UPPER A - All upper case characters
IS-ALPHA a’-’z’ AN - All alphabetic characters
IS-ALNUM | ’0’-°9’,’a’ -’z’,’A’ -°Z’ | All alphanumeric characters

Table 8.1: Character typing words

CHAPTER 8. 4TH ARRAYS 97
8.27 Getting ASCII values

Ok, ’EMIT’ is a nice addition, but it has its drawbacks. What if you want to emit the
character "G". Do you have to look up the ASCII value in a table? No. 4tH has another
word that can help you with that. It is called "CHAR’. This will emit a "G":

char G emit

The word "CHAR’ looks up the ASCII-value of "G" and leave it on the stack. You can
also use '[CHARY]’. It does exactly the same thing. It is included for compatibility with
ANS-Forth versions. Note that ’"CHAR’ only works with printable characters (ASCII 33 to
127 decimal).

8.28 Printing spaces
If you try to print a space by using this construction:
char emit

You will notice it won’t work. Sure, you can also use:

But that isn’t too elegant. You can use the built-in constant 'BL” which holds the ASCII-
value of a space:

bl emit

That is much better. But you can achieve the same thing by simply writing:
space

Which means that if you want to write two spaces you have to write:

space space

If you want to write ten spaces you either have to repeat the command *SPACE’ ten times
or use a DO-LOOP construction, which is a bit cumbersome. Of course, 4tH has a more
elegant solution for that:

10 spaces

Which will output ten spaces. Need I say more?

CHAPTER 8. 4TH ARRAYS 98
8.29 Fetching individual characters

Take a look at this small program:

32 string one \ define string one
s" Hans" one place \ initialize string one

What is the second character of string "one"? Sure, its an "a". But how can you let your
program determine that? You can’t use *@’ because that word can only access variables.

Sure, you can do that in 4tH, but it requires a new word, called ’C@’. Think of a string as
an array of characters and you will find it much easier to picture the idea. Arrays in 4tH
always start with zero instead of one. So accessing the first character might be done with:

one 0 th ca@

We do not recommend using this construction, although it will work perfectly. If you never
want to convert your program to Forth you might even choose to keep it that way. We
recommend the construction:

one 0 chars + c@

Which is slightly more wordy. 4tH will compile both constructions in exactly the same
way. Anyway, accessing the second character is easy now:

one 1 chars + c@

This is the complete program:

32 string one \ define string one

s" Hans" one place \ initialize string one
one 1 chars + c@ \ get the second character
emit cr \ print it

8.30 Storing individual characters

Storing individual characters works just the same. Keep that array of characters in mind.
When we want to fetch a variable we write:

my_var @
When we want to store a value in a variable we write:
5 my_var !

Fetching only requires the address of the variable. Storing requires both the address of the
variable and the value we want to store. On top of the stack is the address of the variable,
below that is value we want to store. Keep that in mind, this is very important.

Let’s say we have this program:

CHAPTER 8. 4TH ARRAYS 99

32 string one \ define string one
s" Hans" one place \ initialize string one

Now we want to change "Hans" to "Hand". If we want to find out what the 4th character of
string "one" is we write:

32 string one \ define string one
s" Hans" one place \ initialize string one
one 3 chars + c@ \ get the fourth character

Remember, we start counting from zero! If we want to store the character "d" in the fourth
character, we have to use a new word, and (yes, you guessed it right!) it is called "C!’:

32 string one \ define string one
s" Hans" one place \ initialize string one
one 3 chars + \ address of the fourth char
char d \ we want to store ’d’
swap \ get the order right
\

c! now store ’d’

If we throw the character "d" on the stack before we calculate the address, we can even
remove the "'SWAP’:

32 string one

char d

s" Hans" one place
one 3 chars +

c!

define string one

we want to store ’'d’
initialize string one
address of the fourth char
now store ’d’

e e -

We will present the very same programs, but now with stack-effect-diagrams in order to
explain how this works. We will call the index ’i’, the character we want to store ’c’

and the address of the string ’a’. By convention, stack-effect-diagrams are enclosed by
parenthesis.

If you create complex programs this technique can help you to understand more clearly
how your program actually works. It might even save you a lot of debugging. This is the
first version:

32 string one
s" Hans" one place

n
c!

c a+i)
--)

(
(
one 3 chars (a i)
+ (a+i)
char d (a+i c)
swap (¢ a+i)
c! (=)
Now the second, optimized version:
32 string one ()
char d (c)
s" Hans" one place (c)
one 3 chars (cai)
(
(

CHAPTER 8. 4TH ARRAYS 100
8.31 Getting a string from the keyboard

Of course, you don’t want to initialize strings all your life. Real applications get their input
from the keyboard. We’ve already shown you how to get a number from the keyboard.
Now we turn to strings.

When programming in BASIC, strings usually have an undefined length. Some BASICs
move strings around in memory, others have to perform some kind of "garbage-collection".
Whatever method they use, it takes up memory and processor-time.

4tH forces you to think about your application. E.g. when you want to store somebodies
name in a string variable, 16 characters will be too few and 512 characters too many. But
64 characters will probably do.

But that poses a problem when you want to get a string from the keyboard. How can you
prevent that somebody types a string that is just too long? And how do you terminate it?

The word *ACCEPT’ takes two arguments. First, the string variable where you want to
save the input and second, the maximum number of characters it can take. It automatically
terminates the string when reading from the keyboard. But there is a catch. This program
can get you into trouble:

64 constant #name \ length of string
#name string name \ define string ’name’
name #name accept \ input string

name swap type cr \ swap count and print

Since 64 characters plus the terminator add up to 65 characters. The word *ACCEPT’
always returns the number of characters it received. You will find that you won’t need that
information most of the time.

This is the end of the second level. Now you should be able to understand most of the
example programs and write simple ones. I suggest you do just that. Experience is the best
teacher after all.

Chapter 9

Character Segment

9.1 The Character Segment

Wonder where all these strings are created? I bet you do. Well, when you define a string,
memory is allocated in the Character Segment. When you define another one, space is
allocated after the first string. That means that if you go beyond the boundaries of the first
string, you’ll end up in the space allocated to the second string.

After the second string there is a void. If you end up there your program will end with an
error-message. And what about the space before the first string? Well, take a look at figure
9.1.

The lower memory is at the bottom. Yes, before your
strings there are two other areas, the TIB and the PAD.
We’ll elaborate on that in the next section.

The Character Segment is created at run-time. That means User strings
that it isn’t there when you compile a program. The com-
piler just keeps track of how much memory would be
needed to create such a Character Segment and stores that
information in the header.

PAD

TIB

When you run the program the header is read first. Then
the Character Segment is created, so it is already there
when your program starts executing. When you exit the Figure 9.1: Character seg-
program, the Character Segment is destroyed and all in- ment

formation stored there is lost (unless you save it first).

9.2 Whatis the TIB?

The TIB stands for "Terminal Input Buffer" and is used by one single, but very important
word called "REFILL’. In essence, 'REFILL’ does the same thing as ’ACCEPT’, except
that it has a dedicated area to store its data and sets up everything for parsing. Whatever
you type when you call 'REFILL, it is stored in the TIB.

101

CHAPTER 9. CHARACTER SEGMENT 102
9.3 What is the PAD?

The PAD is short for "scratch-pad". It is a temporary storage area for strings. It is heavily
used by 4tH itself, e.g. when you print a number the string is formed in the PAD. Yes,
that’s right: when you print a number it is first converted to a string. Then that string is
’COUNT’ed and "'TYPE’d. You can even program that subsystem yourself as we will see
when we encounter formatted numbers (see section 9.8).

5 999

Furthermore, string constants (compiled by ’S™ or ’,””) are temporarily stored in the PAD.
Finally, ' NUMBER’ and ’ARGS’ also use the PAD. The PAD is actually a circular buffer.
That means that strings are stored in the PAD until it runs out of space. Then it starts to
overwrite the oldest strings. Usually, they have turned into garbage that is no longer used,
but sometimes they still have some significance to your program. In that case, you’ll have
to save the string that was overwritten into a variable. Don’t rely on the PAD to keep your
strings alive!

9.4 How do I use TIB and PAD?

In general, you don’t. The TIB is a system-related area and it is considered bad practice
when you manipulate it yourself. The PAD can be used for temporary storage, but beware!
Temporary really means temporary. A few words at the most, provided you don’t use any
string constants.

Think of both these areas as predefined strings. You can refer to them as *TIB’ and "PAD’.
You don’t have to declare them in any way. This program is perfectly alright:

s" Hello world" pad place \ store a string in pad
pad count type cr \ print contents of the pad

If you want to know how big TIB and PAD are, you can use the predefined constants */TIB’
and '/PAD’:

." Size of TIB: " /TIB . cr \ print sizeof TIB
." Size of PAD: " /PAD . cr \ print sizeof PAD

Note, this does not print the length of a string stored in the area, but the maximum size
of the string that can be stored there. Some space of the PAD is reserved for number
generation (see section 9.3). You can get the size of this area by the predefined constant
’/HOLD’. This will print the size of this area and the size of PADs circular buffer:

." Size of HOLD : " /HOLD . cr \ print sizeof HOLD
." Size of buffer: " /PAD /HOLD - . cr

If that area did not exist even printing a number could corrupt the circular buffer. In some
unusual circumstances, the PAD can get corrupted. If so, identify the temporary string that
gets corrupted and store it explitly into a string variable.

9.5 Simple parsing

We have already discussed 'REFILL’ a bit. We’ve seen that it is closely related to *AC-
CEPT’. "REFILL’ returns a true flag if all is well. When you use the keyboard it usually is,
so we can safely drop it, but we will encounter a situation where this flag comes in handy.

If you want to get a string from the keyboard, you only have to type:

CHAPTER 9. CHARACTER SEGMENT 103

refill drop \ get string from keyboard

Every next call to "TREFILL’ will overwrite any previously entered string. So if you want to
do something with that string you’ve got to get it out of there, usually to one of your own
strings.

But if accessing the TIB directly is not the proper way, what is? The use of "REFILL’ is
closely linked to the word "PARSE-WORD?’, which is a parser. ’'PARSE-WORD’ looks for
the delimiter, whose ASCII code is on the stack.

If the string starts with the delimiter, it will skip this and all subsequent occurrences until
it finds a string. Then it will look for the delimiter again and slice the string right there. It
then returns its address and count.

This is extremely handy when you want to obtain filtered input. E.g. when you want to
split somebodies name into first name, initials and lastname:

Hans L. Bezemer

Just use this program:

." Give first name, initials, lastname: "
refill drop get string from keyboard

-

bl parse-word
." Last name : "
type cr

parse last name
write message
write last name

bl parse-word \ parse first name
." First name: " \ write message
type cr \ type first name
bl parse-word \ parse initials
." Initials : " \ write message
type cr \ type initials

\

\

\

You don’t have to parse the entire string with the same character. This program will split
up an MS-DOS filename into its components:

." DOS filename: " refill \ input a DOS filename
drop cr \ get rid of the flag
char : parse-word \ parse drive
." Drive: " type ." :" cr
\ print drive

begin

char \ parse-word \ parse path

dup 0<> \ if not a NULL string
while \ print path

." Path : " type cr
repeat \ parse again
drop drop \ discard string

If 'PARSE-WORD’ reaches the end of the string and the delimiter is still not found, it
returns the remainder of that string. If you try to parse beyond the end of the string, it
returns a NULL string. That is an empty string or, in other words, a string with length zero.

Therefore, we checked whether the string had zero length. If it had, we had reached the
end of the string and further parsing was deemed useless.

CHAPTER 9. CHARACTER SEGMENT 104
9.6 Converting a string to a number

We now learned how to parse strings and retrieve components from them. But what if these
components are numbers? Well, there is a way in 4tH to convert a string to a number, but
like every number-conversion routine it has to act on invalid strings. That is, strings that
cannot be converted to a valid number.

4tH uses an internal error-value, called *(ERROR)’. The constant *(ERROR)’ is a strange
number. You can’t negate it, you can’t subtract any number from it and you can’t print it.
If 4tHs number-conversion word "'NUMBER’ can’t convert a string it returns that constant.
"’ERROR?’ checks the return value and leaves an additional true flag if an error occured
(which means: *(ERROR)’ was returned). Let’s take a look at this program:

." Enter a number: " \ write prompt
refill drop \ enter string
bl parse-word \ parse string
number \ convert to a number
error? \ test for valid number
if \ if not wvalid
." You didn’t enter a valid number!" drop cr
else \ print if valid
." The number was: " . cr
then

You first enter a string, then it is parsed and "'PARSE-WORD’ returns the address and count.
"NUMBER’ tries to convert it. If 'NUMBER’ returns *(ERROR)’ it wasn’t a valid string.
Otherwise, the number is right on the stack, waiting to be printed. That wasn’t so hard, was
it?

9.7 Controlling the radix

If you are a programmer, you know how important this subject is to you. Sometimes, you
want to print numbers in octal, binary or hex. 4tH can do that too. Let’s take the previous
program and alter it a bit:

." Enter a number: " \ write prompt
refill drop \ enter string
bl parse-word \ parse string
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if valid
hex
." The number was: " cr
then

We added the word "HEX just before printing the number. Now the number will be printed
in hexadecimal. 4tH has a number of words that can change the radix, like 'DECIMAL’
and ’OCTAL’. They work in the same way as "HEX.

4tH always starts in decimal. After that you are responsible. Note that all radix control
follows the flow of the program. If you call a self-defined word that alters the radix all
subsequent conversion is done too in that radix:

CHAPTER 9. CHARACTER SEGMENT 105

.hex hex . ; \ print a number in hex

." Enter a number: " \ write prompt
refill drop \ enter string
bl parse-word \ parse string
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if wvalid
." The number was: " .hex cr
then

In this example not only that single number is printed in hex, but also all subsequent num-
bers will be printed in hex! A better version of the ".HEX" definition would be:

.hex hex . decimal ;

Since that one resets the radix back to decimal. Words like "HEX’ do not only control the
output of a number, but the input of numbers is also affected:

." Enter a number: " write prompt

\
refill drop \ enter string
bl parse-word \ parse string
\
\
\

hex convert hexadecimal
number convert to a number
error? test for valid number
if \ 1f not wvalid

." You didn’t enter a valid number!" drop cr
else \ print if valid

dup

." The number was: " decimal . ." decimal" cr

." The number was: " hex . ." hex" cr
then

"NUMBER’ will now also accept hexadecimal numbers. If the number is not a valid hex-
adecimal number, it will return *(ERROR)’. You probably know there is more to radix
control than ’"OCTAL’, "HEX’ and 'DECIMAL’. No, we have not forgotten them. In fact,
you can choose any radix between 2 and 36. This slightly modified program will only
accept binary numbers:

binary 2 base ! ;

." Enter a number: " \ write prompt
refill drop \ enter string
bl parse-word \ parse string
binary \ convert hexadecimal
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if wvalid
dup \ both decimal and hex
." The number was: " decimal . ." decimal" cr
." The number was: " hex . ." hex" cr
then

"BASE’ is a predefined variable that enables you to select any radix between 2 and 36. This
makes 4tH very flexible. However, this won’t work:

hex 02B decimal . cr

CHAPTER 9. CHARACTER SEGMENT 106

4tH will try to compile "02B", but since it isn’t a word or a valid decimal number, it will
fail. Words like "THEX’ and the "BASE’ variable work only at run-time, not at compile-
time! Isn’t there a way to compile non-decimal numbers?

Sure, there is, although it is not that flexible. There are four words that control the interpre-
tation of numbers at compile-time:

1. [BINARY]
2. [OCTAL]

3. [DECIMAL]
4. [HEX]

They work fundamentally different than their run-time equivalents. First, they only work
at compile-time. Second, they are compiled sequentially' and do not follow the flow of the
program at run-time. Let’s take a look at these two programs:

[binary] 101 . cr
[octal] 101 . cr
[decimal] 101 . cr
[hex] 101 . cr

This will print the decimal numbers "5", "65", "101" and "257", since each one of them is
compiled with a specific radix.

: binary 2 base ! ;
binary 101 . cr
octal 101 . cr
decimal 101 . cr
hex 101 . cr

Now the decimal number "101" is printed in four different radixes, since at compile-time
the radix was set to decimal (which is the default). Now take a look at this program:

: do_binary [binary] ;

: do_decimal [decimal] ;
do_binary 101 decimal . cr
do_decimal 101 decimal . cr

The program will print "101" two times! Haven’t we selected binary at compile-time? No,
both '[BINARY] and '[DECIMALY]’ are compiled sequentially!

When °[BINARY] is encountered at the first time, it will set the radix at compile-time
to binary. When '[DECIMALY]’ is encountered in the second line, it will set the radix to
decimal. When the third line is compiled, the radix is still set to decimal. If you want to
make this program work, try this:

[binary]
101 decimal . cr
[decimal]
101 decimal . cr

I'Since 4tH’s one-pass compiler compiles it sequentially, duh.

CHAPTER 9. CHARACTER SEGMENT 107

When the first line is encountered, it sets the radix (at compile-time) to binary. So the num-
ber "101" at line two is compiled as a binary number. "'DECIMAL’ will just be compiled.
It will only influence the radix at run-time. The third line sets the radix at compile-time to
decimal. So the number "101" at line four is compiled as a decimal number.

Since the run-time of 4tH starts up in decimal, both occurrences of 'DECIMAL’ have little
value. We can even eliminate 'DECIMAL’ from the program altogether without affecting
the result:

[binary] 101 . cr
[decimal] 101 . cr

Note that both the compile-time radix control words and the run-time radix control words
stay in effect until they are superseded by others:

[binary] \ compile-time binary
101 \ first binary number
1011 \ second binary number
[decimal] \ compile-time decimal
5 \ decimal 5
do \ set run-time radix

i base ! \ to loop-index

dup . cr \ print number
loop
drop \ clean stack

9.8 Pictured numeric output

You probably have used this before, like when writing Basic. Never heard of "PRINT
USING.."? Well, it is a way to print numbers in a certain format. Like telephone-numbers,
time, dates, etc. Of course 4tH can do this too. In fact, you’ve probably used it before.
Both ’ and °.R’ use the same internal routines. They are called just before a number is
printed.

This numeric string is created in the PAD and overwritten with each new call. But we’ll go
into that a bit later on.

What you have to remember is that you define the format reverse. What is printed first, is
defined last in the format. So if you want to print:

060-5556916

You have to define it this way:

6196555-060

Formatting begins with the word '<#’ and ends with the word "#>’. A single number is
printed using *#” and the remainder of the number is printed using ’#s’ (which is always at
least one digit). Let’s go a bit further into that:

: print# <# #s #> type cr ;
256 print#

This simply prints a single number (since only '#S’ is between the *<#’ and the *#>" and
goes to a new line. There is hardly any difference with ’.’. You can try any (positive)
number. Note that the values that "#>’ leaves on the stack can directly be used by "TYPE’.

This is a slightly different format:

CHAPTER 9. CHARACTER SEGMENT 108

: print3# <# # # # #> type cr ;
256 print3#

1 print3#

1000 print3#

This one will print "256", "001" and "000". Always the last three positions. The *#’ simply
stands for ’print a single digit’. So if you want to print a number with at least three digits,
the format would be:

#s # #

That is: print the remainder of the number (at least one digit) and then two more. Now
reverse it:

#s

Enclose it by "<#’ and ’#>’ and add "TYPE CR’:

<# # # #s #> type cr

And that’s it! Is it? Not quite. So far we’ve only printed positive numbers. If you try a
negative number, you will find it prints garbage. This behavior can be fixed with the word
"SIGN’.

’SIGN’ simply takes the number from the stack and prints a "-" when it is negative. The
problem is that all other formatting words can only handle positive numbers. So we need
the same number twice. One with the sign and one without. A typical signed number
formatting word looks like:

: signed# dup abs <# #s sign #> type ;

Note the 'DUP ABS’ sequence. First the number is duplicated (for ’SIGN’) and then the
absolute value is taken (for the other formatting words). So we got the number on the stack
twice. First with sign (for SIGN’), second without sign (for the other formatting words).
Does that make sense to you?

We can place *SIGN’ wherever we want. If we want to place the sign after the number (like
some accountants do) we would write:

: account# dup abs <# sign #s #> type ;

But that is still not enough to write "$2000.16" is it? Well, in order to do that there is
another very handy word called "THOLD’. The word "THOLD’ just copies any character into
the formatted number. Let’s give it a try:

$2000.16

Let’s reverse that:

61.00028%

So we first want to print two numbers, even when they are zero:

CHAPTER 9. CHARACTER SEGMENT 109

4 .00028

Then we want to print a dot. This is where "HOLD’ comes in. "HOLD’ takes an ASCII
code and places the equivalent character in the formatting string. We don’t have to look up
the ASCII code for a dot of course. We can use "CHAR’:

char . hold 0002$

Then we want to print the rest of the number (which is at least one digit):

char . hold #s $

Finally we want to print the character "$". Another job for "THOLD’:

char . hold #s char $ hold

So this is our formatting word:

: currency <# # # char . hold #s char $ hold #> type cr ;

And we call it like this:

200016 currency

You can do some pretty complex stuff with these formatting words. Try to figure out this
one from the master himself, Leo Brodie:

: sextal 6 base ! ;

:00 # sextal # decimal 58 hold ;
: time# <# :00 :00 #S #> type cr ;
3615 time#

Yeah, it prints the time! Pretty neat, huh? Now try the telephone-number we discussed in
the beginning. That shouldn’t be too hard. Still, you may think it’s all a bit too complicated
for your taste.

Well, there is a solution to that, but you’ll need to include a library. Let’s say you want to
format that darn telephone number - or that currency thing:

include lib/picture.4th

605556916 s" ###-#######" picture type cr
200016 s" $?.##" picture type cr

That’s much easier, isn’t it? All you have to do is to issue a string and the library handles the
whole thing. The library works very simple: there are five special formatting characters,
the rest is copied verbatim. And yes, it handles the sign for you automatically - unless
you’ve specified the position yourself with a ’+’ character.

You can also use this library to print number in a fixed width field, e.g.:
include lib/picture.4th

605616 s" $.__" picture type cr
This will print the number in a field nine characters wide, including the decimal point and
the currency sign. Note you can print any character you want by postfixing it with a ’!” -
yes,evena’!’.

CHAPTER 9. CHARACTER SEGMENT 110

CHARACTER MEANING

Prints a single digit

2 Prints the remainder of the number
Prints a single digit, unless all
digits have been printed. Then a
space is printed

+ Prints a ’-’ if the number is
negative

! Prints the previous character
verbatim, even if it is a formatting
character

Table 9.1: Picture library formatting characters

9.9 printf () like formatting

Some people can just not be pleased, neither by 4tH’s native pictured numeric output, nor
by the libraries we offer to make it all a bit easier. They just want print £ (). And that’s
alright with me.

Although printf () is quite bulky, much slower and is known to have a few quirks of its
own, it’s not too hard too implement. 4tH has three printf () like functions:

printf Supports some basic specifiers, width and writes to ’STDOUT’;
sprintf Supports some basic specifiers, one flag, width and writes to a string buffer;

fsprintf Supports most specifiers, all flags, width, precison and writes to a string buffer.

But how do you use it? First you have to include the proper file, either printf.4th,
sprintf.4thor fsprintf.4th:

include lib/sprintf.4th

printf () like functions require a format string, optionally with embedded format speci-
fiers. A format specifier has the following layout:

%$[flags] [width] [.precision]specifier

Flags, width and precision are optional. If you want to print a decimal number, you use the

non

"d" specifier. If you want to print a string, you use the "s" specifier, e.g.:

80 string mybuf
s" World" 100 s" A %d hello’s from the %s!" mybuf sprintf type cr

And this will print(f):

A 100 hello’s from the World!

You may wonder why the number comes before the string, but that is easily explained.
First, this is 4tH - we do everything the other way around. Second, the format string is
evaluated from left to right, so the number is consumed first. Consequently, it is on the top
of the stack.

Now let’s say we want to place the number in a field, five positions wide and pad it with
spaces where needed:

CHAPTER 9. CHARACTER SEGMENT 111

80 string mybuf
s" World" 100 s" A $5d hello’s from the %s!" mybuf sprintf type cr

Now it comes out this way:

A 100 hello’s from the World!

Of course we can do the same thing for the string, but this time we make it ten positions
wide:

80 string mybuf
s" World" 100 s" A %5d hello’s from the %10s!" mybuf sprintf type cr

And this is what comes out of that one:

A 100 hello’s from the World!

Want to specify that width on the stack? You can:

80 string mybuf
s" World" 10 100 s" A %5d hello’s from the %$xs!" mybuf sprintf type cr

Again, the width of ”10” on the stack is consumed before the string is printed. Default,
everything is right-aligned, but you can change that with the ”-” flag:

80 string mybuf
s" World" 10 100 s" A %5d hello’s from the %$-xs!" mybuf sprintf type cr

Which gives:
A 100 hello’s from the World !

Note that although some people may find it easier to use, these words are quite fragile.
Make an error in the format string, the order or number of arguments and everything goes
haywire. It’s your choice.

It goes far beyond the scope of this manual to discuss all the possibilities of fsprintf.4th.
Even more, because you can only use it in a floating point environment. And that is still to
come?. For the time being you’ll have to do with the following tables.

9.10 Converting a number to a string

Since there is no special word in 4tH which will convert a number to a string, we’ll have to
create it ourselves. In the previous section we have seen how a numeric string is created in
the PAD. We can use this to create a word that converts a number to a string.

Because the PAD is highly volatile, we have to save the string immediately after its creation.
So we’ll create a word that not only creates the string, but places it directly in its proper
location:

(na--)
: n>string >r dup abs <# #s sign #> r> place ;

It takes a number, the address of a string and returns nothing. Example:

16 string num$
-1024 num$ n>string
num$ count type cr

21n sections 12.27 and 12.28, to be exact.

CHAPTER 9. CHARACTER SEGMENT

flags

description

printf.4th

sprintf.4th

fsprintf.4th

Left-justify within the given field width;
Right justification is the default (see width
sub-specifier).

N

Y

Y

Forces to preceed the result with a plus or
minus sign (+ or -) even for positive num-
bers. By default, only negative numbers are
preceded with a - sign.

(space)

If no sign is going to be written, a blank

space is inserted before the value.

Used with o or x specifiers the value is pre-
ceeded with 0 or Ox respectively. Used with
e, f, or g it forces the written output to con-
tain a decimal point even if no more digits
follow. By default, if no digits follow, no

decimal point is written.

Left-pads the number with zeroes (0) in-
stead of spaces when padding is specified
(see width sub-specifier).

Table 9.2: List of supported printf () flags

9.11 Aborting a program

112

Some conditions are so grave you can consider them to be fatal errors. In such cases the
only thing you can do is abort the program as soon as possible. Of course, there is a way
in 4tH to do just that. You can use either ’ABORT’ or QUIT’. Same thing. Both will
terminate your program immediately. This small program prints nothing:

abort

." This will never be printed." cr

But there is more. Let’s say you only want to exit a program when a certain condition is
met, e.g. a word left a non-zero value on the stack. In that case you would have to write
something like this:

if

." We have an error condition!"

then

cr quit

You can write that much shorter by using the word ’ABORT"”:

abort"

We have an error condition!"

>ABORT"™ will print the message following it and abort, but only when there is a non-zero
value on the stack. So this program does not abort:

false abort" This will not be printed!"
." This will be printed!"

You will find that ’ABORT"’ is a very handy tool when processing error conditions.

CHAPTER 9. CHARACTER SEGMENT 113

width description printf.4th | sprintf.4th | fsprintf.4th

(number) Minimum number of characters to be Y Y Y
printed. If the value to be printed is shorter
than this number, the result is padded with
blank spaces. The value is not truncated even
if the result is larger.

* The width is not specified in the format Y Y Y
string, but as an additional integer value ar-

gument following the argument that has to be

formatted.

.precision

.number For integer specifiers (Id, d, o, u, x): preci- N N Y
sion specifies the minimum number of digits
to be written. If the value to be written is
shorter than this number, the result is padded
with leading zeros. The value is not trun-
cated even if the result is longer. For e, g
and f specifiers: this is the number of dig-
its to be printed after the decimal point. For
s: this is the maximum number of characters
to be printed. By default all characters are
printed until the ending null character is en-
countered. If the period is specified without
an explicit value for precision, 0 is assumed.

k The precision is not specified in the format N N Y
string, but as an additional integer value ar-
gument following the argument that has to be
formatted.

Table 9.3: Width and precision of printf ()

9.12 Opening a file

You probably don’t want to write programs that only write to the screen and read from the
keyboard. So 4tH has a few words that allow you to work with files. Since 4tH is a scripting
language, its capabilities are limited. But you will find that you can perform most common
operations.

One of the limitations is that you can have a limited number of open files, but it will do in
most situations.

Opening a output-file is pretty simple. Just throw the address and length of a filename and
a file access mode on the stack and execute the word ’OPEN’. The value ’OPEN’ returns is
a simple number which bears little significance. However, you have to save it to a variable
or value, for you will need it later. We’d like to use values for storing file pointers, so we
created the word "FILE’. "FILE’ simply creates a value and initializes it, so if you use it
prematurely 4tH will issue an error message.

file myfile

s" outfile.dat" output open error? (al nl fam —-- h f)
abort" File could not be opened" (h)
to myfile (--)

’OUTPUT” is a file access mode and will open a file for writing. ’OPEN’ leaves a value
on the stack. If it equals *(ERROR)’, something was not quite right. If not, the file was

CHAPTER 9. CHARACTER SEGMENT 114

specifier | output example | printf.4th | sprintf.4th | fsprintf.4th
d Signed decimal number 392 Y Y Y
c Character a Y Y Y
S String of characters sample Y Y Y
% Single % character % Y Y Y
1d Signed decimal double number 7235 N N Y
u Unsigned decimal number 7235 N N Y
o Signed octal number 610 N N Y
X Signed hexadecimal number 7fa N N Y
f Decimal floating point, lowercase 392.65 N N Y
e Scientific notation 3,93E+06 N N Y
(mantissa/exponent)
g Use the shortest representation: %e 392.65 N N Y
or %f

Table 9.4: List of supported print £ () specifiers

successfully opened. 'FILE’ is nothing but an initialized value, so you can assign it with
"TO’. ’JERROR?’ leaves the handle intact, but leaves an additional true flag if an error
occurred, which makes it much easier to evaluate.

The syntax for opening an input file is the same, except for the read-flag "INPUT’ of course:

file myotherfile

s" infile.dat" input open error?
abort" File could not be opened"
to myotherfile

9.13 Reading and writing from/to a file

There are no special words to read from or write to a file. You can use all the words you
used for keyboard-input and screen-output.

But if you open a file and do some I/O you will notice nothing has changed. Of course
not. You should be able to determine whether you write to a file or to the screen. There are
special words to do just that:

file OutFile \ file variable
s" outfile.dat" output open error?
abort" File could not be opened"

to OutFile \ open the file
OutFile use \ write to file
." This is written to disk" cr

stdout use \ write to screen

." This is written to screen" cr

After you’ve opened the file, the program will still write to the screen. When *USE’ ex-
ecutes, all output will be redirected to the file. When "USE’ executes again, but this time
with the "OUTPUT’ flag, all output will go to the screen again, but the output-file will not
be closed! Both words take the same read/write-flags as "OPEN’.

You can call "USE’ again and again, without closing or opening any files. Here is an
example using an input-file:

CHAPTER 9. CHARACTER SEGMENT 115

file OutFile
s" outfile.dat" output open error?
abort" File could not be opened"

to OutFile \ open output file
OutFile use \ write to file

." This is written to disk" cr

stdout use \ write to screen
." This is written to screen" cr

OutFile close \ close file

s" outfile.dat" input open error?
abort" File could not be opened"
to OutFile

read from disk

read 32 characters
write string to screen
read from keyboard
close file

OutFile use

pad dup 32 accept
type

stdin use

OutFile close

Py

The output of this program is:

This is written to screen
This is written to disk

Note that files are always opened in binary mode. If you’re a Microsoft user and you worry
about your text files, don’t. 4tH is much smarter than that as you will learn later on.

9.14 Closing a file

There is usually no need to close any files. When you quit the program all files are closed.
It seems like there is no need at all to close files manually, but that is a mistake.

If you want to open a file for reading to which you’ve just written, you will find it doesn’t
work. Of course, you can open a file only once.

No, there is a word which closes either the input- or the output-file, using the same read/write-
flags. You’ve already seen it, it is called ’"CLOSE’. When you close an active file, the input
(or output) is redirected to the keyboard (or screen).

9.15 Writing text-files

Writing text to a file is just as easy as writing text to screen. Open the file, redirect the
output, and write like you would write to the screen:

file OutFile \ value for file

s" outfile.dat" \ put the filename on the stack
output \ add the modifier

open error? \ open the file

abort" File could not be opened”
to OutFile

OutFile use \ write to file
." This is written to disk" cr

That’s all! Note that if you execute your program on a Microsoft Operating System, it will
write a Microsoft text file. If you do so on a Unix Operating System, it will write a Unix
text file. If you want to override that you’ll have to issue the end-of-line sequences yourself
using ’EMIT".

CHAPTER 9. CHARACTER SEGMENT 116
9.16 Reading text-files

Reading text-files is pretty straightforward. You don’t even have to open a file in text-mode
contrary to other languages. Just open the file and call 'REFILL’ until it signals end-of-file
(EOF):

\ Example program. It reads a file line by line
\ and prints it to the screen.

file InFile
s" readln.4th" input open error?

abort" Could not open file" \ open file
to InFile \ save handle
InFile use \ read from file
begin
refill \ read a line
while \ while EOF not found
0 parse-word \ parse the entire line
type \ print it
cr \ terminate line
repeat \ read next line

You will find that if you run this program, it will print itself to the screen.

’REFILL will return a non-zero value if EOF was not detected. By using the word 0=’
you can invert this value. Finally, it will read Unix ASCII-files as well as DOS ASClI-files,
no matter where your program is executed.

9.17 Reading long lines

The TIB is only /TIB characters long. If you read a line that is longer than that, only /TIB - 1
characters are read. The rest of the line is read when you invoke 'REFILL’ again. Although
you don’t lose any information that way, it might not be what you want. Fortunately, you
can define your own TIB:

2048 constant /mytib \ length of your TIB
/mytib string mytib \ define your own TIB
mytib /mytib source! \ tell the system about your TIB

The next time you invoke 'REFILL’, it will use your TIB instead of the system TIB, so
it will now read lines up to 2047 characters. 'SOURCE!’ takes an address/count pair and
makes it the current TIB. So if you want to use the system TIB again you issue:

tib /tib source!
And if you have forgotten which TIB you’re using try this:

source . . Cr

’SOURCE’ will return the address/count pair of the TIB you’re currently using. In fact,
this definition does absolutely nothing:

: doesnothing source source! ;

For the simple reason that it reassigns the TIB it is already using.

CHAPTER 9. CHARACTER SEGMENT 117

9.18 Reading binary files

If you process binary files, you won’t get far reading it line by line. You want to read
chunks of data. 4tH can do that too by using ’ACCEPT’. You feel there must be a catch,
since ’ACCEPT"’ terminates strings automatically. Well, there isn’t. When >’ ACCEPT’ does
not read from the keyboard, it won’t add that extra byte.

Reading blocks of data usually means defining buffers. If maintainability is an issue, define
a constant for the sizes of these buffers. You cannot only use this constants when defining
buffers, but also when calling ’ACCEPT’.

Furthermore, *ACCEPT’ returns the number of characters actually read. If this value
is compared to the number of characters we actually wanted to read, we can determine
whether a reading error or EOF occurred:

\ actual buffersize
\ define buffer

\ value for file

\ open input file
s" infile.dat" input open error?

abort" File could not be opened”

1024 constant bufsize
bufsize string buffer
file InFile

to InFile \ save handle
InFile use \ redirect input
begin \ using bufsize
bufsize (nl)
buffer over (nl a nl)
accept (nl n2)
<> (f) \ make EOF flag
until \ until EOF

Note that "BUFFER" is actually not a string, but a chunk of memory. But since a character
in 4tH takes up a single address-unit (=byte), raw chunks of memory are allocated in the
Character Segment. This is not an uncommon practice in both Forth and C.

9.19 Writing binary files

Writing binary files is very easy. Of course you need a buffer, like we discussed in the
previous section. The program is not much different than the previous one:

1024 constant bufsize \ actual buffersize
bufsize string buffer \ define buffer
file OutFile \ value for file
buffer bufsize char H fill \ fill the buffer

\ open output file
s" infile.dat" output open error?
abort" File could not be opened”

to Outfile
OutFile use
buffer bufsize type

\ save handle
\ redirect input
\ write to file

This will write 1024 "H"s to "infile.dat". The actual command that does all writing is
"TYPE’. The word *"TYPE’ does not return anything. You can be assured that everything
was alright, since if it wasn’t, 4tH would have caught the error itself.

CHAPTER 9. CHARACTER SEGMENT 118

9.20 Reading and writing block files

Block files are a special kind of files used by Forth compilers. In the old days Forth con-
trolled the entire computer and directly communicated with all peripherals, including disks.
To Forth, a disk is just a bunch of numbered blocks. Each block is divided into 16 lines of
exactly 64 characters. A block file simply mimics that layout.

Before we can begin, you need to create a block file. Well, that’s easy:

include lib/ansblock.4th
4 s" blocks.scr" create-blockfile

This creates a file with four blocks. Then we have to tell 4tH which file to use:

s" blocks.scr" open-blockfile

Note that apart from creating the file, we haven’t performed any I/O yet. First, we have to
request a block. When a block is requested, its contents are transferred to a memory buffer.
You can manipulate this buffer any way you want with the standard words. If you request
another block its contents are transferred to the buffer too, overwriting whatever is there.
All changes you have made are lost, unless you have flagged the block as dirty, which
means its contents are different from the block on disk. If a block is dirty, it is written to
disk before the next block is read. ’CLEAR’ is a special word, assigning an empty buffer
to a block without reading it first. The buffer is BLANKed. "UPDATE’ will flag the buffer
as dirty. "FLUSH’ writes the dirty buffer to disk and unassigns the buffer. So, first we clear
block 0:

0 clear

Then we clear block 1, copy a string to it and flag it as dirty:

1 clear
s" Hello world!" >r 1 buffer r@ cmove update

"BUFFER’ returns the address of the buffer assigned to that block?. If the buffer is dirty, it
is FLUSHed before assigning a buffer to that block. We can also write the dirty buffer to
disk, without unassigning it:

save-buffers

Note that the buffer is not dirty anymore, since it has been synchronized. Let’s write some-
thing to another block:

s" Goodbye cruel world!" 0 block swap cmove update

It is always a nice game to figure out what will happen now. The current block is block 1.
Since we haven’t UPDATEdJ it since 'SAVE-BUFFERS’, it is clean. That means that 4tH
won’t perform a write. Since block 0 isn’t current, ’lBLOCK’ reads it into the buffer. The
"UPDATE’ will flag the buffer as dirty.

3That is particularly handy if your implementation can handle multiple buffers. In this implementation we
have only one buffer, so we always return the same address.

CHAPTER 9. CHARACTER SEGMENT 119

1 block r> type cr

This is fun! The current block is block 0. It is dirty, so it is written to disk. Since block 1
isn’t current, it is read into the buffer. You catch my drift? If you want to print the contents
of a block, you can use "LIST’. Of course, 'LIST” uses " BLOCK’ and applies to the same
rules:

0 list
." This block has been listed: " scr ? cr

’SCR’ is a variable containing the last screen LISTed. Note that is not the same thing as
the current block! Finally, we can discard all our changes:

empty-buffers

"EMPTY-BUFFERS’ does not perform any I/O nor does it change the contents of the buffer.
It just unassigns the buffer and flags it as clean. Note that you don’t have to close a block
file since all I/O is block-oriented. Just don’t forget to "FLUSH”. You can use different
block files within the same program, but you’ll have to close the current block file - since
it performs "FLUSH” as well and it’s portable:

close-blockfile

It is also important to know that ANS-Forth doesn’t define any error conditions, so if any-

thing happens all the poor thing can do is throw an exception®.

Note that the standard block file library implements the absolute bare minimum required
by ANS-Forth. The most important restriction is that is has just one single buffer. There
is also a libary that is able to handle thousands of buffers very efficiently. Standard, it
will allocate 16 buffers. If you want a different number of buffers, you’ll have to define a
constant before including it:

32 constant #blocks \ allocate 32 block buffers
include lib/multiblk.4th
400 s" blocks.scr" create-blockfile

It is a drop-in replacement, so you won’t have to change your code too much.

9.21 Parsing textfiles

As we’ve already seen, it is very easy to enter a line using 'REFILL’ and parse it. You can
also use 'REFILL’ to read lines from a text-file. It is quite similar to reading lines from the
keyboard, except that you have to open a file first. This little program prints all the words
of a textfile on a new line:

file InFile \ value for file
s" file.txt" input open error?
abort" File could not be opened”
\ open the file
to InFile \ save handle
InFile use \ redirect input to file

4See section 11.5.

CHAPTER 9. CHARACTER SEGMENT 120

begin
refill \ get a line from file
while \ check if EOF
begin
bl parse-word \ if not, parse line
dup 0<> \ check if zero length
while
type cr \ if not, print word
repeat \ parse next word
drop drop \ drop address/count
repeat \ get next line

Now that flag left by 'REFILL’ makes sense! If it is zero, we have reached the end of the
line. Note that you don’t have to open a file in text-mode and both Microsoft ASCII and
Unix ASCII files are supported.

9.22 Parsing binary files

And what about binary files, like classic Forth blockfiles? Well, you could use "REFILL’
in that context too, but it would probably break up words since it can’t find an end-of-line
marker and its buffer is smaller than 1024 characters. Does that mean it can’t be done? No!
But "REFILL’ makes it easier for you, because it handles a few tasks automatically.

First, it has its own buffer (TIB). When you’re not using 'REFILL’ you have to define one
yourself. Second, it terminates the string for you. You don’t want "’PARSE-WORD’ to
wander into new territory, do you? Third, it sets >IN’ for you every time its receives new
input. You have to take care of that one too.

Never heard of *>IN’? Well, the only way for 'PARSE-WORD’ to know on what position
the previous scan ended is to store that information into a variable. This variable is called
>IN,

Not all internal 4tH variables are accessible, mostly because we can’t imagine what use
they could have to you. Some variables are just better left alone. But *>IN’ is available for
some very obvious reason: you can reset it and make "PARSE-WORD’ work for you. Note
that for ">IN’ to work, you have to make the buffer the parsing area by using ’SOURCE!’

The following program will read the first screen of a block-file for you and print out all the
words. You will see that all spaces are eliminated and every word is printed on a new line,
just the behavior you would expect from "PARSE-WORD’.

1025 constant /buffer \ screensize + terminator
/buffer 1- constant c/scr \ size of the block

file InFile \ value for file

/buffer string buffer \ 1: our own buffer

: openfile \ open the block file

s" romans.blk" input open error?
abort" Cannot open file"

to InFile \ save handle
InFile use \ read from file

7
readfile fill the buffer
buffer c/scr 2dup address and count
bl fill clear the buffer

fill the buffer
close the file

accept drop
InFile close

~ s s

CHAPTER 9. CHARACTER SEGMENT 121

initparse \ configures parsing
0 buffer c/scr chars + c! \ 2: terminate screen
buffer /buffer source! \ 3: make buffer the parse area
0 >in ! \ 4: reset >IN
4

parseblock
begin

bl parse-word \ get word

dup 0<> \ length zero?
while

type cr \ if so, print it
repeat
2drop \ else drop addr/cnt

." End of block" cr

~

signal "End of block"

parsefile \ do it all
openfile \ open the file
readfile \ read it
initparse \ set up parsing
parseblock \ parse it

;

parsefile

Note there is no need to reset *>IN’ if you use 'REFILL’, since it will be reset automatically.
In this case, if you want to parse another block, you will have to reset >IN’ again.

9.23 Parsing comma-delimited files

"PARSE-WORD’ is a powerful and very useful word, but it is less than useful when parsing
comma-delimited files. Why? Well, because "'PARSE-WORD’ skips leading delimiters. So
when you have a file like this it doesn’t work:

FIRSTNAME, NAME, EMATIL, TELEPHONE, HOMEPAGE, FAX
Hans, Bezemer, The.Beez.speaks@gmail.com,http://hansoft.come.to,

Again, ’PARSE-WORD?’ skips leading delimiters, so instead of an empty string we get the
homepage when we’re trying to read the (non-existant) telephone number. Fortunately, we
got a word like "PARSE’. "PARSE’ also takes a delimiter from the stack, just like "'PARSE-
WORD?, but it acts on leading delimiters. Take a look at this program:

file OutFile \ value for output file
file InFile \ value for input file
WriteCommaFile (-)

s" address.csv" output open error?

abort" Could not write CSV file"

to OutFile \ save handle

OutFile use \ redirect output to file
." FIRSTNAME,NAME, EMAIL, TELEPHONE, HOMEPAGE, FAX" cr

." Hans,Bezemer,,http://hansoft.come.to," cr

OutFile close \ close file

stdout use \ redirect output to screen

\ reads a field
field> [char] , parse ; (-— an)

CHAPTER 9. CHARACTER SEGMENT 122

ProcessLine (—)

refill \ get line

0= abort" Read error"

field> type cr \ parse first name
field> type cr \ parse name
field> type cr \ parse email
field> type cr \ parse telephone
field> type cr \ parse homepage
field> type cr cr \ parse fax

ReadCommaFile (--)

s" address.csv" input open error?

abort" Could not read CSV file"

to InFile \ save handle

InFile use \ redirect input to file
." _Headerline_" cr \ this is the headerline
ProcessLine \ now process headerline
." _First record_ " cr \ this is the first record
ProcessLine \ now process first record
InFile close \ close file

4

WriteCommaFile \ write the CSV file

ReadCommaFile \ read the CSV file

With "WriteCommaFile" we write a simple comma-delimited file to disk. We got to read
something, don’t we? Then we read the file we’ve just written with "ReadCommaFile".
"ProcessLine" does the actual job. Since we have six fields we use "PARSE’ six times -
that is: each time we call "FIELD>". We cannot do this with a loop. Why not?

Well, "PARSE’ not only returns a NULL-string when we’ve reached the end of a line, but
also when a field is empty. So we’ve got to know how many fields we actually want to read.
Of course, you could parse the headerline with "'PARSE-WORD’ to find that out, but you
already know how to do this.

9.24 Parsing fixed-width text files

A fixed-width text file is a file consisting of records with a fixed-width fields. They are not
as common anymore as they used to be in the mainframe era, but you still find them every
now and then. They look like this:

New Jersey NJTrenton 8958013 22592 12
Texas TXAustin 27469114695660 36
Washington WAOlympia 7170351 184661 10

And yes, you can process them with 4tH. First thing you need to do is to include a small
library:

include lib/fixedfld.4th

Next, you need to create a small array containing all the field lengths, first one first, and
terminate it with a zero:

create states-fields 20 , 2 , 14 , 8 , 7, 2 , 0,

CHAPTER 9. CHARACTER SEGMENT 123

Note there are fixed-width files with line termination. You can read those with "REFILL’.
If they are not line terminated, don’t dispair®. Let’s say a record is 64 bytes, then you can
read a record at the time like this:

64 constant /record \ length of record
/record buffer: record \ define a buffer

\ use like REFILL
: read-record record /record accept /record = ;

But in this example we will assume our file is line terminated. The next thing to do is to in-
tegrate the library into your reading routine. Since we use a line-terminated file, ’'REFILL’
will do:

/layout array states-layout \ this is the layout variable
\ enhance REFILL
'refill states-fields tib states-layout fields! refill ;

The "FIELDS!” word takes three parameters. First, the array with the field lengths. Second,
your read buffer. If we would have used ’ACCEPT’ from our previous example, we would
have used the "RECORD” buffer. Here we use "REFILL’, so we use the standard buffer,
"TIB’.

Finally the so-called “layout variable”. This is variable you have to define for each fixed-
width file you want to process with this library, so if you parse two different files at the
same time, you have to define two “layout variables”.

Now the only thing you have to do is to use ”!REFILL” instead of 'REFILL’ and we’re all
set. "FIELDS!” will make sure the library is properly set up each time we read a fresh line.

When we construct our "FIELD>” routine® we do something similar. "NEXT-FIELD” will
ensure you get the next field, provided you feed it the proper “layout variable”, of course.
Note that "NEXT-FIELD” returns the entire field, which is probably padded. Let’s assume
it’s padded with spaces, which we can easily remove with -TRAILING’:

: field> states-layout next-field -trailing ;

Since the stack diagram of this "FIELD>" is identical to the one in section section 9.23, the
entire thing becomes almost completely transparent:

: ProcessLine (=)
lrefill \ get record
0= abort" Read error"
field> type cr
field> type cr
field> type cr
field> type cr
field> type cr
field> type cr cr

Yes, it takes some setting up, but in the end reading a fixed-width text file is not much
harder than reading an ordinary .CSV file.

3See also section 9.22.
6See section 9.23.

CHAPTER 9. CHARACTER SEGMENT 124
9.25 Advanced parsing

Let’s think of something difficult to parse, e.g.:

F I T T T T T T T ooeeeeeese Can you parse me.
ijiiinw,And me too, huh?

If we would use "PARSE’ we would have to know how many semicolons to skip and there
is a different number of them on each line. If we would use 'PARSE-WORD’ we’d lose all
the semicolons, but the parsed string would have all these nasty leading dots.

Even worse, if we were able to skip the semicolons and use 'PARSE-WORD’ with the
leading delimiter we’d get "Can you parse me" and "And me too" instead of "Can you
parse me." and "And me too, huh?". What can we do?

Fortunately, 4tH doesn’t really know about "’PARSE-WORD’ but translates it into a se-
quence of words’. We can also use them directly. ’OMIT” is very handy. It doesn’t actually
do anything, it just skips leading delimiters and sets >IN’ accordingly. It takes an ASCII
value from the stack as its delimiter. This will correctly parse the first line:

char ; omit \ omit the semicolon
char . omit \ omit the dot
0 parse \ parse the remainder of the line

This will correctly parse the second line:

char ; omit \ omit the semicolon
char , omit \ omit the comma
0 parse \ parse the remainder of the string

Please note that this are special 4tH words! Unfortunately you cannot port this to ANS-
Forth, where only a limited version of 'PARSE-WORD’ and "PARSE’ are available.

9.26 Appending to existing files

You can use a so-called modifier to signal 4tH, it shouldn’t overwrite the file it opens, but
append to it:

file OutFile \ value for output file

s" outfile.dat" output open error?

abort" Cannot open file" \ open the file

to OutFile save handle
OutFile use now write to disk
10 0 do i . loop write 0 to 9
OutFile close close the file

~ =

s" outfile.dat" output append + open error?

abort" Cannot open file" reopen in append mode
to OutFile save handle

OutFile use now write to disk

20 10 do i . loop write 10 to 19
OutFile close close the file

Py

Take a look at the contents of this file after you've run the program and you’ll find it
contains the number O to 19.

7If you're really curious, "PARSE-WORD”’ is equivalent to 'DUP OMIT PARSE’.

CHAPTER 9. CHARACTER SEGMENT 125
9.27 Using pipes

If you’re using Windows 95 OSR2 (and up), Windows NT (and up), OS/X, Linux or another
Unix system you’re in for a treat! With Unix you can do neat tricks like this:

ls | mail root

Which means you can redirect the output of ’1s’ to “mail’, so in effect you send an email to
root with the contents of your current working directory. Yes, 4tH can do this too, but you
can do even more. You can start ’1s’ and read its output line by line as if it were a file. You
can also start ‘'mail’ and write the output of a 4tH program to it. We do that by opening a
pipe to a program.

If you’ve ever written a program using C, you know this is a bit cumbersome, since you’ve
got to use special functions to use pipes. In 4tH you don’t. Just let 4tH know it’s a pipe that
you’re opening and not a file:

file InFile \ value for input file
file OutFile \ value for output file

s" 1s" input pipe + open error?

s" mail hans" output pipe + open error? rot or
abort" Cannot open pipe"

to OutFile to InFile

The only thing you have to do to signal 4tH that you’re using a pipe is add the word "PIPE’,
just like ’APPEND’. The filename is replaced by the command you want to execute. That’s
all. If one of the pipes in this program fails, the program aborts.

InFile use OutFile use
." These are the contents of my current working directory:"
cr cr

Now we can treat our pipes just as if they are ordinary files. We redirect input and output
and write a nice header to our email. Now we can start to process the output of ’Is’:

begin

refill
while

0 parse-word type cr
repeat

Note that we don’t have to signal that we’re reading the pipe to ’Is’ as a text file. We just
read it line by line until 'REFILL’ returns zero. Then we can parse the line and *"TYPE’ it
to “mail’.

InFile close OutFile close

Of course you don’t have to close the pipe, but it won’t harm when you don’t. 4tH knows
what to do. After executing this program, Hans will receive this email:

From: Hans Bezemer <The.Beez.speaks@gmail.com>
Message—-Id: <200202252017.VAAQ00712@gmail.com>
To: hans@localhost.org

Status: RO

CHAPTER 9. CHARACTER SEGMENT 126

These are the contents of my current working directory:

4th.c

4thc.c
4thd.c
4thg.c
4thx.c

Well, that wasn’t too hard, was it?

9.28 Opening a file in read/write mode

For special purposes you might want to open a file in read/write mode. That’s quite easy:

file InOutFile \ value for output file
sn
abort" Cannot open file" \ open the file
to InOutFile \ save handle

outfile.dat" output input + open error?

Just add both together like you adding a modifier. Note that once you "USE’ this file, you’re
both reading and writing to this file. Furthermore, the file has to exist otherwise you get an
error. If you want to write to a new file, you first have to open it in write mode:

file InOutFile \ value for output file
\ create a new file

s" outfile.dat" output open close

s" outfile.dat" output input + open error?

abort" Cannot open file" \ open the file

to InOutFile \ save handle

9.29 Using random access files

Upto now we’ve always accessed a file sequentially, but it is also possible to use random
access files. Two words are crucial here, ’SEEK’ and *'TELL’. "SEEK’ will seek for the
desired file position and *TELL’ will tell you that you’re there. It is as simple as that..!

Let’s take a look at this example. We’ve got a block-file called "Messages.scr" with the
following contents:

Scr # 0
0 (0) No errors
1 (1) Out of memory
2 (2) Bad object
3 (3) Stack overflow
4 (4) Stack empty
5 (5) Return stack overflow
6 (6) Return stack empty
7 (7) Bad string
8 (8) Bad variable

9 (9) Bad address
10 (A) Divide by zero
11 (B) Bad token
12 (C) Bad radix

13 (D) Undefined name
14 (E) I/0 error

15 (F) Assertion failed

CHAPTER 9. CHARACTER SEGMENT 127

First, let’s define a word that reads a message and then displays it:

: next-msg pad dup 64 accept -trailing type cr ;

Since this is a simple program we can safely use the "PAD’ to store our messages. Every
message has the length of a standard block-file line, which is 64 characters. Trailing spaces
are stripped by *-TRAILING’. Now we need a word that tells us what our file position is:

: tell-msg cr ." Current position: " dup tell . cr ;

"TELL needs a file pointer and leaves the current position of that file pointer on the stack.
This word assumes that the top of the stack contains a valid file pointer. Finally we need a
word that sets the file position:

: seek-msg over seek abort" Seek failed" ;

’SEEK’ needs a file position and a file pointer. If it returns false, it was successful; if it
returns true there was an error. This word assumes that the top of the stack contains a valid
file pointer. We’re ready now, let’s play. First we open the file and use it:

s" Messages.scr" input open dup use

This leaves a file pointer on the top of the stack, assuming everything went OK. Now let’s
read some messages:

next-msg next-msg next-msg tell-msg

You’ll see these messages appear on the screen:

(0) No errors
(1) Out of memory
(2) Bad object

Current position: 192

After reading three messages we’ve obviously reached position 192 in the file. That makes
sense, since 3 lines of 64 characters makes 192 characters in total. Let’s see what ’SEEK’
does:

0 seek-msg tell-msg next-msg

This should take us back to the very beginning of the file, as if we’ve freshly opened it.
And yes, it does:

Current position: 0
(0) No errors

After executing *SEEK’, "TELL’ confirms that we’ve actually returned to the very begin-
ning of the file. Reading the next message reconfirms that again. When you feed *SEEK’
positive values, it always starts seeking from the beginning of the file. When you feed
’SEEK’ negative values, it seeks from the end of the file. So this one takes you to the last
line:

CHAPTER 9. CHARACTER SEGMENT 128
—-64 seek-msg tell-msg next-msg

On screen it looks like this:

Current position: 960
(F) Assertion failed

Finally, we clean up the mess we made:

close

This will consume the file pointer we left on the stack and close the file. Note that *SEEK’
and 'TELL’ come with a few restrictions. Pipes are out of the question and so are the
standard streams *STDIN’ and *STDOUT’. Apart from that you can pretty much do with
them what you want.

Another tip: if you use *(ERROR)’ as an offset for *SEEK’, it will take you to the very end
of the file, since "MAX-N’ won’t do the trick.

9.30 The layout of the I/O system

You’re probably quite confident manipulating files now, so I guess it is time to offer you
a view under the hood. 4tH has two channels, an input channel and an output channel.
All words read from the input channel or write to the output channel. At startup, the input
channel is connected a stream that reads from the keyboard ("STDIN’) and the output
channel is connected to a stream that writes to the screen STDOUT’).

4tH I/0 word Channel Stream Device
| ACCEPT |<€
) USE
Stream 0
‘ @ (STDIN) keYboard
| REFILL [€€
‘ Stream 1
(STDOUT) screen
USE OPEN
Stream 2 “
| EMIT
Stream 3
OPEN Is
Stream 4 <)
- (pipe)
OPEN I
Stream n > .
4 (pipe)

Figure 9.2: The 4tH I/O system

With ’OPEN’ you can open additional streams, which are connected to a file or a pipe.
The return value of ’OPEN’ points to the stream that was opened. There are few words
that directly handle streams, "USE’, ’CLOSE’, "TELL and *SEEK’ being the exceptions.
"USE’ attaches a stream to one or both channels, which results in redirecting all in- and/or

CHAPTER 9. CHARACTER SEGMENT 129

output to that stream. E.g. if a file is opened in read/write mode using ’OPEN’, a stream
is returned. If we "USE’ that stream, both the input and the output channel are connected
to that stream. If it had only been opened in read mode, only the input channel would have
been connected to the stream.

*CLOSE’ closes a stream, even if it is still attached to a channel. If that is the case, the
appropriate default streams (STDIN’, ’STDOUT’) are reattached. We can find out which
streams are currently used by CIN’ and ’COUT". *CIN’ returns the stream that is currently
attached to the input channel, ’COUT’ returns the stream that is currently attached to the
output channel.

9.31 Using a printer

How you access a printer depends on the operating system you’re working on. That is not a
flaw of 4tH, you will encounter this problem with every programming language. If you’re
working with MS-DOS or MS-Windows it is quite basic:

file printer \ value for printer

s" lptl" output open error?
if
drop
else
to printer
printer use
." This will be printed." cr
stdout use
then

Just open the port as a file and print to it. Unix isn’t that different, but instead of opening a
file, you open a pipe:

file printer \ value for printer

s" 1lp" output pipe + open error?
if
drop
else
to printer
printer use
." This will be printed." cr
stdout use
then

If you’re using a different Operating System, you may have to check your manual.

9.32 The layout of the Character Segment

The final topic of this chapter again. You already know that 4tH checks whether an oper-
ation is still within the Character Segment. However, sometimes you want to check this
yourself.

You already know how you can obtain the size of TIB and PAD. Yes, you can using */TIB’
and ’/PAD’. But TIB and PAD have their addresses too. And when you query them, you
will find that PAD comes after TIB:

CHAPTER 9. CHARACTER SEGMENT 130

." Address of TIB: " tib . cr
." Size of TIB : " /tib . cr
." Address of PAD: " pad . cr
." Size of PAD : " /pad . cr

And beyond PAD, what is there? Well, allocated memory of course. Things you defined
using "STRING’. There are two words which can give you information about allocated
memory. First, 'LO’. "LO’ gives you the lowest address of allocated memory. Second,
"HI’. "HI” gives you the highest valid address of the Character Segment. That means that:

0 hi c!
Is always valid and:

0 hi char+ c!

Is always invalid. It you try it, 4tH will stop executing the program with an error-message.
’LO’ and "HI’ are addresses. Addresses are just numbers, so you can print and compare
them. E.g.

hi char+ lo - . cr

Will print how much memory as allocated to your strings. And:

lo hi >

Will indicate whether you allocated any memory at all. If "LO’ is greater than "HI’, you
didn’t. If "HI" is greater or equal to 'LO’ you did. Experiment a bit with the knowledge
you obtained in this chapter and continue with the next one where we will go much deeper
into the secrets of the Integer Segment and Code Segment.

Chapter 10

Integer Segment and Code
Segment

10.1 The Code Segment

It is known by designers of microprocessors that a processor can run much faster when
every instruction has the same length. In fact, 4tH has his own virtual microprocessor.
The compiler is nothing more than an assembler and the interpreter nothing more than an
emulator on top of the real microprocessor.

In order to speed up 4tH, all instructions have the same length. They consist of a token
(which is the real instruction) and an argument. The argument is a value that gives meaning
to the instruction, e.g. the 'LITERAL’ token means that a number is compiled here. The
argument is the actual number.

Some instructions wouldn’t need an argument, but for speeds sake, they have: it is always
zero. Isn’t that a lot overhead? Not really. Half the instructions in an actual program need
an argument. Decoding a more elaborate scheme would need more processor time and
more programming. So in the end, it would make hardly any difference. Except for the
speed.

A token with its argument is called a word. And the Code Segment is one large array of
words. Each of these words has an address and can be accessed by the word *@C’. In fact,
>@C’ throws the argument on the stack. Where have we seen *@C’ before?

Yes, when fetching from an array of constants. These arrays are compiled into the Code
Segment. How come that 4tH isn’t confused by these arrays? Because they have the token
’NOOP’, which does absolutely nothing.

10.2 The address of a colon-definition

You can get the address of a colon definition by using the word ™’ (tick):

: add + ; \ a colon definition
’ add . cr \ display address

Very nice, but what good is it for? Well, first of all the construction "> ADD" throws the
address of "ADD" on the stack. In fact, it is a literal expression. You can assign it to a
variable, define a constant for it, or compile it into an array of constants:

131

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 132

’ add constant add-address

variable addr
’ add addr !

create addresses ’ add ,

Are you with us so far? If we would simply write "ADD", "ADD" would be executed right
away and no value would be left on the stack. Tick forces 4tH to throw the address of
"ADD" on the stack instead of executing "ADD".

Note this only works for your own colon-definitions. It doesn’t work for 4tHs built-in
words. If you try to, you’ll get an error-message. What you can actually do with it, we will
show you in the next section.

10.3 Vectored execution

This is a thing that can be terribly difficult in other languages, but is extremely easy in
Forth. Maybe you’ve ever seen a BASIC program like this:

10 LET A=40

20 GOSUB A

30 END

40 PRINT "Hello"
50 RETURN

60 PRINT "Goodbye"
70 RETURN

If you execute this program, it will print "Hello". If you change variable "A" to "60", it will
print "Goodbye". In fact, the mere expression "GOSUB A" can do two different things. In
4tH you can do this much more comfortable:

: goodbye ." Goodbye" cr ;
: hello ." Hello" cr ;

variable a
: greet a @ execute ;

’ hello a !
greet

’ goodbye a !
greet

What are we doing here? First, we define a few colon-definitions, called "HELLO" and
"GOODBYE". Second, we define a variable called "A". Third, we define another colon-
definition which fetches the value of "A" and executes it by calling ’EXECUTE’. Then, we
get the address of "HELLO" (by using "> HELLO") and assign it to "A" (by using "A !").
Finally, we execute "GREET" and it says "Hello".

It seems as if "GREET" is simply an alias for "HELLO", but if it were it would print
"Hello" throughout the program. However, the second time we execute "GREET", it prints
"Goodbye". That is because we assigned the address of "GOODBYE" to "A".

The trick behind this all is ’TEXECUTE’. ’EXECUTE’ takes the address of e.g. "HELLO"
from the stack and calls it. In fact, the expression:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 133
hello

Is equivalent to:

’ hello execute

This can be extremely useful as we will see in the next chapter when we build a full-fledged
interpreter. We’ll give you a little hint:

create subs ’ hello , ' goodbye ,

Does this give you any ideas?

10.4 Execution tokens

The address of a colon definition is called an “execution token”. It’s much like a token in
a subway: you insert a token into the appropriate slot and the turnstile opens. Here you
pass an execution token to "TEXECUTE’ and the definition is executed. Of course, you can
define an execution token this way:

: hello ." Hello world!" ;
’ hello constant hello-xt

But you can also define it more directly:

:token hello-xt ." Hello world!" ;

It will behave in exactly the same way our previous definition of "THELLO-XT"” did. There
is still another way to define execution tokens. We’ll come around that in section 11.7.

10.5 The Integer Segment

Wonder where all these variables are created? Or where that infamous stack really is? I
bet you do. Well, when you define a variable, memory is allocated in the Integer Segment.
When you define another one, space is allocated after the first variable. That means that if
you go beyond the boundaries of the first variable, you’ll end up in the space allocated to
the second variable.

After the second variable there is a void. If you end up there your program will end with
an error-message. However, if you define an *’ARRAY’, single variable is created with a
number of additional cells. You can only access these additional by referring to the array
itself.

And what about the space before the first variable? There are other variables and they are
not defined by you. Well, take a look at figure 10.1.

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 134

Lower memory is at the bottom. The
user variables are the variables you defined
yourself. The application variables can dif-
fer from host program to host program. Re- User vriabies
fer to your documentation on that subject.
You have already seen the 4tH variables,

which are ’BASE’ and ">IN’. There are Variable Area
also variables you cannot access. These

variables are hidden and only used by the C variables

system. All these variables are located in

the Variable Area. s

There is also a Stack Area, which contain Read only variables

the datastack and the returnstack. If you

enter a number like "5", it is thrown on the System varizbles System Area
datastack. Most words in 4tH take or put l N
numbers on the datastack. Itis very heavily

Return stack

used. We’ll come to the returnstack later
on.

Stack Area
The datastack and the returnstack share the at stk
same memory space. The datastack grows
upward and the returnstack downward. If T
they clash the stack is full and 4tH will is-
sue an error-message.

Figure 10.1: Integer segment

10.6 A portable way to ac-
cess application variables

A host program can add special variables

to the 4tH environment. If 4tH is used as a scripting language in e.g. a printer program, the
programmer can "send" variables to 4tH. These variables are called "application variables".
Do not confuse them with 4tH variables, like "BASE’ or >IN’ which are used internally
by 4tH. 4tH doesn’t do anything with application variables.

If the creator of the host program provided special names for each of these variables, he
will probably have documented them. However, even if he didn’t there is another way to
access these variables.

They are stored in a predefined array called *APP’ and its values can be fetched like any
other array, e.g.:

app 1 th @

Which fetches the value of the second element in the array. This also enables you to write
programs that can be compiled and run under all "standard" versions of 4tH.

10.7 Returning a result to the host program

The *APP’ array can feed values from the host program to yours, but it can’t return any.
For that you need ’OUT", the third 4tH variable. Returning a value is very easy. Just store
itin ’OUT". Let’s assume the host program has send two values to the ’APP’ array and you
want to return the sum. All you have to do is add them and store the result in ’"OUT’:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 135

app 0 th @ app 1 th @ + out !

Nothing to it..

10.8 Using commandline arguments

A host program can also transfer an array of strings to the 4tH environment. Usually,
commandline arguments will be transferred this way, although any string array with the
correct format can be used. If so, you will probably find it in the documentation of the host
program.

If you are familiar with C, the concept is probably quite easy to understand. There are two
words, ’ARGN’ and ’ARGS’. ’ARGN’ will leave the number of commandline arguments
on the stack. The commandline arguments itself are numbered from O to (ARGN - 1), e.g.

argn 0> \ test if there are
if \ any arguments
argn 0 do \ loop through them
i args type cr \ print them
loop
then

First, we test if there are any commandline arguments. Second, if that is the case we loop
through them with ’ARGN" as upper limit. Why? Since "ARGN 1- ARGS" is always the
last valid commandline argument!

Third, when *ARGS’ executes, it takes a number from the stack as index. Then it leaves
the address of the Character Segment (where it is temporarily stored, usually PAD) and its
count on the stack.

Using the expression "TYPE CR" we can print that string. Because it is already stored in
the Character Segment we can treat it like any other string. Remember, that if you don’t
save it anywhere else it won’t last long!

10.9 The layout of the Variable Area

There are special words that allow you to get information about the layout of the Variable
Area. They are called "VARS’, ’APP’, "FIRST’ and "LAST".

"VARS'’ is the address of the very first variable. Before that is the Stack Area and other
variables you are not allowed to touch. *APP”’ is the address of the first application variable.
All variables before that are 4tHs own built-in variables. "FIRST’ is the address of the first
user-variable, a variable you defined yourself in your 4tH program. 'LAST’ is the address
of the last accessible variable, so

last 7

will never fail. The first question that will pop in your mind is, what can I do with them.
Well, you can use it to see how many variables there are of a certain kind, so you can
prevent runtime errors:

." number of 4tH variables: " app vars - . cr

." number of application variables: " first app - . cr
." number of user variables: " last first - 1+ . cr

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 136

These tests are possible too:

app vars - 0= if ." No 4tH variables" cr then
first app - 0= if ." No application variables" cr then
last first - 1+ 0= if ." No user variables" cr then

This is a general test to see whether the address of any variable is within range:

dup 0<

dup last >

or

if ." Out of range" cr then

You can use this check on numeric arrays too, of course.

10.10 The stacks

The Stack Area contains two stacks. So far we’ve talked about one stack, which is the Data
Stack. The Data Stack is heavily used, e.g. when you execute this code:

2 3+ .

Only the Data Stack is used. First, "2" is thrown on it. Second, "3" is thrown on it. Third,
’+’ takes both values from the stack and returns the sum. Fourth, this value is taken from
the stack by *.’ and displayed. So where do we need the other stack for?

Well, we need it when we want to call a colon-definition. Before execution continues at the
colon-definition, it saves the address of the currently executed token in the Code Segment
on the other stack, which is called the Return Stack for obvious reasons.

Then execution continues at the colon-definition. Every colon-definition is terminated by
’;”, which compiles into "EXIT’. When *EXIT’ is encountered, the address on top of the
Return Stack is popped. Execution then continues at that address, which in fact is the place
where we came from.

If we would store that address on the Data Stack, things would go wrong, because we can
never be sure how many values were on that stack when we called the colon-definition, nor
would be know how many there are on that stack when we encounter "EXIT’. A separate
stack takes care of that.

Try and figure out how this algorithm works when we call a colon-definition from a colon-
definition and you will see that it works (4tH is proof of that).

It now becomes clear how "EXECUTE’ works. When ’EXECUTE’ is called, the address
of the colon-definition is on the Data Stack. All ’TEXECUTE’ does is copy its address on
the Return Stack, take the address from the Data Stack and call it. ’EXIT’ never knows the
difference..

But the Return Stack is used by other words too. Like DO’ and 'LOOP’. ’DO’ takes the
limit and the counter from the Data Stack and puts them on the Return Stack. "LOOP’ takes
both of them from the Return Stack and compares them. If they don’t match, it continues
execution after "DO’. That is one of the reasons that you cannot split a ’'DO..’LOOP’.

However, if you call a colon-definition from within a ’'DO’.”’LOOP’ you will see it works:
the return address is put on top of the limit and the counter. As long as you keep the Return
Stack balanced (which isn’t too hard) you can get away with quite a few things as we will
see in the following section.

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 137
10.11 Saving temporary values

We haven’t shown you how the Return Stack works just for the fun of it. Although it is an
area that is almost exclusively used by the system you can use it too.

We know we can manipulate the Data Stack only three items deep (using 'ROT’). Most of
the time that is more than enough, but sometimes it isn’t.

In 4tH there are special words to manipulate stack items in pairs, e.g. "2DUP’ (nl n2 —nl
n2 nl n2) or 2DROP’ (nl n2 -). Although they are already part of 4tH, we could easily
define those two ourselves:

: 2dup over over ;
: 2drop drop drop ;

You will notice that ’2SWAP’ (nl n2 n3 n4 —n3 n4 nl n2) becomes a lot harder. How can
we get this deep? You can use the Return Stack for that..

The word >R’ takes an item from the Data Stack and puts it on the Return Stack. The
word 'R>’ does it the other way around. It takes the topmost item from the Return Stack
and puts it on the Data Stack. Let’s try it out:

: 2swap (nl n2 n3 n4) \ four items on the stack
rot (n1 n3 n4 n2) \ rotate the topmost three
>r (nl n3 n4) \ n2 is now on the Return Stack
rot (n3 n4 nl) \ rotate other items
r> (n3 n4d nl n2) \ get n2 from the Return Stack

’

And why does it work in this colon-definition? Why doesn’t the program go haywire?
Because the Return Stack is and was perfectly balanced. The only thing we had to do
was to get off "n2" before the semi-colon was encountered. Remember, the semi-colon
compiles into "EXIT” and "EXIT’ pops a return-address from the Return Stack. Okay, let
me show you the Return Stack effects:

: 2swap (rl)
rot (rl)
>r (rl n2)
rot (rl n2)
r> (rl)
(

; =)
Note, these are the Return Stack effects! "R1" is the return-address. And it is there on top
on the Return Stack when "EXIT’ is encountered. The general rule is:

"Clean up your mess inside a colon-definition"

If you save two values on the Return Stack, get them off there before you attempt to leave.
If you save three, get three off. And so on. This means you have to be very careful with
looping and branching. Otherwise you have a program that works perfectly in one situation
and not in another:

: this-wont-work (nl n2 —-- nl n2)
>r (nl)
0= if (-)
r> (n2)
dup (n2 n2)
else
12 (1 2)

then

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT

138

This program will work perfectly if nl equals zero. Why? Let’s look at the Return Stack

effects:

: this-wont-work (rl)
>r (rl n2)
0= 1if (rl n2)
r> (rl)
dup (rl)
else (rl n2)
12 (rl n2)
then

You see when it enters the ’ELSE’ clause the Return Stack is never cleaned up, so 4tH
attempts to return to the wrong address. Avoid this, since this can be very hard bugs to fix.

10.12 The Return Stack and the DO..LOOP

We’ve already told you that the limit and the counter of a DO..LOOP (or DO..+LOOP) are
stored on the Return Stack. But how does this affect saving values in the middle of a loop?
Well, this example will make that quite clear:

r>
loop
cr
drop

222

ol

You might expect that it will show you the value of the counter ten times. In fact, it doesn’t.
Let’s take a look at the Return Stack:

10 0 do
>r
i
r>

loop

cr

drop

= e

You might have noticed that it prints ten times the number "1". Where does it come from?
Usually I’ prints the value of the counter, which is on top of the Return Stack.

This time it isn’t: the number "1" is there. So I’ thinks that "1" is actually the counter and
displays it. Since that value is removed from the Return Stack when "LOOP’ is encoun-
tered, it doesn’t do much harm.

We see that we can safely store temporary values on the Return Stack inside a DO..LOOP,
but we have to clean up the mess, before we encounter "LOOP’. So, this rule applies here
too:

"Clean up your mess inside a DO..LOOP"

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 139

But we still have to be prepared that the word 'I" will not provide the expected result
(which is the current value of the counter). In fact, '’ does simply copy the topmost value
on the Return Stack. Which is usually correct, unless you’ve manipulated the Return Stack
yourself.

Note that there are other words beside *I’, which do exactly the same thing: copy the top
of the Return Stack. But they are intended to be used outside a DO..LOOP. We’ll see an
example of that in the following section.

10.13 Other Return Stack manipulations

The Return Stack can avoid some complex stack acrobatics. Stack acrobatics? Well, you
know it by now. Sometimes all these values and addresses are just not in proper sequence,
so you have to "'SWAP’ and "ROT’ a lot until they are.

You can avoid some of these constructions by just moving a single value on the Return
Stack. You can return it to the Data Stack when the time is there. Or you can use the top of
the Return Stack as a kind of local variable.

No, you don’t have to move it around between both stacks all the time and you don’t have
to use "I’ out of its context. There is a well-established word, which does the same thing:
’R@’. This is an example of the use of 'R@":

: delete (n)
>r #lag + (al)
r@ #lag (al a2 n2)
r@ negate (al a2 n2 n3)
r# +! (al a2 n2)
#lead + (al a2 n2 a3)
swap cmove (al)

(

r> blanks -=)

"R@’ copies the top of the Return Stack to the Data Stack. This example is taken from the
4tH-editor. It deletes "n" characters left of the cursor. By putting the number of characters
on the Return Stack right away, its value can be fetched by 'R@’ without using "'DUP’ or
’OVER’. Since it can be fetched at any time, no "'SWAP’ or 'ROT’ has to come in.

But note that the "number of characters” doesn’t change during the execution of the word.
It’s a constant. So, if you want to use the Return Stack efficiently, you put only constants
there. As a matter of fact, it can hold three of those constants without any adverse effects.
The top of the Return Stack can be retrieved by 'R@’, the value under it by 'R’ @’ and the
value under that one by 'R"@".

Believe me, by cleverly putting the right parameters on the Return Stack at the right time,
you can avoid many stack acrobatics and make your life a whole lot easier.

10.14 Altering the flow with the Return Stack

The mere fact that return addresses are kept on the stack means that you can alter the flow of
a program. This is hardly ever necessary, but if you’re a real hacker you’ll try this anyway,
so we’d better give you some pointers on how it is done. Let’s take a look at this program.
Note that we comment on the Return Stack effects:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 140

: soup ." soup " ; (rl r2)
: dessert ." dessert " ; (rl ro)
: chicken ." chicken " ; (rl r3 r4)
: rice ." rice " ; (rl r3 r5)
: entree chicken rice ; (rl r3)
: dinner soup entree dessert ; (rl)

(

dinner cr

And this is the output:

soup chicken rice dessert

Before we execute "DINNER" the Return Stack is empty. When we enter "DINNER" the
return address to the main program is on the Return Stack (r1).

"DINNER" calls "SOUP". When we enter "SOUP" the return address to "DINNER" is on
the Return Stack (12). When we are done with "SOUP", its return address disappears from
the Return Stack and execution continues within "DINNER".

Then "ENTREE" is called, putting another return address on the Return Stack (r3). "EN-
TREE" on its turn, calls "CHICKEN". Another return address (r4) is put on the Return
Stack. Let’s take a look on what currently lies on the Return Stack:

- Top Of Return Stack (TORS)

r4 returns to ENTREE
r3 returns to DINNER
rl returns to main program

As we already know, ’;’ compiles an "EXIT’, which takes the TORS and jumps to that
address. What if we lose the current TORS? Will the system crash? You can remove the
TORS by issuing 'RDROP’, although ”R> DROP” will do the trick as well, of course.

Apart from other stack effects (e.g. too few or the wrong data are left on the Data Stack)
nothing will go wrong. Unless the colon-definition was called from inside a DO..LOOP, of
course. But what DOES happen? The solution is provided by the table: it will jump back
to "DINNER" and continue execution from there.

dinner cr

: soup ." soup " ; (rl r2)
: dessert ." dessert " ; (rl ro)
: chicken ." chicken " rdrop ; (rl r3 - r4 gets lost!)
: rice ." rice " ; (rl r3 r5)
: entree chicken rice ; (rl r3)
: dinner soup entree dessert ; (rl)
(

-)

Since "CHICKEN" gets rid of the return address to "ENTREE" by issuing "'RDROP’,
"RICE" is never called. Instead, a jump is made to "DINNER" that assumes that "EN-
TREE" is done, so it continues with "DESSERT". This is the output:

soup chicken dessert

Note that this is not common practice and we do not encourage its use'. However, it gives
you a pretty good idea how the Return Stack is used by the system.

! As a matter of fact, it may interfere with 4tH’s peephole optimizer.

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 141
10.15 Leaving a colon-definition

You can sometimes achieve the very same effect by using the word "EXIT’ on a strategic
place. We’ve already encountered "EXIT’. It is the actual word that is compiled by ’;’.

What you didn’t know is that you can compile an ’EXIT’ without using a ’;’. And it does
the very same thing: it pops the return address from the Return Stack and jumps to it. Let’s
take a look at our slightly modified previous example:

: soup ." soup " ; (rl r2)
: dessert ." dessert " ; (rl ro)
: chicken ." chicken " ; (rl r3 r4)
: rice ." rice " ; (is never reached)
: entree chicken exit rice ; (rl r3)
: dinner soup entree dessert ; (rl)
(

&inner cr =)

After "CHICKEN" has been executed by "ENTREE", an "EXIT’ is encountered. "EXIT’
works just like ’;’, so 4tH thinks the colon-definition has come to an end and jumps back
to "DINNER". It never comes to calling "RICE", so the output is:

soup chicken dessert

’EXIT’ is mostly used in combination with some kind of branching like IF..ELSE.. THEN.
Compare it with 'LEAVE’ that leaves a DO..LOOP early.

But now for the big question: what is the difference between "EXIT’ and ’;’? Both compile
an "EXIT’, but they are not aliases. 4tH will try to match every ’;” with a ’:’. If it doesn’t
succeed, it will issue an error message. This matching is not performed by "EXIT’.

10.16 The layout of the Stack Area

Before we tell you how to obtain information on the Stack Area, we first have to explain
you how it is laid out. We’ve already seen that there are two stacks: the Data Stack and the
Return Stack. We also know what they are used for.

The next question is what part of the Stack Area is used by the Data Stack and what part is
used by the Return Stack. In fact, both stacks share the very same Stack Area.

The Data Stack grows upward from the bottom and the Return Stack grows downward from
the top. When they meet, you’re in trouble. If the Return Stack causes the overflow, 4tH
will report that the Return Stack overflowed. If it was the Data Stack, it will report that the
Data Stack overflowed.

If an overflow happens, you can’t say which stack actually overflowed. If the Data Stack
filled up the Stack Area and a colon-definition tries to put a return address on the Return
Stack, the Return Stack will get the blame.

Now for the good news. Because of this shared stack space, programs with different re-
quirements can run without having to modify stack sizes (you can’t do that; only the pro-
grammer of your application can). It can be a program that heavily uses the Return Stack
(recursive colon-definitions) or a program that needs lots of data on the Data Stack.

What you can check is how big the Stack Area actually is. It is a constant named *STACK’.
It will report the size in cells. Every value on any stack (address or value) takes up a single
cell.

You can also ask 4tH how many values are on the Data Stack using "'DEPTH’. It will report
the number of values, before you executed "'DEPTH’. Let’s elaborate on that a little more:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 142

." Begin" cr \ no values on the stack
10 \ 1 value on the stack

5 \ 2 values on the stack
9 \ 3 values on the stack
depth \ 4 values on the stack
. cr \ 4tH reports "3"

If you want to know what values the actual stack pointers have, you have to use 'SP@’
and 'RP@’. By subtracting ’SP@’ from "RP@’ you can see how much space is left in the
Stack Area:

rp@ sp@ -
." Space left: " . ." cells" cr

10.17 Booleans and numbers

You might have expected we had discussed this subject much earlier. But we haven’t and
for one very good reason. We’ve told you a few chapters ago that *IF’ branches if the top
of the stack is non-zero. Any number will do. So you would expect that this program will
print "I’'m here":

1 2 and
if

." I'm here"
then

In fact, it doesn’t! Why? Well, ’AND’ is a BINARY operator, not a LOGICAL operator.
That means it reacts on bit-patterns. Given two numbers, it will evaluate bits at the same
position.

The number "1" is "0O1" in binary. The number "2" is "10" in binary. ’AND’ will evalu-
ate the first bit (binary digit, now you know where that came from!). The first bit is the
rightmost bit, so "0" for the number "2" and "1" for the number "1".

’AND’ works on a simple rule, if both bits are "1" the result will be "1" on that position.
Otherwise it will be "0". So "1" and "0" are "0". The evaluation of the second bit has the
same result: "0". We’re stuck with a number that is "0". False. So 'IF’ concludes that the
expression is not true:

2 base ! [binary] \ set radix to binary

10 \ binary number "2"

01 AND \ binary number "1"

. cr \ binary result after AND

It will print "0". However, "3" and "2" would work just fine:

2 base ! [binary] \ set radix to binary

10 \ binary number "2"

11 AND \ binary number "3"

. cr \ binary result after AND

It will print "10". The same applies to other binary operators as ’'OR’ and ’INVERT’. ’OR’
works just like ’AND’ but works the other way around. If both bits are "0" the result will
be "0" on that position. Otherwise it will be "1":

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 143

2 base ! [binary] \ set radix to binary

10 \ binary number "2"

01 OR \ binary number "1"

. cr \ binary result after OR

It will print "11". We do not encourage the use of ’INVERT’ for logical operations. You
should use "0=" instead.

’0=" takes the top of the stack and leave a true-flag if it is zero. Otherwise it will leave a
false-flag. That means that if a condition is true (non-zero), it will leave a false-flag. Which
is exactly what a logical NOT should do.

Take a look at his brother *0<>". ’0<>’ takes the top of the stack and leaves a true-flag if it
is non-zero. Otherwise it will leave a false-flag.

The funny thing is ’AND’ and *OR’ work perfectly with flags and behave as expected.
’0<>’ will convert a value to a flag for you. So this works:

1 0<>
2 0<>
and if
." I'm here" cr
then

Of course, you don’t have to use ’0<>" when a word returns a flag. You should check the
glossary for details on that.

10.18 Using ’ with other names

999

So far we’ve only used ™’ (tick) with colon-definitions, but you can also use it with all con-
stants, variables, values, strings, vectors (see section 11.7) and constant arrays. However,
the information it provides is not always useful. E.g. the expression:

10 constant ten
’ ten

Does not compile differently from:

10 constant ten
ten

The same applies to constant arrays and strings. It will give you possibly information on
the address of variables, vectors, arrays and values, e.g.:

variable ten
’ variable ." Relative address of ten: " . cr

Yes, relative address! What does that mean? When a 4tH program is compiled it has no
idea how many application variables a host program will provide. So it stores a relative
address. This address is relative to the address returned by "FIRST’. You might call it an
offset if you want to. 4tH provides a word which will convert the relative address of vectors,
variables, values and numeric arrays to an absolute address, called ">BODY’. So this piece
of code does exactly the same thing:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 144

variable ten

ten \ throw address of ’'ten’ on stack
dup \ duplicate address

10 swap ! \ store 10 at address

? cr \ show value stored at address

As this piece of code:

variable ten

’ ten >body \ calculate address

dup \ duplicate address

10 swap ! \ store 10 at address

? cr \ show value stored at address

There are not too many occasions where this is useful, but it let’s take a look at this one:

0 value ten \ define a value

’ ten >body \ calculate address of value
dup \ duplicate address

10 swap ! \ store 10 at address

? cr \ show value stored at address

We already know that values, numeric arrays and vectors are stored in the very same area
of the Integer Segment. This construction makes it possible to access them as variables.

You can access string constants or arrays of string constants with tick, but they will return
a value which only has a meaning to 4tH itself. You won’t be able to do anything useful
with those values.

You should avoid these kind of constructions, but there might be some situations out there
where it might come in handy. Note that you can only tick your own names. All of 4tHs
built-in variables, strings, words, etc. cannot be accessed by tick.

10.19 Deleting files

4tH can also delete files on disk. That’s very easy, just feed it the name or path of the file
in question:

s" delete.me" delete-file .

If the deletion was successful, it prints zero, otherwise non-zero.

10.20 Querying environment variables

You can also retrieve the contents of every environment variable. Just feed 4tH with the
name of your environment variable and it will return the address and count of its contents:

s" DIR4TH" environ@ type cr

This will print the contents of your DIR4TH environment variable. Note that the contents
may be truncated if they would overflow the PAD. In such cases, you may want to use
the libraryfile getenv. 4th. This allows you to determine the string variable where the
contents will be written to. However, it doesn’t work on systems that do not support pipes
(see section 9.27) and is a bit slower:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 145

include lib/getenv.4th
1024 constant /buffer
/buffer string buffer
s" DIR4TH" buffer /buffer getenv type cr

Note that the contents are truncated as well if you don’t make the buffer large enough. Like
"ENVIRON @’ it will return an empty string on error.

10.21 What is not implemented

When writing a product like 4tH that is modelled after an existing programming language
like Forth one has to cut a few corners somewhere.

Forth has a fundamentally different architecture, which allows you to extend the compiler
with ease. 4tH is much more like conventional programming languages and many still
wonder how we got this far.

When you’re learning 4tH to learn Forth you will find there are things you can’t do in 4tH.
This section sums up most of the restrictions 4tH has in comparison to Forth and other
languages.

Datatypes There are no words that allow you to define your own datatypes,
although you can change the behaviour of individual variables. You
can solve many of these limitations by using the preprocessor?;

Interpreter Since 4tH is a conventional compiler, you won’t find a built-in in-
terpreter. There is a library-source, which will enable you to make
an interpreter for specific applications with ease. Next chapter we
will show you how to use it.

If you have more questions concerning the functionality of 4tH, please read the ANS-
Forth document. This describes the compliance of 4tH to the ANS-Forth standard. Further
information can be obtained by studying the glossary.

10.22 Known bugs and limitations

Like every software product, 4tH has bugs. Because a work-around is available, fixing
these bugs has no high priority.

* When you use '\’ without any actual comment in a Unix ASCII file the complete
next line will be marked as comment. With MS-DOS ASCII files 4tH will correctly
detect a null string and terminate with an error. Add at least a dot or something, just
to be safe.

» There can be only one space between '[DEFINED]’, '[UNDEFINED]’, '[CHARY’,
"CHAR’ and the string following it. If you don’t comply, 4tH will complain about
empty string constants.

* You cannot use "HIDE’ conditionally. If you specify a "HIDE’ it must always be
executed in 4tH.

2See chapter 19.

Chapter 11

Advanced programming

11.1 Compiletime calculations

When you’ve reached this chapter, you must have quite some experience with 4tH. This
chapter will help you to use 4tH to its full capacity. You’ll be able to use software excep-
tions, conditional compilation, compiletime calculation, enumerations, private declarations
and much, much more.

We’ve already explained that when you define a string, it has to be preceded by a literal
expression':

64 constant name
16 constant #names

name #names * string name_space

The word **’ takes two subsequent literal expressions and multiplies them to a new single
literal expression as if you’d written "1024" yourself! Everything that is evaluated at com-
piletime, must already be known at compiletime, thus a literal expression. Although not
all arithmetic words compile to a literal expression®, you can use the most common ones,
like **’,’/°,’+” and ’-’. Another useful word is 'NEGATE’, e.g. when you need to assign
a negative value to a constant:

16 constant +range
+range negate constant -range

In this example the value of -RANGE” is -16. You can even mix and chain compiletime
calculations. This will compile to the literal "500":

5 25 75 + x constant myconstant
myconstant .

Just as if you’d just written "500" in the sourcecode yourself. You can also write:

25 75 + 5 x constant myconstant
myconstant .

ISee section 7.13.
2This is called “constant folding”, which is actually a form of optimization. But not all operators can be
optimized, see section 11.20 for more details.

146

CHAPTER 11. ADVANCED PROGRAMMING 147

Because it’s just simple postfix notation. Note that there must be two consecutive literal
expressions available at any time, so this doesn’t work:

5 5 % dup * constant myconstant
myconstant .

Since 'DUP’ isn’t a literal expression, but a word which is simply compiled. But don’t
worry: 4tH will notify you when you make an error like this. The final word, we’d like
to present you is '[NOT]’, which logically inverts a flag at compiletime, just like *0=" at
runtime. This expression will compile to a true flag:

false [not]

You might wonder why we included this one, but that will become clear when you read the
next section.

11.2 Conditional compilation

This is something which can be very handy when you’re designing a 4tH program for
different environments or even different Forth compilers. Let’s say you’ve written a general
ledger program in 4tH that is so good, you can sell it. Your customers want a demo, of
course. You’re willing to give one to them, but you’re afraid they’re going to use the demo
without ever paying for it.

One thing you can do is limit the number of entries they can make. So, you copy the source
and make a special demo version. But you have to do that for every new release. Wouldn’t
it just be easier to have one version of the program and just change one single constant?
You can with conditional compilation:

true constant DEMO

DEMO [if]

256 constant #Entries
[else]

limit constant #Entries
[then]

variable CurrentEntry
#Entries array Entries

We defined a constant, called "DEMO", which is true. So, when the compiler reaches the
"DEMO [IF]" line, it knows that it has to compile "256 constant Entries", since "DEMQO"
is true. When it comes to '[ELSE]’, it knows it has to skip everything up to next '[THEN] .
So, in this case the compiler behaves like you’ve written:

256 constant #Entries
variable CurrentEntry
#Entries array Entries

Would you change "DEMO" to false, the compiler would behave as if you wrote:

limit constant #Entries
variable CurrentEntry
#Entries array Entries

CHAPTER 11. ADVANCED PROGRAMMING 148

The word ’[IF]” only works at compile time and is never compiled into the object. ’[IF]’
takes a literal expression. If this expression is true, the code following the *[IF] is com-
piled, just as ’[IF]” wasn’t there. Is this expression false, everything up to *'[ELSE]" or
’[THENTY is discarded as if it wasn’t there.

That also means you can discard any code that is superfluous in the program. E.g. when
you’re making a colon-definition to check whether you can make any more entries. If you
didn’t use conditional compilation, you might have written it like this:

: CheckIfFull (n —-—— n)
dup #Entries = (n f)
if (n)
drop (=)
DEMO (£
if (=)

." Buy the full version"

else \ give message and exit program
." No more entries"

then ()

cr quit
then (n)

But his one is nicer and will take up less code:

: CheckIfFull (n —-—— n)
dup #Entries = (n f)
if (n)

drop (-)

DEMO [if] (n f)

." Buy the full version"

[else]

." No more entries"
[then]
cr quit
then (n)

You can also use conditional compilation to discard large chunks of code. This is a much
better way than to comment all the lines out, e.g. this won’t work anyway:

(

: room? \ is it a valid variable?
dup (nn
size 1- invert and (n f)
if \ exit program
drop ." Not an element of ROOM" cr quit
then

This is pretty cumbersome and prone to error:

\ room? \ is it a valid variable?
\ dup (n n)

\ size 1- invert and (n f)

\ if \ exit program

\ drop ." Not an element of ROOM" cr quit

\ then

\

CHAPTER 11. ADVANCED PROGRAMMING 149

But this is something that can easily be handled:

false [1if]
: room? \ is it a valid variable?
dup (nn
size 1- invert and (n f)
if \ exit program
drop ." Not an element of ROOM" cr quit
then
7
[then]

Just change "false" to "true" and the colon-definition is part of the program again. Note
that *[IF]..[ELSE]..[THEN]’ can be nested! Conditional compilation is very powerful and
one of the easiest features a language can have. And it’s ANS-Forth compatible!

11.3 Checking the environment at compiletime

Let’s say you’ve written something which works perfectly on your own machine and you
want to use it on the mainframe at work. It turns out to be it doesn’t work. Why? Because
your program assumed that a cell was four address units wide. And it didn’t turn out to be
that way.

You could have prevented that if you had used a check at compiletime. You can do that this
way:

/cell 4 [=] [NOT] [IF]
(do something)
[THEN]

’/CELL’ is a constant which holds the number of address units in a cell. */CELL’ has got
a little brother called ’/CHAR’, which will tell you how many address units there are in a
character. ’[=] will check whether a cell has four address units and ’[NOT] will reverse
that flag. Neat huh?

But then again, what do we do if it doesn’t turn out to be that way. Any action will first
be executed at runtime so a message or ’ABORT’ won’t do. Further compilation will be
useless, so we actually want to stop. You're in luck, since we have a special word that will
stop the compiler regardless. It’s called '[ABORT]’. So this is our complete snippet:

/cell 4 [=] [NOT] [IF]
[ABORT]
[THEN]

But suppose you want to check whether a cell is at least 4 address units. ’[=]" won’t
do in that case. Of course, you can check every imaginable cellsize, but that is not very
pretty. That is where *[SIGN]” comes in. *[SIGN]’ will take a previously compiled literal
expression and compile -1 if the number was negative, zero if the number was zero and 1
if the number was positive. You may wonder how that does help. Well, consider this one:

/cell 4 - [SIGN] -1 [=] [IF]
[ABORT]
[THEN]

What have we been doing here? First, we substract the minimal cellsize from the actual
cellsize. If the sign of the sum is -1, compilation is aborted. The sum can only be negative
when */CELL’ is three or smaller. Get it? By using '[SIGN]’ you can make all kinds of
compiletime comparisons, which makes it a real asset.

CHAPTER 11. ADVANCED PROGRAMMING 150
11.4 Checking a definition at compiletime

We’ve already encountered "COMPARE’ in section 8.17. 'COMPARE’ is word that com-
pares two strings. It can do that both case sensitive and case insensitive. If you define a
constant called casesensitive before the '[NEEDS’ directive, it will perform a case
sensitive comparison. If you don’t, it will do a case insensitive comparison by default.

Most approaches would require the definition of casesensitive, regardless which
mode you select. This one doesn’t:

: compare (al nl a2 n2 —- £)
rot over over swap - >r (al a2 n2 nl)
min 0 tuck (al a2 0 n 0)
?do (al a2 f)
drop (al a2)
over i + c@ (al a2 cl)

[UNDEFINED] casesensitive [IF]

dup [char] A - max-n and 26 < if bl or then
[THEN]

over i + c@ (al a2 cl c2)
[UNDEFINED] casesensitive [IF]

dup [char] A - max-n and 26 < if bl or then

[THEN]
- dup (al a2 £ f)
if leave then (al a2 f)
loop
>r drop drop r> r> swap dup (f1 f2 £2)
if swap then drop (f)

’[UNDEFINED]’ checks whether the word following it has been defined and leaves a
TRUE flag if it wasn’t. It doesn’t matter whether the word is built-in, included or defined
in your program. It can be a variable, a word, a constant, anything you like.

In this case it checks whether casesensitive has been defined. If itisn’t, a line of code
is compiled. If an "IF’ had been used, the code would always be compiled with the added
overhead of testing a constant at runtime. This construction allows for tighter and faster
code.

Note that '[UNDEFINED]’ has also a counterpart called '[DEFINED] . It leaves a true flag
when the word following it has been defined.

11.5 Exceptions

You know when you violate the integrity of 4tH, it will exit and report the cause and loca-
tion of the error. Wouldn’t it be nice if you could catch these errors within the program?
It would save a lot of error-checking anyway. It is quite possible to check every value
within 4tH, but it takes code and performance, which makes your program less compact
and slower.

Well, you can do that too in 4tH. And not even that, you can trigger your own errors as
well. This simple program triggers an error and exits 4tH when you enter a "0":

[needs lib/enter.4th] get a number
if non-zero, return it
if zero, throw exception

—— n)

—~

: could-fail
enter dup 0=

CHAPTER 11. ADVANCED PROGRAMMING 151

if 1 throw then

\ drop numbers and
\ call COULD-FAIL
: do-it (-)
drop drop could-fail

\ put 2 nums on stack and
\ execute DO-IT

: try-it (-)
1 2 ['] do-it execute
." The number was" . cr
\ call TRY-IT
try-it

"TRY-IT" puts two numbers on the stack, gets the execution token of "DO-IT" and exe-
cutes it. "DO-IT" drops both numbers and calls "COULD-FAIL". "COULD-FAIL" gets
a number and compares it against "0". If zero, it calls an exception. If not, it returns the
number.

The expression "1 THROW" has the same effect as calling ’QUIT’. The program exits,
but with the error message "Unhandled exception". You can use any positive number for
"THROW?, but "0 THROW" has no effect. This is called a "user exception", which means
you defined and triggered the error.

There are also system exceptions. These are triggered by the system, e.g. when you want to
access an undefined variable or print a number when the stack is empty. These exceptions
have a negative number, so:

throw -4

Will trigger the "Stack empty" error. You can use these if you want but we don’t recommend
it, since it will confuse the users of your program.

You’'re probably not interested in an alternative for ’QUIT’. Well, "THROW’ isn’t. It just
enables you to "throw" an exception and exceptions can be caught by your program. That
means that 4tH won’t exit, but transfers control back to some routine. Let’s do just that:

[needs lib/enter.4th]
: could-fail (-—— n)

enter dup 0=
if 1 throw then

: do-it (-)
drop drop could-fail

: try-it (-
1 2 ['] do-it catch
if drop drop ." There was an exception" cr
else ." The number was" . cr
then
;
try-it

The only things we changed is a somewhat more elaborate "TRY-IT" definition and we
replaced "TEXECUTE’ by "CATCH’.

CHAPTER 11. ADVANCED PROGRAMMING 152

"CATCH’ works just like ’'EXECUTE’, except it returns a result-code. If the result-code is
zero, everything is okay. If it isn’t, it returns the value of "THROW?’. In this case it would
be "1", since we execute "1 THROW". That is why "0 THROW" doesn’t have any effect.

If you enter a nonzero value at the prompt, you won’t see any difference with the previous
version. However, if we enter "0", we’ll get the message "There was an exception"”, before
the program exits.

But hey, if we got that message, that means 4tH was still in control! In fact, it was. When
"1 THROW" was executed, the stack-pointers were restored and we were directly returned
to "TRY-IT". As if "1 THROW" performed an ’EXIT’ to the token following *CATCH’.

Since the stack-pointers were returned to their original state, the two values we discarded in
"DO-IT" are still on the stack. But the possibility exists they have been altered by previous
definitions. The best thing we can do is discard them.

So, the first version exited when you didn’t enter a nonzero value. The second version did
too, but not after giving us a message. Can’t we make a version in which we can have
another try? Yes we can:

[needs lib/enter.4th]

: could-fail (—— n)
enter dup 0=
if 1 throw then

: do-it (-—)
drop drop could-fail

retry-it (-
begin
1 2 ['] do-it catch
while
drop drop ." Exception, keep trying" cr
repeat
." The number was " . cr

’

retry-it

This version will not only catch the error, but it allows us to have another go! We can keep
on entering "0", until we enter a nonzero value. Isn’t that great? But it gets even better! We
can exhaust the stack, trigger a system exception and still keep on going. But let’s take it
one step at the time. First we change "COULD-FAIL" into:

: could-fail (—— n)
enter dup 0=
if drop ." Stack: " depth . cr 1 throw then

This will tell us that the stack is exhausted at his point. Let’s exhaust is a little further by
redefining "COULD-FAIL" again:

: could-fail (—— n)
enter dup 0=
if drop drop then

CHAPTER 11. ADVANCED PROGRAMMING 153

Another ' DROP’? But wouldn’t that trigger an "Stack empty" error? Yeah, it does. But
instead of exiting, the program will react as if we wrote "-4 THROW" instead of "DROP
DROP". The program will correctly report an exception when we enter "0" and act accord-
ingly.

This will work with virtually every runtime error. Which means we won’t have to protect
our program against every possible user-error, but let 4tH do the checking.

We won’t even have to set flags in every possible colon-definition, since 4tH will automat-
ically skip every level between "THROW’ and *CATCH’. Even better, the stacks will be
restored to the same depth as they were before "CATCH’ was called.

You can handle the error in any way you want. You can display an error message, call some
kind of error-handler, or just ignore the error. Is that enough flexibility for you?

Note that "THROW?’ has a little brother, called "THROW"’. It’s modelled after ’ABORT"*3
and prints a message before throwing an exception. The only difference is that you cannot
take the exception value from the stack. It has to be predefined. It’s a good practice to use
the values defined in throw. 4th. To give you an example, this will work:

include lib/throw.4th
: ithrewthis E.USER throw" User exception thrown" ;

ithrewthis

And this won’t:

include lib/throw.4th
: ithrewthis throw" User exception thrown" ;

E.USER ithrewthis

The idea behind this is that since you display a very specific message, a very specific
exception should be associated with it. Note almost all 4tH libraries throw exceptions, so
you can always catch those errors - and gracefully handle them.

11.6 Enumerations

Sometimes you need a lot of constants:

constant Monday
constant Tuesday
constant Wednesday
constant Thursday
constant Friday
constant Saturday
constant Sunday

o U W NP O

A little error here may ruin your program. This does the very same thing, except it is easier
to maintain:

0 enum Monday enum Tuesday enum Wednesday
enum Thursday enum Friday enum Saturday
enum Sunday drop

3See section 9.11.

CHAPTER 11. ADVANCED PROGRAMMING 154

’ENUM’ is much like a ’"CONSTANT’, but increments and leaves a value after the constant
has been created. That is why we need to add "’DROP’ after the final enumeration. To show
you that ’TENUM’ and ’CONSTANT’ are much alike, you could also write the declaration
above as:

0 enum Monday enum Tuesday enum Wednesday
enum Thursday enum Friday enum Saturday
constant Sunday

Since "CONSTANT” just consumes the value, you don’t need the final ’'DROP’.

11.7 Forward declarations

It doesn’t happen very often, but sometimes you have a program where two colon-definitions
call each other. When you look at 4tHs source you find several examples. The throw() func-
tion calls the rpop() function, because "THROW’ takes items from the Return Stack. On
the other hand, when the Return Stack underflows, it has to call " THROW’.

There is a special instruction in 4tH to do this, called 'DEFER’. "'DEFER’ doesn’t create
an executable word, but a vector containing an execution token*, which is executed when
called. You might want to consult section 10.3 first to see how this works. But for all
purposes you might consider it to be an executable word, because it behaves the same way.

defer Step2

Now we can create "STEP1" without a problem:

: Stepl 1+ dup . cr Step2 ;

But "STEP2" does not have a body yet. Of course, you could create a new colon-definition,
tick it and assign the execution token to "STEP2" manually, but it is much neater to use
":NONAME’. :NONAME’ can be used like a normal ’:’, but it doesn’t require a name.
Instead, it pushes the execution token of the colon-definition it created on the stack. No,
":NONAME’ does not create a literal expression, but it is just what we need:

:noname 1+ dup . cr Stepl ; is Step2

Now we are ready! We can simply execute the program by calling "STEP1":

1 Stepl

Note that if you run this program, you’ll get stack errors! Sorry, but the example has been
taken from a Turbo Pascal manual ;-). If you have forgotten what a deferred word actually
executes, you can retrieve the execution token by using 'DEFER@":

defer thisword \ create a vector
: plus + ; \ define a word

’ plus is thisword
’ thisword defera@
2 3 rot execute

. cr

assign the word to the vector
retrieve the execution token
execute the deferred word
display the result

e

4See section 10.4.

CHAPTER 11. ADVANCED PROGRAMMING 155

As a matter of fact, this expression:
’ thisword defer@ execute

Is equivalent to this one:

thisword

You can also reassign a vector without using ’IS’. ’IS’ is a parsing version. That means the
actual vector to which a certain behaviour is assigned is determined at compiletime. *DE-
FER!’ can be used to assign a certain behaviour at runtime. ’DEFER!’ takes two execution
tokens:

defer thisword \ create a vector
: plus + ; \ define a word
’ plus ' thisword defer! \ assign it to a vector

This is equivalent to this:

defer thisword \ create a vector
: plus + ; \ define a word
’ plus is thisword \ assign it to a vector

I guess you’ll agree with me that this creates countless possibilities.

11.8 Recursion

Yes, but can she do recursion? Of course she can! It is even very natural and easy. Every-
body knows how to calculate a factorial. In 4tH you can do this by:

factorial (nl -— n2)
dup 2 >
if
dup 1-
factorial =
then

’

10 factorial . cr

Which is exactly as one would expect. Unfortunately, this is not the way it is done in ANS-
Forth. In order to let a colon-definition call itself, you have to use the word "'RECURSE’.
4tH supports this word too:

factorial (nl -- n2)
dup 2 >
if
dup 1-
recurse *
then

’

10 factorial . cr

CHAPTER 11. ADVANCED PROGRAMMING 156

It will even compile to the same code. If you use the word 'RECURSE’ outside a colon-
definition, the results are undefined. Note that recursion lays a heavy burden on the return
stack. Sometimes it is wiser to implement such a routine differently:

factorial
dup
begin
dup 2 >
while
1- swap over * swap
repeat

drop

’

10 factorial . cr

So if you ever run into stack errors when you use recursion, keep this in mind.

11.9 Private declarations

Sometimes you want to hide some definitions from other programmers. This is especially
true when you’re writing libraries or templates. The Application Programmers Interface
must be public of course, but you don’t want anyone else to tinker with the internals of
your library. And there is the problem of cluttering your name space.

Relax, 4tH has a way to get rid of these internal words. It’s easy, just tell 4tH to hide them:

VARIABLE #emits \ private
SHOW emit 1 #emits +! ; \ public
: NL CR 0 #emits ! ; \ public

hide #emits

After that the name "#EMITS" is no longer recognized and can be reused if you want to,
e.g. this is completely valid:

: dummy ;
hide dummy
: dummy ." I am no longer a dummy!" cr ;

As a matter of fact, the previous declaration of "DUMMY" has been turned into a *:NON-
AME’ declaration by the use of "HIDE’. Note that "HIDE’ is meant to make definitions
private; not to optionally override previously defined definitions in order to achieve a Forth-
like behavior:

[DEFINED] myoption [IF]
hide myoption
[THEN]

true CONSTANT myoption

If you want to achieve that, use the "first come, first served” rule:

[UNDEFINED] myoption [IF]
true CONSTANT myoption
[THEN]

CHAPTER 11. ADVANCED PROGRAMMING 157

The constant "MYOPTION" is only defined if it hasn’t been defined before. You may have
to change a few things here and there to make it work, but there are obvious advantages to
this construction.: it saves memory and is much easier to understand and maintain. And
you won’t scratch your head why your perfectly valid 4tH program doesn’t compile”.

11.10 Aliases

Sometimes you want to make an alias for a word. Of course you can embed the word you
want to alias in a new definition:

¢ noop ;
: nop noop ;

Although this approach works perfectly under all circumstances it has its disadvantages,
because calling a word is relatively slow. Unless you’re trying to make an alias for an
internal word, you’d better use an *ALIAS ’:

: noop ;
’ noop alias nop

This is completely equivalent to:

defer nop
: noop ;
’ noop is nop

Although the vector takes up a little space, it will save you from most of the calling over-
head. Since you can only alias self-defined executable words, *ALIAS’ is quite limited.
’AKA’ does not have that disadvantage:

: noop ;
aka noop nop

Both words are now completely equivalent and compile to exactly the same code. Even
better, you can use *AKA’ with every self-defined word, including variables, vectors, files,
values, fields and constants. *AKA’ even works with most built-in 4tH words, e.g. con-
stants:

aka + plus

’AKA’ will not work with defining, preprocessor, flow control words or inline macros®. If
you’re unsure, just try! If 4tH bombs out with an error message, you’ll know. *AKA’ is
also known as “also known as”.

5The tokenizer evaluates "HIDE’ in order to estimate the size of the symboltable while conditional compilation
is first evaluated by the parser.
Rule of the thumb: any word that compiles to a single token. See the glossary for details.

CHAPTER 11. ADVANCED PROGRAMMING 158

11.11 Changing behavior of data

One of the most ingenious things Forth can do, is change the behavior of data at runtime.
With 4tH, you cannot do this for an entire datatype, but you can do it for individual *VARI-
ABLE’s, 'CREATE’s, 'STRING’s, ’ARRAY’s and "CONSTANT’s. Just use:

:REDO <name> <definition> ;

Where <name> is a previously defined "VARIABLE’, "STRING’, etc. The definition will
behave as if the "VARIABLE’, etc. has just been thrown on the stack, e.g. to make a
"VARIABLE’ behave as a ’CONSTANT ’you define:

variable me

10 me !
:redo me @ ;

The body of the definition will behave as if it said:

me @

Which boils down to a (rather slow) constant. You cannot change the contents of the
variable anymore if you haven’t taken precautions, because there is no way to address it.
Here is another, more elaborate example:

create life \ create an array of string constants
," This is my life!"
," This is your life!"

0 constant my \ create two constants
1 constant your \ to address the elements

\ now change the behaviour of LIFE
:redo life swap th @c count type cr ;

my life \ use it!
your life

At runtime, this will print:

This is my life!
This is your 1life!

There is even a shorter way to do this by using 'DOES>’, e.g. we could also write the
example above as:

create life \ create an array of string constants
," This is my life!"
," This is your life!"

does> swap th @c count type cr ;

0 constant my \ create two constants
1 constant your \ to address the elements

\ now change the behaviour of LIFE
my life \ use it!

your life

CHAPTER 11. ADVANCED PROGRAMMING 159

"DOES>’ always applies to the last defined *VARIABLE’, ’"CREATE’, *STRING’, AR-
RAY’ or "CONSTANT", so you don’t have to repeat the name. So why :REDO’, you
might ask. Well, sometimes you have to define some other words before you encapsulate
the data. *:REDQ’ allows you to do just that.

If you just want to initialize the data, you can do so with "TLATEST’. "LATEST’ will com-
pile to the last word you have defined, so if you want to change the name of your definition,
that’s the only thing you have to do. E.g. this is the 4tH translation of a double number’
constant:

include lib/anscore.4th \ for 2@, 2!

include lib/ansdbl.4th \ for U>D

2 array mydouble \ define a double number
max-n u>d latest 2! \ initialize it

does> 2@ ; \ now make it a constant

Wording has always been very important to Forth. Using this technique, you can make
your programs even more readable.

11.12 Multidimensional arrays

We’ve seen two dimensional arrays with ’ARRAY’ and *STRING’, but what about multi-
dimensional arrays. Well, it’s the same thing all over again. C doesn’t actually have multi-
dimensional arrays either. When you define one, just a chunk of memory is allocated.

In 4tH you can do the same thing, but now you have to do it yourself. E.g. when you want
to define a matrix of cells of 4 rows by 5 elements, you have to multiply those and allocate
an array of that size:

4 5 x array my_array

But what if you want to reference the fourth element of the third row? You cannot write
something like:

2 3 my_array @
That’s right. But you can change the behaviour of "MY_ARRAY” accordingly:

:redo my_array nl n2 —- a)

(
rot 5 \ calculate row offset
rot + \ calculate element offset
cells \ calculate number of cells
+ \ add to address of my_array

Or even better:

4 5 x array my_array does> rot 5 x rot + cells + ;

This word calculates the correct offset for you. Note that the third row is row number two
(since we start counting from 0) and the fourth element is element number three:

7See section 12.26.

CHAPTER 11. ADVANCED PROGRAMMING 160
2 3 my_array @

You can also use "MY_ARRAY" to initialize an array, since it simply calculates the correct
address for you:

5 2 3 my_array ! \ sets 3rd row 4th element to 5

You can add more dimensions if you want. This works basically the same way: create an
array of a size that equals the products of its dimensions and design a word that calculates
the correct address.

11.13 Binary string constants

A binary string constant is an unterminated string that doesn’t necessarily contain charac-
ters. Creating binary string constants is easy. Just compile them by their ASCII value into
the String Segment with °C,’:

char H ¢, char i ¢, char ! ¢, 0 c,

The fun of it all is that 4tH doesn’t allow you to access the String Segment directly, so
you can never retrieve them. You need ’OFFSET’ to define a word which does all the hard
work for you. At runtime it takes an index and leaves the ASCII value of the character in
question on the stack. ’OFFSET" is used just before you compile the ASCII values:

offset greet char H ¢, char i ¢, char ! ¢, 0 ¢,

Note that you have to terminate a binary string constant manually if you need to, although
it is perfectly legal to create binary string constants with no termination at all. Retrieving
characters is easy. This will print "Hi!”:

0 greet emit
1 greet emit
2 greet emit cr

And so will this:
0 begin \ setup index
dup greet dup \ retrieve character
while \ if not terminated
emit 1+ \ emit and increase index
repeat drop drop \ clear stack

You can use binary string constants for compact tables, bitstrings or any other raw data as
long as each element doesn’t exceed the size of a single character. Although useful in itself,
you’ll get into trouble when you try to pack several binary strings in a single datastructure.
Sure, you can give each binary string its own ’OFFSET’ but binding their addresses into
some form of array structure? No, because an "OFFSET’ is not a literal expression and
hence cannot be compiled that way.

A solution is to “’tag” individual strings. Tags are literal expressions and compilable, so
you can do this:

CHAPTER 11. ADVANCED PROGRAMMING 161

OFFSET names
TAG names Hans
char H ¢, char a ¢, char n ¢, char s ¢, 0 ¢,
TAG names Wil
char W ¢, char 1 ¢, char 1 ¢, 0 c,
TAG names Phil
char P ¢, char h ¢, char 1 ¢, char 1 ¢, 0 ¢,

Or this, if you want to make it a little less “wordy:

OFFSET names
TAG names Hans c" Hans" 0 c,
TAG names Wil c" Wil" O c,
TAG names Phil c¢" Phil" 0 c,

Both expressions are completely equivalent. ’C"” simply offers you a much easier way to
enter a printable string. Note that "CI’ is available too, if you happen to use embedded
quotes. And yes, you can mix ’C,” and *’C"’ as much as you like.

You can feed the *"TAG’ as an index to an ’OFFSET’, so this will return ”W” (from "Wil”):

Wil names emit

And as promised, this will work as well:

CREATE developers
Hans , Phil , Wil , NULL ,

Contrary to popular belief, this construct is as memory efficient as:

CREATE developers
," Hans" ," Phil" ," Wil" NULL ,

It is just a bit more cumbersome to set up. You can even wrap up your binary string array
into a :REDQ’ definition, giving:

:redo developers
swap cells + Qc
begin dup names dup while emit 1+ repeat
drop drop cr

Which means you can write:

1 developers

Which will display ”Phil”. This way, embedding e.g. UTF-8 code not only becomes possi-
ble, but also very easy to set up.

CHAPTER 11. ADVANCED PROGRAMMING 162
11.14 Binary string variables

You can define raw chunks of memory with " BUFFER:’. This will allocate a raw chunk of
data of 1024 bytes:

1024 buffer: a

Finally, if you want to move raw chunks of data around, there is 'MOVE’:

1024 buffer: a
1024 buffer: b

a b 512 move

This will define two raw buffers of 1024 bytes and "MOVE’ will copy the first 512 bytes of
buffer ”a” to buffer ’b”.

11.15 Records and structures

The easiest way is to allocate a structure in the Character Segment. Just define the structure
like this:

struct
32 +field Name
64 +field Address
32 +field City
4 +field Age
end-struct /Person

This might be a familiar example to you. We’ll store information on a single person in
this structure. Now we got the fields, the length of the fields and the length of the entire
structure, stored in ”’/Person”. Both the fields and the entire structure are nothing more than
a set of constants, e.g. the offset of the field "Name” is stored in a CONSTANT named
”Name”. However, we still haven’t allocated any memory. We can allocate room for the
structure we’ve just defined by just using the word ’STRING’. Note that you can also create
a cell-based structure. Then you need the word ’ARRAY” to allocate the memory required.

/Person string Person

Now we can define a word which initializes the fields:

: InitRecord \ initialize fields
s" Hans Bezemer" Person —-> Name place
s" Lagendijk 79" Person -> Address place
s" Den Helder" Person —-> City place
s" 44" Person -> Age place

Of course, you can also use ’ACCEPT’ to enter the contents of the fields. Fields act like
ordinary strings. Note that numbers are stored as strings as well. This is not too much of a
problem since ’NUMBER’ can convert them back to numbers anyway.

This is a very simple use of structures. You can also use structures within structures:

CHAPTER 11. ADVANCED PROGRAMMING 163

struct
64 +field Address
32 +field City
end-struct /Location

struct

32 +field Name

/Location field Location
end-struct /Person

/Person string Person

s" Delft" Person -> Location -> City place

If you want to make an array of structures, that can be done as well:

struct \ create structure
32 +field Name
64 +field Address
32 +field City
4 +field Age
end-struct /Person

32 constant #Person \ size of array of structs

\ now allocate the room
#Person /Person = string Persons

\ make it behave properly
:redo Persons swap /Person x + ;

\ initialize the first record

s" Hans Bezemer" 0 Persons —-> Name place
s" Lagendijk 79" 0 Persons —> Address place
s" Den Helder" 0 Persons —-> City place
s" 44" 0 Persons —-> Age place

You can also extend an already existing structure:

struct \ create structure
32 +field Name
64 +field Address
32 +field City
12 +field Age
end-struct /Person
\ now extend the structure
/Person
32 +field Job
16 +field Emp-number
end-struct /Employee

You now got two different structures, ”/Person” and ”/Employee”, that share the first four
fields. Defining a structure within a structure is possible too:

struct \ create structure
32 +field Firstname
64 +field Lastname
struct \ structure within a structure
64 +field Address
8 +field Zip
32 +field City
+field Location \ let’s give it a name
4 +field Age
end-struct /Person

Let’s use it:

CHAPTER 11. ADVANCED PROGRAMMING

/Person string Person

s" Hans" Person
s" Bezemer" Person
s" Lagendijk 79" Person
s" Den Helder" Person
s" 44" Person

—>
->
—>
—->
->

F
L
L
L

Age

\ allocate some space

\ initialize it

irstname place

astname place

ocation -> Address place
ocation -> City place
place

164

And finally, if you want to define a structure and allocate the memory it occupies at the

same time, you can do that one too. After all, ’+FIELD’ is literal expression

struct
32 +field Firstname
64 +field Lastname
8 +field Initials
string Person

\ define the structure

\ allocate the structure

s" Hans" Person —-> Firstname place

s" JL"

Person —-> Initials place

Well, if that isn’t a complete implementation, I don’t know what is..

11.16 Unions

8.

A union is a bunch of variables that share the same memory. Defining it in 4tH is quite

easy:

include lib/ncoding.4th

struct
32 /field
nell /field
end-struct /union

/union string myunion

\ include NCODING library

first field
second field
end union definition

~ -

\ allocate some space
\ now use it

s" Hans Bezemer" myunion place

1960 myunion n!

start defining the union

The union has the size of its largest field. You may wonder why the individual fields
don’t have their own names, but there is a reason for that. In other languages the field
determines the type, so the compiler can figure out if you’re using it properly. Since 4tH
has no typechecking names are pretty useless, consequently there aren’t any. You can use
a union within another union or structure:

include 1lib/fpl.4th

struct
1 cells /field
float /field

end-struct /number

struct
field: type_tag
/number +field x
array z

23 z —> x !
23 s>f z —> x f!

8See section 7.13.

P P

-

include the FP library

define a union
sharing an integer
and a floating point
number

define a structure

with some fields

and the union concerned
allocate some space

use it as a number
use it as an FP number

CHAPTER 11. ADVANCED PROGRAMMING 165

You can also embed the union in the structure if you like:

include lib/fpl.4th \ include the FP library
struct \ define a structure
field: type_tag \ with some fields
struct \ define a union
1 cells /field \ sharing an integer
float /field \ and an FP number
+field x \ embed the union
array z \ allocate some space
23 z —> x ! \ use it as a number
23 s>f z —> x f! \ use it as an FP number

If you really want to differentiate beween the floating point number and the integer, you
can make an alias for field ”X”’:

aka x y
And use it accordingly:

23 z => x ! \ use it as a number
23 s>f z —> y f! \ use it as an FP number

It is only cosmetic though, since it will compile to the same code and 4tH won’t issue an
error if you don’t use it properly.

11.17 Complex control structures

Sometimes, the normal control structures of 4tH are not enough. Take this implementation
of "-TRAILING’:

: —trailing (anl —— a n2)
begin
dup \ quit if length is zero
while
2dup 1- chars + c@ bl <> \ is it still a space?
if exit else 1- then \ if not, quit
repeat \ if so, decrement length

No one will tell you that this is elegant. You have to perform a test and quit the word. And
this is still palatable. Imagine you have to test several conditions like this! It will become
horrible pretty soon! Therefore, 4tH supports extended control structures. We’ve seen the
basic control structures in sections 7.22, 7.23 and 7.24. Now we’re expanding those into:

BEGIN .. WHILE .. WHILE .. AGAIN | REPEAT
BEGIN .. WHILE .. WHILE .. UNTIL

Yes, that’s right: 'REPEAT’ and ’AGAIN’ are actually aliases. But what can we do with
them? Well, take a look at our modified -TRAILING’ word:

CHAPTER 11. ADVANCED PROGRAMMING 166

: —trailing (anl -— a n2)

begin
dup

while \ quit if length is zero
2dup 1- chars + c@ bl =

while \ quit if it is not a space
1- \ decrement length

repeat

You have to admit that the latter version is much more elegant and readable. Although very
elegant and usuable, in some circumstances you want to know which "WHILE’ terminated
the loop and take additional action. This means you either have to set an additional flag
or repeat the test, which is neither elegant nor efficient. For that purpose 4tH offers the
DONE..DONE construct. In this example ”-TRAILING” tells you why it terminated:

: —trailing (anl —— a n2)

begin
dup

while \ quit if length is zero
done ." All spaces or NULL string" cr done
2dup 1- chars + c@ bl =

while \ quit if it is not a space
1- \ decrement length
done ." String trimmed" cr done

repeat

A DONE..DONE clause always belongs to the last defined "WHILE’, so it doesn’t really
matter where you put it. What ’DONE’ actually does is resolve the last defined "WHILE’ or
’DONE’. The last ’'DONE’ always jumps to 'REPEAT", so a single ’'DONE’ is a 'NOOP’.
You can actually define something like this:

begin
(condition)
while
(true)
done (false) done
(true)
done (false) done
(true)
done
(true)
repeat

But you’ll have to agree it’s not very useful®.

11.18 Alternative branch- and loop constructs

I don’t know about you, but I always hated constructs like this:

: myword 0= if 1+ else 2% then ;

Why? Because it always brings my mind to a full stop when I encounter a ’0=" right before
a conditional. In this case, you can easily rewrite it - and the *0=" disappears:

You can actually define ”if else else else then” too, which is not very helpful neither.

CHAPTER 11. ADVANCED PROGRAMMING 167

: myword if 2% else 1+ then ;

But there’s even a better way to write this:

: myword if 2x ;then 1+ ;

»;THEN’ is equivalent to "THEN’ - with one exception: once encountered, it exits the word
immediately. Tt’s like you have written "EXIT THEN"!0. So, it never reaches the ”1+”
code, which makes it act exactly like an ’ELSE’ clause. Since your words should be short
and simple, you may need to use *;THEN’ more often than you think. Especially since it’s
much faster!!.

However, you may find yourself in a situation where you cannot escape the *0=’, like this
one:

: myword O= if 1+ then ;

Or can you? Yes, you can. "UNLESS’ is not only equivalent to 0= IF”, but compiles
to the very same code. So, if you find this more expressive, you may write the previous
expression like this:

: myword unless 1+ then ;

Please note that the use of *;THEN’ adds nothing here - it’s gonna exit anyway. Of course,
you don’t have to use "UNLESS’ - it’s just an option we’re giving you. There are a few
situations when you should refrain from using "UNLESS’:

* When you’re using expressions with ’AND’ or "OR’. These tend to be harder to
interpret when using "UNLESS’;

¢ When using ’ELSE’. You can turn that expression around so it won’t need *UN-
LESS’.

The same goes for 0= WHILE”. In that case you can replace it with "EXCEPT’ - like here:

: write—-file (-=)

begin
0 parse s" <! [CDATA[" >cut \ search for <! [CDATA[tag
except \ if not, get the next line
2drop refill 0= E.USER throw" Page doesn’t contain any data"
repeat write-note \ return false if no more file

In some circumstances you may find yourself in a situation where you have to conditionally
exit a word. It’s usually expressed like this:

if exit then
In order to prevent you from writing horrors like this:
if ;then

We’ve created a word that does exactly that: *?EXIT’. So please. Use that one instead.
Gee, the things you have to do as a developer to keep your children in line..

10 Actually, that’s exactly what it compiles to.
1ISee section 11.20 for the reason behind it.

CHAPTER 11. ADVANCED PROGRAMMING 168

11.19 CASE-OF constructs

You may wonder why we consider this an advanced programming technique. Well, we’d
rather see you use lookup tables!? instead, since they’re vastly easier to use and maintain.
However, there is one good reason to use CASE-OF constructs instead: speed. If you
have less than a hundred non-contiguous integer values to evaluate, CASE-OF is the fastest
option available. There is only one “but” to consider. You will see very little performance
improvement if it is not a critical part of your program.

If your values are contiguous - even if they require an “offset”, you’re better off with an
indexed table, e.g.

create Get-Month (nl -- a n2)
, January
, " February "
" March "
" April "
L, May "
, " June n
’
4
’
’
’

n "

" July "
" August "
" September"
" October "
" November "
," December "

does> swap 1 max 12 min 1- cells + @c count ;

So, there are only a few very specific situations in which the use of CASE-OF constructs
is actually appropriate. That’s why we reluctantly included it. That having said, it is part
of ANS-Forth and this implementation is fully compliant. It’s pretty easy to use, e.g. if we
wanted to convert the table above, it would look like this:

: Get-Month (nl —— a n2)
12 min case
1 of s" January " endof
2 of s" February " endof
3 of s" March " endof
4 of s" April " endof
5 of s" May " endof
6 of s" June " endof
7 of s" July " endof
8 of s" August " endof
9 of s" September" endof
10 of s" October " endof
11 of s" November " endof
12 of s" December " endof

endcase

However, it would be six times as slow as the table solution above. You could speed up
that a little by using the keyword ";ENDOF’ instead of ’ENDOF’ since that one would exit
the word ”Get-Month” straight way. Of course, this is not a good solution if your program
continues after 'ENDCASE’.

But in the end of the day, this construct is nothing more than a glorified ”"IF. THEN" state-
ment, e.g. this snippet generates exactly the same code:

128¢ee section 12.19.

CHAPTER 11. ADVANCED PROGRAMMING 169

Get-Month (nl -—— a n2)
12 min
1 over = if s" January " else
2 over = if s" February " else
3 over = if s" March " else
4 over = if s" April " else
5 over = if s" May " else
6 over = if s" June " else
7 over = if s" July " else
8 over = if s" August " else
9 over = if s" September" else
10 over = if s" October " else
11 over = if s" November " else

12 over = if s" December " else
drop then then then then then then
then then then then then then

It just doesn’t look as smart and you’re left with the arduous task to match all those pesky
’IF’ at the end of the statement. And remember, if there are more than a hundred integer
values to evaluate, you’re better off with a binary search (section 12.23).

11.20 Optimization

The best way to optimize a program is to look out for certain patterns and obliterate them
where possible, e.g.:

swap 2drop

Is a useless sequence of words that could easily be replaced by a single "2DROP”. You
don’t need an optimizer to see that one. That’s dead code elimination. 4tH does some of
that, but not this kind of blatant errors. It’s more subtle.

One thing 4tH does for you too is fail call optimization. That means that if the last instruc-
tion before the semicolon is a call to another word, it will change the "CALL’ instruction
to a’BRANCH’ instruction. The advantage is twofold:

1. It will save you an expensive "CALL’ - ’EXIT’ sequence;

2. It will save you Return Stack space.

Consequently, your programs will run a little bit faster'3. If you want any further improve-
ment, you will have to do that yourself. E.g. this will optimize a tail call optimization even
more. Simply change:

: myfirstword ;
: mysecondword ;
: mythirdword if myfirstword else mysecondword then ;

Into this:

: myfirstword ;
: mysecondword ;
: mythirdword if myfirstword ;then mysecondword ;

13Special threading benchmarks show a speed increase of 40%, although real life programs will never see that
much improvement.

CHAPTER 11. ADVANCED PROGRAMMING 170

If we decompile these programs we see the difference right away. The first compiles to:

Addr| Opcode Operand Argument

0| branch 1 myfirstword

1| exit 0

2| branch 3 mysecondword
3| exit 0

4| branch 9 mythirdword

5| Obranch 7

6] call 0 myfirstword

7] branch 8

8| branch 2 mysecondword
9| exit 0

You can clearly see the tail call optimization at word 8. However, there is a ' BRANCH’ at
word 7 and an "EXIT’ at word 9 we can do without. The second version fixes this:

Addr| Opcode Operand Argument
0| branch 1 myfirstword
1| exit 0
2] branch 3 mysecondword
3| exit 0
4| branch 7 mythirdword
5| Obranch 6
6| branch 0 myfirstword
71 branch 2 mysecondword

After the call at word 6 we immediately branch, which is correct because there is no code
to execute after that. Note the tail optimizer was able to kick in fwice here. Note that
the >;THEN’ instruction provides the required “expressiveness” of this subroutine, so its
completely clear why this construction was chosen.

In some rare circumstances, e.g. when you’re calling user-defined words which manipulate
the return stack'#, you don’t want the tail optimizer to kick in. Suppressing it is very simple,
just add the *[FORCE]’ directive to the "EXIT’! or change the order of words slightly so
that a reserved word is compiled at the end:

return r> drop ;
: test dup if 1+ else return then [force] ;
0 test . cr

Another area of optimization is constant folding. If we do it at compile time, we do not have
to do it at runtime. Especially when it is in the middle of a loop or a word we frequently
use.

4tH features a small peephole optimizer that tries to make the best of all these situations.
The rules are simple:

1. If you compile the word ’+’ or ’-” and the previously compiled word was a LITERAL,
a +LITERAL will be compiled unless rule 6 can be applied;

2. If you compile the word ’*’ and the previously compiled word was a LITERAL, a
*LITERAL will be compiled unless rule 7 can be applied;

3. If you compile the word ’/* and the previously compiled word was a LITERAL, a
/LITERAL will be compiled unless rule 8 can be applied;

4E.g. "NR>" and "N>R” or "LOCAL{” and ”}GLOBAL”".
15°:> compiles "EXIT’.

CHAPTER 11. ADVANCED PROGRAMMING 171

4.

10.

11.

12.
13.

14.
15.
16.

If you compile the word 'NEGATE’ and the previously compiled word was a LIT-
ERAL, *LITERAL or /LITERAL, it will be negated;

If you compile the word *@’ or ’!” and the previously compiled word was a VARI-
ABLE, a VALUE or TO will be compiled;

If you compile a +LITERAL and the previously compiled word was a LITERAL,
+LITERAL or VARIABLE, the +LITERAL will added to it;

If you compile a *LITERAL and the previously compiled word was a LITERAL or
*LITERAL, it will be multiplied;

. If you compile a /[LITERAL and the previously compiled word was a LITERAL it

will be divided. If it was a /[LITERAL, it will be multiplied;

If you compile a +LITERAL with the value O or a /LITERAL or *LITERAL with
value 1, nothing is compiled at all;

If you compile a *LITERAL and the previously compiled word was a NEGATE, it
will be replaced by a *LITERAL with a negative argument;

If you compile a /LITERAL and the previously compiled word was a NEGATE, it
will be replaced by a /[LITERAL with a negative argument;

If you compile a +LOOP with the value 1, LOOP is compiled;

If you compile a >R, followed by R> both instructions are optimized away. The same
goes for the sequence R> >R;

If you compile a R>, followed by DROP an RDROP will be compiled;
If you compile a >R, followed by RDROP a DROP will be compiled;

If a "'THEN’ or "BEGIN’ is compiled, the peephole optimizer is disabled'® and pre-
viously compiled code will not be further optimized.

Let’s see how that works in practice and examine this simple program:

-10 +constant 10-
100 begin 10- dup while 5 + dup . repeat

First we create a ’+CONSTANT’, which subtracts 10 from any number on the stack. Sec-
ond, we set up a loop which starts at 100 and is subsequently decremented until it hits zero.
4tH will compile this code for you:

Addr| Opcode Operand
0| literal 100
1| +literal -10
2| dup 0
3| Obranch 7
4| +literal 5
5| dup 0
6| 0
71 branch 0

Note that although rule 6 seems to apply to the first two instructions, it is overruled by rule
16. With reason, because otherwise the LITERAL 90" would have been compiled which
is certainly not what we meant. You can clearly see that the expression 5 +” has been
condensed to a single +LITERAL, which saves an instruction. Now let’s change it slightly
and see what the peephole optimizer does:

16 Although tail optimization will still partly work.

CHAPTER 11. ADVANCED PROGRAMMING 172

-10 +constant 10-
100 begin 10- dup while 5 + 10- dup . repeat

We’ve added the "+CONSTANT” to the already optimized expression. This is what 4tH
compiles:

Addr| Opcode Operand
0| literal 100
1| +literal -10
2| dup 0
3| Obranch 7
4| +literal -5
5] dup 0
6 0
7| branch 0

At first it seems like it’s identical, but it’s not. The *+CONSTANT’ has simply been sub-
tracted from the expression! 4tH’s peephole optimizer is not there to clean up your messy
code, but to give you a helping hand where you really need it, e.g. consider this code:

struct
1 +field operator
2 +field operand
end-struct /instruction \ define a simple structure
\ allocate some space
/instruction string instruction
\ now initialize it
1 instruction -> operator c!
5 instruction -> operand c!

Which 4tH compiles to:
Addr| Opcode Operand
0| literal 1
1] literal 1024
2] c! 0
3] literal 5
4| literal 1025
5] c! 0

Without the peephole optimizer the addresses of the members of the structure would not
have been calculated at compile time. Even more, optimizing this code by hand would not
have been easy without writing some pretty murky source code. It is in these situations that
the peephole optimizer excels. But the optimizer knows even more tricks:

Dead code elimination It removes sequences like "R>>R”. You might not write those
yourself, but they may be introduced by inline macros;

Algebraic simplification Operations like adding zero” or "multiplying by one” are re-
moved;

Strength reduction Replacing more “expensive” operations like "R> DROP” with
’cheaper” ones like 'RDROP’.

Note that all these optimizations are considered harmless - with the possible exception of
tail call optimization - so the need to override the optimizer should be negligible.

You can also use the preprocessor to perform another trick: inlining - which means that
small functions can be inserted into the code, instead of being called. Preventing function
call overhead can really add up in a tight loop.

But always remember: the one who’s most responsible to write good and fast code is always
you. The optimizer is just a little helper - and not snake oil to polish up bad code.

CHAPTER 11. ADVANCED PROGRAMMING 173
11.21 Static variable pointers

The peephole optimizer is an integral part of 4tH and quickly and efficiently optimizes a
whole range of expressions that can be resolved at runtime, including strings and variables.
E.g. if you want to set a static pointer to a classic counted string, you could define it like
this:

16 string str-len
str-len char+ constant str-string

That is because a 'STRING’ expression can be optimized to a single literal. However, this
is not the case with a variable and consequently this pig won’t fly:

16 array array-len \ won’t compile!
array-len cell+ constant array-payload

It is for this kind of situation that we have 'TEQUATES’. It takes a variable and an optional
literal expression and create a static pointer that behaves like any other variable, yes, even
including a *:REDO’ or "DOES>’ definition!”:

variable <literal expression> EQUATES name

In its most basic form an "TEQUATES’ expression is equal to *AKA’!8:

variable A
A equates B

Is equivalent to:

variable A
aka A B

Now we can rewrite our expression so it can be compiled properly:

16 array array-len \ this will compile!
array—-len cell+ equates array-payload

An ’EQUATES’ expression will save you from writing this kind of code:

16 array array-len
: array-payload array-len cell+ ;

Which not only requires extra code, but will definitely run much slower.

17See section 11.11.
18See section 11.10.

CHAPTER 11. ADVANCED PROGRAMMING 174

11.22 Assertions

You have probably seen this before: you’ve made a program, compiled it and it doesn’t
work. Then you start putting code at strategic places, trying to pinpoint the error. And
when you’re finally done, you’ve got to revisit all of these places to remove that code. And
you probably forget a few..

4tH has a built-in facility which allows to put that code there, debug your program and
remove the debugging code from your program by changing a single line.

It is called "assertion" and those of you who have ever worked with C probably know what
we’re talking about.

An assertion is a line of code that will evaluate an expression. If the expression evaluates
to false, it will exit the program with an error message. Let’s take a look at this simple
colon-definition:

¢ add \ expects two numbers on the stack
+

If we call add by writing:

1 add

it will fail. Now we add this assertion:

assert (depth 2 >=)

It will evaluate to false when there are less than two items on the stack. The program will
be terminated and the appropriate error message will be issued. You may think that this is
nice, but you still have to remove all assertion manually.

Not true! If you tried this out already you will see that you won’t find an assertion any-
where. It’s gone! True, if you want to use assertions you have to enable them. You do that
with the word *[ASSERT]’:

[assert]

: add
assert (depth 2 >=)
+

’

1 add

Now assertions will compile and work. If you remove the word '[ASSERT]’ all asser-
tions will disappear like they were comment. *[ASSERT]’ works just like '[DECIMALY’,
"[HEX]’, etc. They work linear and do not follow the program flow. If you put '[ASSERT]’
halfway your source-file you will notice that assertions work from that point:

: add
assert (depth 2 >=) \ assertions disabled
+

7

[assert] \ enable assertions

: print-hex
base @ >r hex
assert (depth 1 >=) \ assertions enabled
. cr r> base !

CHAPTER 11. ADVANCED PROGRAMMING 175

Assertions are only enabled in "PRINT-HEX". The assertion inside "ADD" will be re-
moved and thus be disabled. But there is more to '[ASSERT] than the eye meets. It
doesn’t enable assertions, it toggles them. When the 4tH compiler starts, assertions are
disabled. The first '[ASSERT] enables them. A second '[ASSERT]’ will disable them
again:

[assert] \ enable assertions
: add
assert (depth 2 >=) \ assertions enabled
+
7
[assert] \ disable assertions

: print-hex
base @ >r hex
assert (depth 1 >=) \ assertions disabled
. cr r> base !

There are many possibilities:

* You can start testing low level colon-definitions and move your way up to the high
level definitions by moving '[ASSERT]” down.

* You can enable assertions on certain parts of your code by enclosing them with an
"[ASSERTT’ pair.

* You can switch the entire context of [ASSERTT]’s by adding a single '[ASSERT]’ to
the top of your source.

You are not limited to range-checking when using *ASSERT(’. Any expression that evalu-
ates to TRUE is allowed:

[assert]

¢ add
assert (." ADD starts at " here . cr true)
assert (depth 2 >=)
assert(." Values: " over over . . cr true)

+

We’re sure you can come up with more useful ideas. We did too.

11.23 Breakpoints

4tH also offers you the possibility to set breakpoints. It’s quite easy to enable this facility.
Just add this to the very beginning of your source:

[needs lib/debug.4th]

Setting a breakpoint is quite easy too, e.g. this piece of code malfunctions:

32 string argument
1 args argument place

CHAPTER 11. ADVANCED PROGRAMMING 176

Change it to:

32 string argument
1 args argument ~~ place

Now the breakpoint is enabled. It will enter a Forth-like shell just before "PLACE’ is
executed. Now a host of words are at your disposal. You can examine any region of the
Character Segment with "DUMP” or print any string variable with "TYPE”. 4tHs internal
variables and regions are known by name, like "PAD”, ”TIB”, ”>IN", " BASE” and "OUT”.
You can examine them or any other variable by using ”?”, ”@” and ..

You have a small calculator, that you can use to multiply, substract, add. You can change
"BASE’ by executing "OCTAL”, "HEX”, "BINARY” or "DECIMAL”. It also has a host
of binary operators like "OR”, ”JAND”, ”XOR”, ZINVERT”, "LSHIFT” and "RSHIFT”. It
also has stack operators like "’DUP”, "DROP”, "OVER” and "SWAP”. "CLEAR” will clear
the stack for you.

You can examine both stacks. ”.S” will show you the data stack (including any rubbish you
put there yourself during the debugging session) and ”R.S” will show you the return stack.
"DEPTH” and "RDEPTH” will tell you how many items there are on the stack. When
you’re done, you may leave the debugger by typing "BYE”. Your program will continue as
usual.

A word of caution: since the debugger is a 4tH program itself, it doesn’t actually freeze
the virtual machine. It just seems like it is frozen. The contents of PAD may be slightly
different than you expected. If you really need to examine the PAD as it was, don’t examine
it directly, but use "SPAD” to examine the shadow PAD”. ”SPAD” leaves the address for
the “shadow PAD” on the stack. The same goes for ">IN”, "BASE” and "OUT”: never
examine these by address, but always by name. Although every effort has been made to
catch any errors, some extreme stress tests might fail. It is not recommended to use the
debugger when stack space is very tight.

11.24 Debugging

We’ve all been there. You’ve written a non-trivial program and when you try to run it,
it bombs out with an error message. Then the question arises: “Where did I go wrong?”
This proces is called "debugging”. Debugging is very hard without any dedicated tools.
Modern development systems include a debugger, featuring breakpoints, single stepping
and variable tracking.

4tH features the following tools:

¢ Stack examination
* Assertions'”

» Breakpoints?’
* Decompilation

* Preprocessor

* Compiler directives

19Gee section 11.22
208ee section 11.23.

CHAPTER 11. ADVANCED PROGRAMMING 177

First of all, you need to understand how the 4tH compiler works. Initially the tokenizer
collects all 4tH sources and breaks them down to tokens. A token is a word or a string.
This makes it much easier for the compiler to parse the source?!. 4tH has a single pass
compiler, so after the tokenizer has finished successfully, it will start compiling right away.
Even if the compiler encounters an error, it has actually compiled something. The point
where the compiler stops gives you clues on where it went wrong. 4tH doesn’t discard this
partial compilant, but keeps it in memory so you can examine it. It won’t allow any other
action.

If you managed to successfully compile the source, it will pass the compilant to the virtual
machine to execute it. Again, the point where the virtual machine stops is retained. Having
one external editor window open with the 4tH source and another with 4tH itself is one of
the most comfortable ways to debug 4tH code.

If you get the dreaded I/O error 4tH is probably unable to locate an include file. You
can use the preprocessor option ”-i” to find out where you went wrong. The preprocessor
mimics the include sequence and also leaves a 4tH file you can examine. You can force
this behavior with the ”-k” option. You can also place an '[ABORT]’ directive after the
inclusion of each file to see when the I/O error pops up.

Tokenizer errors can also be produced by improperly formatted strings, like empty strings
or missing delimiters. Highlighting editors like SciTE?? allow you to find most of these
pretty quickly. If not, you have to resort to the '[ABORT]’ directive again because 4tH
leaves no indication where you went wrong. The easiest way to track compilation errors is
by decompiling the partial compilant. If you want even more information, simply add the
directive '[NAMES]’ to your code. That will give you a symbolic decompile, e.g.

[names]
: one dup ." This is the address of TWO: " . cr drop ;
: two here one ;
: three 10 0 do [char] % emit loop cr ;
four tree two tree ;
four

Doesn’t compile. This will tell you where it went wrong:

Addr| Opcode Operand Argument
11] literal 10
12| literal 0
13| do 16
14| literal 42
15| emit 0
16| loop 13
17| cr 0
18] exit 0
19| branch 0 four

It may be a bit hard to read, but you can clearly see it went wrong at the beginning
of "FOUR”. Yes, "TREE” is misspelled. If you are unable to locate the error, again
"[ABORTY’ can help you out - but most of the time these drastic measures are not required.

If you suspect that runtime errors may occur in a certain piece of code, you can use as-
sertions> to detect them. Although a well placed breakpoint?* may help you out, it is

2I'The tokenizer ignores the source layout, which means 4tH is able to read almost any ASCII file, regardless
format. The downside of it all is that 4tH can’t tell you on which line an error occurred - simply because it doesn’t
tokenize or compile on a line-by-line basis.

22http://www.scintilla.org/SciTE.html

23See section 11.22.

24See section 11.23

CHAPTER 11. ADVANCED PROGRAMMING 178

annoying to stop and restart the program with each interation. For that reason a simple
stack dump using ”.S”” may be more efficient:

* ok ok ok ok ok ok ok ok ok
37 37 (TOS) This is the address of TWO: 37

(TOS) ***xkxkxk*x*

”.S” can be found in anstools.4th. Of course, you can always fallback to the ancient
printf () practice. Note that you are still required to keep the stack balanced. If you
don’t you’re even worse off.

11.25 Running 4tH programs from the Unix shell

If you’re using Unix (which we highly recommend), you can run 4tH programs right from
the Unix shell. All you have to do is to add one single line at the top:

#! /usr/lbin/4th cxq
." Hello world!" cr

It indicates the way you normally compile and run a 4tH program, but without the filename,
e.g.:

/usr/lbin/4th cxqg hello.4th

In this case, you’re using the classic 4tH compiler, which is located in the /usr/lbin directory.
Note that you can add options if you want. The ’cxq’ options tell the compiler to silently
compile and execute a program.

Note this trick only works with 4tH sources, not compiled programs. You also have to flag
the 4tH source as ’executable’. You can do that by issuing this command:

chmod 555 hello.4th

Now you can simply enter:

hello.4th

at the Unix prompt and your program will be compiled and executed. Don’t worry about
compromising the portability of your program. It will still compile and run happily under
other Operating Systems, since "#!” is an alias for °\’. It only has a special meaning to the
Unix shell.

11.26 Embedding 4tH programs in a batch file

If you’re running a Microsoft Operating System like Windows or DOS?, you can embed

4tH source code in an ordinary batch file?®. All you have to do is to make the shell ignore
the 4tH code, e.g.:

25DOS version 3.3 or higher.
26This method was taken from CSL, the "C Scripting Language”. You can learn more about CSL at
“http://csl.sourceforge.net”.

CHAPTER 11. ADVANCED PROGRAMMING 179

@goto exec
." Hello world!" cr

(

rexec
@4th cxg %$0.bat %1 %2 %3 %4 %5 %6 %7 %8 %9
@rem)

Now save your file as "EXAMPLE.BAT” in the current working directory?’ and run it:

example

Don’t add the ”.BAT” extension when issuing the command or the whole thing won’t work.
4tH will now automatically pick up the batch file and execute it. Well, how does it work?

It’s simple: the shell silently jumps to the "EXEC” label and executes 4tH. 4tH will compile
the batch file. It ignores the line that starts with *@GOTO’, since *@GOTQO’ is an alias
for °\’. It compiles anything up to the opening parenthesis, since that is the start of a
multiline comment. The shell on its turn ignores the closing parenthesis, since that has
been commented out by ”@REM”.

271f you want to store it permanently in another directory, you may have to add additional path information.

Chapter 12

Standard libraries

We’ve included hundreds of libraries in 4tH. We can’t discuss all of them in detail - there’s
just foo many. So picked the ones we think are the most useful to you. However, if you run
into a problem, it is wise to browse chapter 25 before you start to design one yourself.

However, if you find yourself writing an additional library consider donating it to this
project. We would be most obliged - and you would be helping fellow 4tH users. If it’s
outside our expertise we’d appreciate a short tutorial on how to use it, of course. We’re not
omniscient - although at times we’d like to believe otherwise ;-)

12.1 Adding your own library

This is a lot easier than you might think! As a matter of fact, almost any program can be
turned into a specialized library. A well-written program contains a lot of definitions and
only one executable word. Take that word away and you’ve got a library!

A library may contain word definitions, variables, constants, almost anything you like. And
a program that includes that library will have all these definitions at its disposal. As a matter
of fact, the resulting program will behave like you entered the contents of the entire library
file at the position of the *[NEEDS’ directive, e.g. this is an excerpt of constant . 4th:

(error) constant NULL

When it is included in this file:

\ This is a sample table using NULL
[needs lib/constant.4th]

create sample

," First entry"

," Second entry"

," Third entry"
NULL ,

It will compile to the same code as this:

\ This is a sample table using NULL

180

CHAPTER 12. STANDARD LIBRARIES 181

(error) constant NULL

create sample

," First entry"
," Second entry"
," Third entry"
NULL ,

So it is not a good idea to make your library files too big, since there will be a lot of
superfluous code included in the compilant which 4tH will not dispose of automatically.

You can nest '[NEEDS’ directives, so one library file may include other library files. This
helps to prevent duplicate code, which can be a serious maintenance problem. You can nest
them as deep as you want, available memory being the only restriction.

However, when nesting inclusions you always have the problem of multiple inclusions.
Don’t think that all 4tH users know by heart which library files calls which. Multiple
inclusions will lead to errors, unless you take precautions. We have '[DEFINED]’ and
’[UNDEFINED]’ to prevent that:

[UNDEFINED] 2drop [IF]
: 2drop drop drop ;

: 2dup over over ;

: 2swap rot >r rot r> ;
[THEN]

If you have included this file before, 2DROP’ is already defined, so in fact all definitions
are skipped when the file is included for the second time. Of course, it will take up some
extra memory, but at least it won’t generate any errors.

You should not automatically resolve library dependencies when the file included:

o Is fairly large';
« Is required by many other include files’;

* Has lots of (nested) dependencies itself.

In that case you should add a check whether a certain file has been loaded and if not, abort
compilation, e.g.:

[UNDEFINED] F+ [IF] [ABORT] [THEN]

If you want to port your library file, it might be a good idea to hide specific 4tH construc-
tions, e.g.:

[DEFINED] A4TH# [IF] (an —)
: string! chars + 0 swap c! ;

[ELSE] \ make an ASCIIZ string
: string! swap 1- c! ; (an —)

[THEN] \ make a counted string

Since *’4TH#’ is a 4tH specific constant, it will not be defined in other Forth compilers. This
way the compiler will automatically select the correct definition. Finally, you may want to
hide all words which you don’t want exposed to the outside program:

ISee sections 12.28 and 13.17.
2See sections 12.27 and 12.28.

CHAPTER 12. STANDARD LIBRARIES 182

[DEFINED] 4TH# [IF]
hide buffer
hide /buffer
[THEN]

The reason for that is twofold. First, you don’t want the user of your library to meddle
with the internal code or variables of your library. Second, if you leave all these words in,
you’re cluttering the symboltable, which may lead to compilation errors if the user happens
to choose a name you already used inside your library.

Finally, you sometimes find yourself in a situation where you’re faced with the choice to
either make two library files with slightly different code or resort to conditonal compila-
tion. If you choose the latter the question remains how the user of your library can switch
between both versions. For those situations 4tH offers '[PRAGMA] . ’[PRAGMAY]’ simply
compiles a constant with a TRUE value. E.g. compare.4th can be compiled in a case
sensitive mode by issuing the casesensitive pragma:

[pragma] casesensitive
[needs lib/compare.4th]

In the library file itself you can treat the pragma just like any other constant:

[UNDEFINED] casesensitive [IF]
dup [char] A - max-n and 26 < if bl or then
[THEN]

Where you place your library files is up to you. You can add them to the library files that
come with 4tH, you can put them in another directory, whatever pleases you.

12.2 Adding templates

When you include a library file you add some words to your program. When you include a
template you add some words to an existing program. That is the major difference between
a library file and a template file. We’ve included a template with 4tH which allows you
to create a conversion program pretty quickly. The template is called "convert.4th” and it
allows you to create a conversion program by defining just three words.

A standard conversion program takes an input file and creates an output file in a different
format. When it can’t open a file it will issue an error message, €.g.

Cant open input.txt

When you don’t supply an input file and an output file, it will issue an error message e.g.:
Usage: myconversion input output

And of course, it will read and process the input file. And that’s all you have to tell 4tH:

* The usage message
* How to read the file

* How to process the file

CHAPTER 12. STANDARD LIBRARIES

183

So, let’s create a program that will convert a block file to a regular text file. How do we do
that? First of all we’ve got to issue a usage message, like:

Usage: blk2txt blockfile textfile

Well, that is easy. If it comes to that we’ve got to abort the program, so this will do:

: Usage abort" Usage:

blk2txt blockfile textfile" ;

Then we’ve got to read the file. A block file contains lines of 64 characters, always. So,
we’ve got to create a buffer and read 64 characters. This will do:

64 string buffer
: Read-file buffer 64 accept ;

Finally, we’ve got to write the output file. Adding a ’CR’ after typing the line will do, but
we don’t want any trailing spaces, so we need to strip those trailing spaces:

: Process buffer 64 -trailing type cr ;

Now we need to include the template and we’re done:

[needs lib/convert.4th]

Wow! Do you know how much coding we need to do when we try to do this in C? This
source code takes less than 256 bytes! Compile it and we’re done! So how does it work?
Well, the template expects us to define "Usage” and "Process”. If you don’t it will abort

compilation:
\ Has Usage been defined? If not, abort!
[UNDEFINED] Usage [IF]
[ABORT] [THEN]

\ Has Process been defined?
[UNDEFINED] Process [IF]
[ABORT] [THEN]

If you don’t define "Read-file” the template assumes that “Process” is completely self-
contained, which means it will only open the files. Finally, you can optionally define
”PreProcess” and “PostProcess” if you need any special actions at the beginning or the

end:

: ProcessFile \
[DEFINED] PreProcess [IF]

PreProcess \
[THEN]
[DEFINED] Read-file [IF]

begin Read-file while Process repeat \
[ELSE]

Process \
[THEN]
[DEFINED] PostProcess [IF]

PostProcess \

[THEN]

’

process the input file line by line

do any preprocessing

read file and process line or buffer

self contained processing

do any postprocessing

CHAPTER 12. STANDARD LIBRARIES 184

If you don’t define it, it won’t include it. You can use such templates for many different
programs, e.g. this will convert a Unix text file to an MS-DOS text file:

: Usage abort" Usage: udc infile outfile " ;
: Read-file refill ;
: Process 0 parse-word type 13 emit 10 emit ;

You can make them as sophisticated or as simple as you like. You can create other words
as well, as long as those three words have been defined. Templates can be handled like any
other library file. You can place them where you want, they can hold anything you want.
Amaze your colleagues by writing programs in a fraction of the time they should need!

12.3 Parsing the command line

The first thing that comes to mind is, of course, getopts (). 4tH offers a perfect equiv-
alent of this C-function without copying it. The first thing you have to do is to include
it:

include lib/getopts.4th

After that, you have to create a decision table containing the option characters and the
actions that should be executed:

create myoptions

~

char p , ' _print , \ associate 'o’ with _print
char g , ’ _quiet , \ associate g’ with _quiet
char v , ' _verbose , \ associate 'v’ with _verbose
char £ , ' _file , \ associate ’'f’ with _file
NULL ,

The stack diagram for an ”option word” is very simple: assume nothing is on the data stack
and leave nothing behind. If an option requires an argument, you can retrieve it by issuing
"GET-ARGUMENT”. Note these words have to be defined before the decision table:

256 string myfile \ allocate space for filename

false value (print) \ ’print’ is off
false value (quiet) "quiet’ is off

s

false value (verbose) \ ’verbose’ is off
: _print true to (print) ; \ enable ’'print’
: _quiet true to (quiet); \ enable "quiet’
: _verbose true to (verbose) ; \ enable ’verbose’
: _file get-argument myfile place ; \ set the filename

"GET-ARGUMENT” leaves an address/count string on the stack, which has to be con-
sumed before returning. Finally, the decision table has to be passed to "GET-OPTIONS™:

myoptions get-options

When "GET-OPTIONS” returns, it has also set a value called "OPTION-INDEX”. This
value is an index to the first non-option command line argument. Note that the 4tH program
itself has an index of 0, so the first ’real” command line argument has index 1. If "OPTION-
INDEX” equals ’ARGN’, there are no non-option command line arguments.

You can pass "OPTION-INDEX” to ”ARG-OPEN”, provided you’ve included it, e.g.:

CHAPTER 12. STANDARD LIBRARIES 185

include lib/getopts.4th
include lib/argopen.4th
(options table and option words)

myoptions get-options
option-index dup 2 + argn >
abort" Missing filename"

input over arg-open
output swap 1+ arg-open

You can also use convert.4th to handle all the details for you, but you have to name
your decision table "OPTIONS” in order to make it work.

12.4 Mixing character and number data

Sometimes you have to mix character and number data, e.g. when you’re porting a Forth
program or when the need complex datastructures arises. Since 4tH gives each datatype its
own segment this is not easy. However, there is a library that can help you. Let’s have a
look at this program:

16 constant /my \ size of array

/my array my \ define array

0 \ set up counter

begin
dup dup \ duplicate counter
cells my + ! \ store counter in array
1+ \ increment counter
dup /my = \ limit reached?

until drop \ drop the counter

my \ set up index
begin
dup @ . cr print the value
cell+ next element

limit reached
drop the index

dup my /my cells + =
until drop

~ -

This simple program defines a small array, fills and displays it. Now, this little thing does
the same thing, but is located in the Character Segment:

include lib/ncoding.4th

\ load the library
16 constant /my \ size of array
/my nells string my \ define array
0 \ set up counter
begin
dup dup \ duplicate counter
nells my + n! \ store counter in array
1+ \ increment counter
dup /my = \ limit reached?
until drop \ drop the counter

my \ set up index
begin
dup n@ . cr print the value
nell+ next element

limit reached
drop the index

dup my /my nells + =
until drop

~ =~ -

CHAPTER 12. STANDARD LIBRARIES 186

You see that the code is very similar. The "'STRING’ declaration clearly indicates that the
array is allocated in the Character Segment. But as you can see it is not an array of cells,
but an array of nells. "NELL’ holds the size of a single nell, so we multiply it by the number
of nells we want to get the proper size of the array. After that, it is just replacing the Integer
Segment words with nell equivalents:

NELL | CELL
/nell [cell
nells cells

n@ @
n! !
nell+ cell+
nell- cell-

Table 12.1: NELL equivalents

Note that although you can replace every cell with a nell, you do pay a penalty in execution
speed, so use with caution.

12.5 Dynamic memory allocation

If you don’t know what this is, you probably shouldn’t bother. Sometimes you don’t know
how much memory you will actually need, sometimes you know how much you need,
but you won’t need it during the entire execution of the program. In these cases, you can
temporarily allocate a chunk of memory and release it when you no longer need it.

4tH has similar facilities. E.g. if you want to allocate 600 bytes, you simply include
memchar.4th and allocate it:

[needs lib/memchar.4th]
600 allocate

*ALLOCATE’ leaves two items on the stack. The first one is a flag. If it is true, memory
allocation has failed, so we can easily add some error checking to our little program:

[needs lib/memchar.4th]
600 allocate abort" Out of memory"

It it returns false, memory has been allocated. Its address is the second item on the stack.
You can pretty much do what you want with it, but remember that this memory is allocated
in the Character Segment, so if you want to store numbers as well over there, read section
12.4 again. Another solution is to use two heaps, as explained in section 12.6. Anyway,
this is completely valid:

[needs lib/memchar.4th]
600 allocate abort" Out of memory"
s" Hello temporary world!" rot place

Let’s change that one a little bit to prove we’ve actually stored anything:

CHAPTER 12. STANDARD LIBRARIES

[needs lib/memchar.4th]
600 allocate abort"

>r s" Hello temporary world!"

r@ place
r> count type cr

187

Out of memory"

\ Let’s save the address
\ Now store the string

\ Let’s print the string

Let’s allocate another 100 bytes and free all memory afterwards:

[needs lib/memchar.4th]
600 allocate

abort" Out of memory" >r
s" Hello temporary world!"
r@ place

r@ count type cr

100 allocate

abort" Out of memory" >r
s" I'm a little crammed!"
r@ place

r@ count type cr

r> free
abort"
r> free
abort"

Cannot free memory"

Cannot free memory"

First allocation

Now store the string
Let’s print the string
Second allocation

Store another string
Let’s print the string
Now free the first block

Now free the second block

Yes, that’s right: you feed 'FREE’ the address that ’ALLOCATE’ returned and it returns a
flag. If it is a true flag, an error occurred; if not, everything is hunky dory. Let’s try to free

it twice:

[needs lib/memchar.4th]
600 allocate

abort" Out of memory" >r
s" Hello temporary world!"
r@ place

r@ count type cr

r@ free

abort" First attempt”
r> free

abort" Second attempt"

First allocation

Now store the string
Let’s print the string
Now let’s free the block

And try to free it again..

Yes, now 4tH terminated with the error message ’Second attempt”. You can not free a block
twice..! But you can reallocate it if you happen to change your mind. You can increase or
decrease its size, without losing any data. When the new block is too small to hold all the
data, the data is truncated. Let’s see it in action:

[needs lib/memchar.4th]

50 allocate

abort" Out of memory" >r
s" Hello temporary world!"
r@ place

r@ count type cr

r> 100 resize
abort" Out of memory" >r
r@ count type cr

r> free

abort" Cannot free memory"

\

First allocation

Now store the string
Let’s print the string

Now resize the block
Here is your string again

Now free it

You’ll see that your precious string is still alright. Apart from a flag, "RESIZE’ also returns
the address of the reallocated block. If 'RESIZE’ fails, your original data is still alright,
0 in some circumstances you might want to save the old address.

CHAPTER 12. STANDARD LIBRARIES 188
12.6 Using two heaps

Due to 4tH’s Harvard architecture?, you cannot mix cells and characters. Of course, you
can use a library to store numeric information®, but sometimes that is not sufficient. For-
tunately, 4tH offers another library that allows you to have two heaps, one for your cells
and one for your strings. Well, your first question probably is: how can I differentiate be-
tween the two? It’s easy: if you combine the two you allocate cells with ”ALLOCATE”,
“"FREE”, "RESIZE”, just as usual. If you want to allocate strings, you use "CALLOCATE”,
”CFREE” and "CRESIZE”.

In order to achieve that you have to include the cell library before the string library:

include lib/memcell.4th
include lib/memchar.4th

If you don’t, memchar . 4th will default to your usual ’ALLOCATE”, "FREE” and "RE-
SIZE” words - so these words are no longer available to memcell.4th. You can also
determine the size of both heaps by setting a constant before including them. The size is in
address units:

2048 constant /heap \ a 2K cell heap
include lib/memcell.4th
8192 constant /heap \ an 8K string heap

include lib/memchar.4th

Note a pragma called forcecellheap is automatically set when you include memcell. 4th,
s0 you can use that one in your programs if you need to.

12.7 Tweaking dynamic memory

4tH provides another dynamic memory library as well, called ansmem. 4th. So why two
different implementations? It largely depends on what your program needs. If you require:
* A small implementation;
* Fairly robust;

» A few large allocations or a limited number of allocations of a similar size.
You’ll be well off with ansmem. 4th. However, if you require:

¢ An unknown number of allocations of different sizes;

* A combination of a cell heap and a string heap.

You’ll be better off with memcell.4th and memchar.4th. The latter is a much more
versatile dynamic memory implementation and it should be your first choice when you
decide which implementation to use. However, ansmem. 4th provides several means to
tweak it according to your needs.

You might find that it doesn’t reserve much memory for dynamic allocation. Dynamic
memory is allocated on the heap, which is 16 kB. You can increase it, but first you have
to know how this implementation works. You can determine how much memory has been
allocated by using the word "ALLOCATED”:

3http://en.wikipedia.org/wiki/Harvard_architecture
4See section 12.4.

CHAPTER 12. STANDARD LIBRARIES 189

[needs lib/ansmem.4th]
50 allocate

abort" Out of memory" >r \ First allocation
r@ . ." allocates "

r@ allocated . ." bytes." cr

r> free

abort" Cannot free memory" \ Now free it

And it will print something like:

768 allocates 64 bytes.

64 bytes? I thought we allocated 50 bytes! Let’s try another one:

[needs lib/ansmem.4th]
500 allocate

abort" Out of memory" >r \ First allocation
r@ . ." allocates "

r@ allocated . ." bytes." cr

r> free

abort" Cannot free memory" \ Now free it

This time it prints something like:

768 allocates 512 bytes.

As a matter of fact, ’ALLOCATED” will always return multiples of 32 bytes. That is a
consequence of how ansmem. 4th handles dynamic memory. It divides dynamic memory
into paragraphs. When you allocate memory, it allocates as much paragraphs as it needs to
provide you with the memory you requested. Then these paragraphs are marked as ’taken’.
This marking is done in the Heap Allocation Table, which is located in the Integer Segment.
Every paragraph is represented by a cell in the HAT.

You can fine-tune this mechanism by defining some constants before including ansmem. 4th.
This will create a heap with 512 paragraphs of 256 bytes, which is 128 kB:

512 constant #paragraph \ 512 paragraphs

256 constant /paragraph \ each paragraph is 256 bytes
[needs lib/ansmem.4th]

500 allocate

abort" Out of memory" >r \ First allocation
r@ . ." allocates "

r@ allocated . ." bytes." cr

r> free

abort" Cannot free memory" \ Now free it

Try to keep the number of paragraphs low. 1024 seems like a nice upper limit. If you need
that much memory, it is much better to handle it in larger chunks. This avoids fragmentation
and keeps the time to search the HAT within acceptable limits.

If you’re using dynamic memory to manage e.g. linked lists, you can force ansmem. 4th
to create a heap of cells by defining the pragma forcecellheap - which we encountered
briefly in the previous section - before you include ansmem. 4th. You can use the node
structure definition to make it match a single paragraph, e.g.:

CHAPTER 12. STANDARD LIBRARIES 190

[pragma] forcecellheap \ force a CELL heap
struct \ define the node

field: kind

field: ol

field: o2

field: o3

field: val
end-struct /paragraph \ name it "/paragraph"
include lib/ansmem.4th \ leave the library to it

You can now be assured that the size of a paragraph equals a single node. Neat, huh?

12.8 Garbage collection

4tH features a simple form of garbage collection. The only thing between “real” garbage
collection and this implementation is that you remain in control at all times. First you have
to decide what kind of datatype you want to put under control of the garbage collector by
defining a pragma. This will enable cell garbage collection:

[pragma] forcecellgc
include lib/gc.4th

If you don’t define this pragma, garbage collection will default to characters. Since the
garbage collector uses the same libraries we discussed in section 12.6, you can size them
with ”/HEAP”. Next, you have to start garbage collection:

start-gc

It’s time to start a “’scope’:

start-scope >r

This will return a single cell scope token which is used to keep track of when to do garbage
collection. Now the fun starts: allocate and resize away all you like, but instead of using
the usual allocation words, you use these:

50 gc-alloc >r

s" Hello temporary world!"

r@ place \ Now store the string
r@ count type cr \ Let’s print the string

r> 100 gc-resize
count type cr \ Here is your string again

Wow, did you see that?! We lost a pointer in the last line! Well, that isn’t too bad in this
case - we’re using a garbage collector after all. Note you may open up new scopes if you
like, but you have to close them in the right order, so you may want to use the data stack to
keep track of your scope tokens, like we did.

Closing a scope is easy. Just pass the scope token to "END-SCOPE” and all memory you
allocated since the last "START-SCOPE” will be automatically freed:

r> end-scope

CHAPTER 12. STANDARD LIBRARIES 191

When you’ve ended a scope, the garbage collection will automatically revert to the previous
scope, so any allocation you do after closing a scope will be handled by the previous scope.
Finally, when you’re done you can shutdown the entire garbage collector by issuing:

end-gc

This will free up all garbage collection support structures, which are also dynamically
allocated. Famous last words: do not free or resize memory allocated with "GC- ALLOC”
or "GC-RESIZE” with the standard words "FREE” or "RESIZE”. Ignore this warning at
your own peril.

12.9 Dynamic strings

Dynamic strings are a special form of dynamic memory management. Sometimes it’s hard
to estimate how long a string has to be for a particular situation, so you have to statically
size it in order to prevent clobbering - and pray it doesn’t overflow. That probably means
you’ll either oversize it (and waste a lot of space) or accidentally undersize it, causing some
hard to trace bugs.

Dynamic strings will resize automatically, provided of course that you use the proper meth-
ods to manipulate them. There is often some form of garbage collection associated with
dynamic strings.

This one works differently. Once created it will grow or shrink automatically. At their
creation a dummy string is associated with ’em. If you reassign a dynamic string (or append
to it) some new space is created and the contents are transparently transferred to them. The
previously associated memory is not freed until the reassignment is complete, so you can
even use the original string stored there for building a new one.

There are three main “methods”:

1. DS.COUNT is the equivalent of COUNT;
2. DS.PLACE is the equivalent of PLACE;

3. DS+PLACE is the equivalent of +PLACE.

A dynamic string is simply a variable which acts as a pointer to the allocated memory, but
for these methods you can treat it as if it were an string address, e.g.

variable my$ latest ds.init \ create a dstring
\ and use it as if

s" Hello world" my$ ds.place \ it were a string

my$ ds.count my$ ds+place

my$ ds.count 6 /string my$ ds.place

At the end of your program you can free a dynamic string by issuing:
my$ ds.free

Note you can make as many dynamic strings as you like. Of course, if you have a lot of
dynamic strings this manual allocation and deallocation gets tiresome. In that case you can
also allocate a block of contiguous memory, e.g.

CHAPTER 12. STANDARD LIBRARIES 192

struct
field: a
field: b
field: c¢
field: d
end-struct /$ \ define a structure

\ strings are fields
/$ array $ latest /$ ds.build \ define an array

\ and initialize it
s" Hello world" $ a ds.place \ use the array name
s" This is the end" $ b ds.place
$ a ds.count $ b ds+place \ as a "prefix"

The difference is that you can free all these dynamic strings in one go:

ds.destroy

There are two different libraries which offer this functionality, dstring.4thand dstringt.4th,
but I advise you to use the latter one - it is faster and uses less memory.

12.10 Dynamic arrays

I remember that when Java was launched people gasped that arrays were automatically
sized. If you accessed the 100th element it would simply “appear” out of a clear blue sky.
Well, in 4tH we have the same thing. First, we include the header:

include lib/varray.4th

Next, define a variable - and turn it into a dynamic array:

variable myarray
myarray 1024 +varray

You may wonder what the number ”1024” is doing there, but in order to prevent you from
allocating gigabytes of memory by accident, you have to declare the maximum number of
elements you want to allocate. You can enter a ridiculous large number if you really want
to. If you exceed this number later on, an exception will be raised.

And that’s it. Try storing and fetching a few values:

123 0 myarray v!
456 64 myarray v!
0 myarray v@
64 myarray v@ . cr

So we’re storing ’123” in the Oth element and 456" in the 64th element - and then retrieve
the values. Big deal. So what’s the catch? Well, you got the Oth element for free when you
created the array. The 64th element was created when you stored a value there. BTW, it
did also automatically create all elements between the Oth and the 64th one. Try storing a
value at the 65th element - and it will be resized again.

Also, the bounds of the array are checked every time to try to access an element. Issue an
invalid subscript and it will throw an exception. It’s like programming with training wheels!
Of course, all this luxury has a price. If you're looking for raw speed, you obviously don’t
want to be looking here.

And before you leave: don’t forget to free up all that memory:

myarray -varray

Now that’s much better!

CHAPTER 12. STANDARD LIBRARIES 193

12.11 Application stacks

Did you ever feel like a second return stack would be nice? Well, you can. As a matter of
fact you can have several dedicated stacks. It’s quite easy to use:

[needs lib/stack.4th]

-

16 array mystack
mystack stack

allocate some space
convert it into a stack

~

234 mystack >a
456 mystack >a
mystack a@ . cr
mystack a>
mystack a>

cr

push 234 on the stack
push 456 on the stack
examine top of stack
pop 456 from the stack
pop 234 from the stack
show the values

e

Note there is a floating point® version as well, called fstack. 4th. It works in a similar
way. Wouldn’t it be nice to have a string stack too? Yes, 4tH provides that one too! It
works the same way:

[needs lib/stsstack.4th]
1024 constant /mystack

string mystack allocate some space
mystack /mystack string-stack \ convert it to a string stack

—~

push string ’'Hello’ on stack
push string ’'World’ on stack
examine top of stack

pop ’'World’ from the stack
pop 'Hello’ from the stack
show the values

s" Hello" mystack >s
s" World" mystack >s
mystack s@ type cr
mystack s>

mystack s>

type cr type cr

e

But if you only need a single stack - but one you can monitor - there is another library
member:

2048 constant /cstack
[needs lib/stmstack.4th]

s.clear \ clear the string stack

show the values
show the exit status

type cr type cr
s.error CSE.NOERRS = . cr

s" Hello" >s \ push string ’"Hello’ on stack
s" World" >s \ push string ’'World’ on stack
s@ type cr \ examine top of stack
s> \ pop ’World’ from the stack
s> \ pop ’"Hello’ from the stack

\

\

You can set the size of the string stack by defining ”/CSTACK” before including it. ’S.CLEAR”
clears the stack and resets ”S.ERROR”. ”S.ERROR” is simply a value you can query or set
according to your needs. If you cause an underflow or an overflow, the integrity of the stack

is maintained.

Note there is a catch: when you’ve popped a string from the string stack, the string itself is
untouched, so the address-count pair is still valid. However, if you push another string onto
the same stack, the popped string is clobbered - so a kind of ’'SWAP’ is out of the question.
There is another way to create one (or more) string stack without these disadvantages,
called strstack.4th, but it is larger and slower. It works the same way as the first
library member we presented.

5See sections 12.28 and 12.27.

CHAPTER 12. STANDARD LIBRARIES 194

12.12 Local variables

I have to admit something: I really don’t like local variables. They offer a kind of “random
access” that goes totally against everything the stack-based Forth language stands for. And
they don’t come for free - you pay a performance penalty for setting them up and setting
them free. That’s why 4tH doesn’t offer any native support.

However, sometimes you just don’t want to rewrite a routine, but just use it. And then
it’s handy when some support is there. So here we are. Let’s start with an example from
gForth:

: my.max { nl n2 -—- n3 }
nl n2 > if
nl
else
n2
endif ;

So, what’s happening here? First you see something that resembles a stack diagram - which
itisn’t: it’s executable code. Note it uses accolades, not parentheses. Now, what does it do?
It assigns the top of the stack to ”n2” and the second on stack to “nl1”. That’s pretty neat,
because if it wouldn’t you’d have to read the whole thing backwards - this really follows
the stack diagram. Everything after - is comment, though.

When the first accolade is executed it builds a frame of local variables, so yes, it also works

with recursion. The rest you can read as if this were executed:

0 value nl \ define a value nl
0 value n2 define a value n2

—

:my.max (nl n2 -- n3) \ no accolades here
to n2 to nl \ assign TOS to n2
nl n2 > if \ assign 20S to nl

nl \ compare them
else \ and then select

n2 \ either nl or n2
then ;

We already told you that a local frame has to be released - and it doesn’t. So what’s
happening here? Well, gForth modified the execution semantics of ’;’, so it secretly checks
whether locals were used and released them if they did. Every locals scheme I've seen
does it. In 4tH, you can’t do that, because the compiler won’t let you. The consequence is,
you’ll have to do it yourself. Now let’s make a 4tH version out of this:

include lib/locals.4th

: my.max (nl:A n2:B —-— n)
2 locals
tA Q@ :B @ > if
A
else
:B
then @
end-locals ;

This does the very same thing. First, there are no accolades. Second, you only define there
are two locals - and that’s it. 4tH locals always bear the same name. You can’t choose
them. Third, they are variables, not values. Fourth, you are the master of the frame - not
the compiler.

CHAPTER 12. STANDARD LIBRARIES 195

When you issue "LOCALS”, it takes a value from the stack and allocates a locals frame
of that size (in this case a frame of 2 local variables). Then it takes that same number of
values from the stack and places them into the frame. So let’s call it:

1 10 my.max . cr

It works just like the gForth version, so ”1” ends up in ”:A” and ”10” ends up in ”:B”
(hint: that’s also what the stack diagram tells you). The rest is pretty much like the gForth
version - except that ”:A” and “:B” are variables of course. And what if you need more
local variables? Well, you can go up to eight, from ”:A” to ”:H”.

Finally, we reach the end of our word and there it is, the word that releases the frame,
“END-LOCALS”. If you fail to use it, the local variables stay in scope, so they remain valid
in the caller - and believe me: that’s not what you want. If you leave a word prematurely
by using ’EXIT’, you’ll have to terminate the scope manually as well, so instead of e.g.:

if exit then

You’ll have to write:

if end-locals exit then

Don’t forget! This way you can do almost anything other local variable schemes can do,
e.g. take this one, also from gForth:

strcmp { addrl ul addr2 u2 -- n }
addrl addr2
ul u2 min 0
?do { sl s2 }
sl c@ s2 c@ -
?dup-if
unloop exit
then
sl char+ s2 char+
loop
2drop
ul u2 - ;

This one introduces a new scope within a ?DO..LOOP. So how do we tackle this one?
Well, like this:

strcmp (al:A nl:B a2:C n2:D —— n)
4 locals

tA @ :Ca@

:B @ :D @ min O

?do

2 locals
tA @ c@ :B @ c@ - dup

if \ we don’t have ?DUP
end-locals \ discard LOOP locals
unloop \ discard LOOP parameters
end-locals \ discard strcmp locals
exit \ exit the routine
else \ we don’t have ?DUP
drop \ so we have to drop it
then
:A @ char+ :B @ char+
end-locals \ free LOOP locals
loop
2drop
:B @ :D @ -

end-locals ;

CHAPTER 12. STANDARD LIBRARIES 196

True, it’s much more “wordy”, but it does the same thing word for word. It’s just not that
sneaky. First both strings (in ANS Forth fashion) are assigned to locals variables. Since
both strings need two values on the stack, we need 4 local variables. The top of the stack
(the count of the second string) is put into ”:A”, the address of the second string ends up in
”:B”, the count of the first string ends up in ”:C” and finally the address of the first string
ends up in ”:D”. No surprises here.

You may also follow how they are used. The length of the smallest string is the loop
parameter of the ?2DO..LOOP. After that follow the addresses of both strings. When the
?DO..LOOP is entered, a new stack frame is created for these addresses. Consequently,
when the loop is terminated, the scope has to be terminated as well. That’s why you find
an "END-LOCALS?” just before 'LOOP’. Of course, gForth does this automatically.

And here is the catch: in the middle of the loop we leave the word entirely and return to the
caller. At that moment we not only have to deal with the scope of the word, but the scope
of the loop as well. So first we release the locals frame of the loop (just before "UNLOOP’)
and then the locals frame of the word (just before "EXIT’). Like I said, gForth does this as
well - you just don’t see it.

There is just one more catch: locals are not taken into consideration when you use "CATCH’®,
The fix is easy, though. There is a word called "LFRAME?”, which is a pointer to the current
locals frame. So if you want to preserve the sanity of your locals subsystem, you simply
do this:

lframe >r catch r> over \ duplicate CATCH value
if to lframe else drop then \ CATCH value still on stack

What this does is save the address of your locals frame on the return stack (where it is
supposed to be save) and restore it after an exception has been caught. If there was no
exception at all we can simply discard it. You can even wrap the whole thing in a definition
if you want - and be done with it.

It is the most "userfriendly” locals scheme? Probably not, but it is just as versatile and a real
life saver if you need it. And - believe it or not - completely portable to gForth and other
Forth compilers. Note that there is a floating point’ version as well, called flocals. 4th.
It works in a similar way.

Another way of handling locals is temporarily converting global variables to local vari-
ables. The advantage is that you can turn these rather anonymous names into something
meaningful. It also requires very little memory, since it uses the return stack. Disadvantage
is that variables are not automatically initialized nor are they initialized in the “’proper”
order. E.g. we could define our 'MAX’ example like this:

include lib/glocal.4th

variable a
variable b

: my.max (nl:A n2:B —-- n)
b local{ b !
a local{ a !
a @ b @ > if a else b then @
}global
}global
[force] ;

6See section 11.5.
7See sections 12.28 and 12.27.

CHAPTER 12. STANDARD LIBRARIES 197

At the end you’ll notice another disadvantage: because it messes with the return stack, it
cannot be optimized, so we have to force the final ’;’. That’s not too bad if you’re aware of
this, but if you don’t - you’ll be doing a lot of fruitless debugging.

To turn a named variable into a local, you’ll have to issue "LOCAL({”, preceded by the
variable itself. After that, you can assign any value you want to it. It doesn’t interfere with
the stack, so what was there is still there (in this case TOS). If you don’t assign a value
yourself, it retains whatever value was stored there.

To restore the original value, you have to terminate its use by issuing ”}GLOBAL”. This
works just like a stack. The first ”}GLOBAL” restores the innermost variable - which is
”A”. The second ”}GLOBAL” restores the outermost variable, which is ”B”. It’s also safe
to use the return stack between "LOCAL{” and ”}GLOBAL” - as long as you do your
cleanup. So, let’s see how this works:

200a ! 30 b !

This initializes the global value of both variables - just like any other variable.

15 25 my.max . cr

We pass some values to "MY.MAX” - that’s when ”A” and ”B” serve as local variables -
and hence their global values will be overwritten. However, if we retrieve their values after
execution, we’ll see nothing has happened:

a? b ?cr

As ”A” still holds ”20” and ”B” still holds ”30”. Despite the drawbacks, it’s a viable
option if you’re willing to do the work, since the library is just a dozen words or so - and
consequently pretty quick.

On the other hand, it’s also not a very good choice for algorithms that depend heavily on
recursion. The 1ocals.4th library comes with its own stack - which can be expanded
by defining ”/LOCAL”, e.g.

1024 constant /local
include lib/locals.4th

While glocal. 4th is bound by the size of the native stack.

12.13 Random numbers

If you want to program a game or a simulation, you’ll probably need random number
generation. Of course, you can do that too with 4tH. Just include the proper file:

include lib/random.4th
And initialize it:

randomize

CHAPTER 12. STANDARD LIBRARIES 198

It generates a number between 0 and "MAX-RAND?”, but we’ll teach you how to generate
a number for virtually any range below that.

There are two things important when you want to do that: the range limit and the lower
limit. Say, we want to simulate a dice with numbers in a range from 1 to 6. The lower limit
is 1. We subtract that from the upper limit to get the range limit.

So: upper limit minus lower limit gives a range limit of five (6 - 1 =5). The general formula
looks like this:

<range-limit> 1+ random * max-rand 1+ / <lower limit> +
When we apply this to the dice-example, the complete formula is:

5 1+ random % max-rand 1+ / 1 +

This will give you a dice-simulation, that produces random numbers between 1 and 6. If
you don’t like to write this code yourself, you can always include choose.4th. After
including that you can simply get a predetermined range of number by simply writing:

include lib/choose.4th
6 choose 1+

Which is in fact your perfect dice simulation, because it returns a number between 1 and 6.
”CHOOSE?” in itself provides a number between 0 and 5 in this example.

Sometimes you want the randomizer to provide a preset range of numbers. There is an
variable called "SEED” which determines what range of numbers is provided. "RAN-
DOMIZE” initializes it with the setting of the internal clock, which is the same value that
"TIME’ returns. Yes, that means that if you call ’lRANDOMIZE” twice within a second,
the randomizer will return the same range of numbers. Presetting the randomizer is pretty
trivial:

1234567890 seed !

Finally, under the hood it is not a single randomizer, but two! Default a modified® BSD
algorithm is used, but you can also default to the standard Microsoft algorithm by defining
the appropriate pragma:

[pragma] MS-random
include choose.4th

You can also select the required version by calling it by name:

MSRandom . BSDRandom . cr

Are these randomizers very good? No, as a matter of fact, they are not. They are sufficient
to power your occasional game, but for more serious applications they simply fall short.
That’s why 4tH also provides some very heavy duty randomizers, designed by randomizing
expert George Marsaglia®. The first is gmkiss.4th. Note that although it provides
a similar interface as random. 4th, it is not a drop-in replacement, most significantly
because it can return the full range of a cell value, including negative numbers. Another
difference is that it takes four cell size values to initialize:

CHAPTER 12. STANDARD LIBRARIES 199

RANDOMIZER | REGISTERS TYPE
CONG X congruential
SHR3 y 3-shift shift register
MWC zZ, W multiply with carry

Table 12.2: gmkiss randomizers and their registers

1234567890 987654321 12893467 1029384756 seedd!

As a matter of fact, it is built out of three different randomizers, which feed a fourth one.
You can call each and every one of these randomizers and set their registers individually.

All those randomizers combined results in the KISS random number generator, which is
the randomizer that "RANDOM” calls'©,

If that still isn’t enough we got even a better one, gmskiss.4th, which is arguably one
of the best randomizers in the world. This one uses a large amount of memory, so don’t use
it for trivial tasks. It can return the full range of a cell value (including negative numbers)
and takes three cell size values to initialize:

include lib/gmskiss.4th
987654321 12893467 1029384756 seed3!
." Random number: " kiss . cr

If you don’t want to set the seed yourself, you can always call lRANDOMIZE” instead.
This “super KISS” implementation differs from the previous one because the “multiply
with carry” generator has now superlong periods (54767 % 21337279),

But hold, that is not everything. There are a ton of different randomizers in 4tH. Table 12.3
gives you an overview. Some of them comply by the standard APT'!, some of them are so
specialized that they don’t. So whatever your needs are, there is always a randomizer that
fits them.

12.14 Sorting

Yes, 4tH can do that too. You just have to include gsort . 4th (a ”quick sort” implemen-
tation) to make it all possible. It works pretty much like the sort routines you’ve seen in
C, which means you have to devise a word to compare two values. Note that gsort .4th
can only sort cell arrays. Setting it up is pretty simple. First you have to include it:

include lib/gsort.4th
include lib/random.4th

Then you have to create a word that returns a true flag when the second value on the stack
is smaller than the top of the stack. In this example we will just compare two integers, so
that is pretty easy:

: MyPrecedes < ;

8The standard BSD algorithm is notoriously flawed, especially the lower bytes of the returned random number.
%http://en.wikipedia.org/wiki/George_Marsaglia

10Unless you’ve included random. 4th as well.

They provide random, randomi ze and MAX—RAND.

CHAPTER 12. STANDARD LIBRARIES 200

gsort . 4th creates a deferred word'? called "PRECEDES”. Now we have to assign our
word to "PRECEDES”, so that it is executed when "PRECEDES” is called:

’ MyPrecedes is Precedes
That’s it! We’re ready to rock ’n roll now. Let’s set up a simple testing environment:

10 constant #elements
#elements array elements

randomize
InitElements #elements 0 do random elements i th ! loop ;
ShowElements #elements 0 do elements i th @ . loop cr ;

This creates an array of ten elements, which is filled with random values by “InitElements”.
”ShowElements” will show on screen what is stored there. The actual sort is straightfor-
ward: tell ’SORT” which array and how many elements there are to sort and you’re done:

SortElements elements #elements sort ;

Now let’s put it all together:

InitElements
ShowElements
SortElements
ShowElements

It will initialize the array, show its contents, sort it and show it again. It will output some-
thing like this:

12717 6028 1389 31870 14234 15884 31062 14788 18186 149
149 1389 6028 12717 14234 14788 15884 18186 31062 31870

And what if these were string addresses? Well, ”SORT” would have sorted them too, from
the lowest addresses up to the highest addresses, but that’s probably not what you meant.
You wanted to sort the actual strings, not just their addresses. Can 4tH do that too? Sure,
you just got to create another "PRECEDES” word. Something like this:

SPrecedes >R COUNT R> COUNT COMPARE 0< ;

This will take the two values and treat them as strings. Now the strings are sorted, not just
the addresses. Note that the strings themselves will not move in memory. The pointers
move, the strings themselves don’t. This is a so-called address based sort”.

The 4tH library contains several sorting algorithms. There are two families: ’index based”
and “address based”. The first family can sort any array'3, the second one only cell arrays,
because fetching and exchanging is done within the library member itself.

Another difference is that the “index based” family allows you to combine several differ-
ent sorting algorithms within the same program, but also requires you to define your own
element exchange word. You can also combine one member of the “address based” fam-
ily with the ”index based” family, as long as you handle your "PRECEDES” definitions
properly since they are not compatible.

CHAPTER 12. STANDARD LIBRARIES 201

Apart from their “family” characteristics each and every algorithm has its own strengths
and weaknesses. E.g. ”odd-even mergesort” can only sort ”power-of-two” sized arrays and
under some circumstances ’quick sort” can have a horrible performance.

The factor ”Speed” gives you an indication of how fast they are. 1.0 is the reference speed,
higher numbers are proportionally slower'#. The same for the ”Size” factor - higher num-
bers are proportionally bigger.

Which one is optimal for your specific problem depends on a lot of things, e.g. the state
and condition of the data (like partially sorted sequences, duplicates) are important factors
in choosing the right sorting algorithm. There more than adequate resources for you on the
web to find out, but here are a few rules of the thumb”:

* If you have only a few records to sort, take Simple sort (improved) or Selection sort;

* If you have a significant number of records, need a reasonable, consistent perfor-
mance and a compact routine, take Circle sort;

* If you have a significant number of records and need a good performance, take Shell
sort or Comb sort;

* If you have a large number of records and absolutely need the fastest performance,
take Quick sort or Intro sort;

* If you have a large number of records and need a very consistent, good performance,
take Intro sort or Heap sort.

If you’re still unsure and size or speed isn’t a major issue, you can’t go wrong with Heap
sort.

12.15 Bitfields

Bitfields are always a bit of a controversial subject, since many complain that they are not
portable or simply not worth the effort. Anyway, there is a library included if you should
ever need them. In its most basic form they are quite simple: you provide the number and
a certain number of bits are extracted from a certain position:

include lib/bitfield.4th \ include the library
[binary] 00011000 [decimal] \ put a number on the stack
3 2 bn@ . \ start at bit 3, 2 bits long

This will return ”3” - or ”11” binary, if you prefer. Counting starts at the rightmost bit
(which is bit 0) so this expression returns bits 3 and 4. Saving it is very easy as well, just
add a new value:

include lib/bitfield.4th \ include the library
\ store ”2” into bit 3 and 4
2 [binary] 00011000 [decimal] 3 2 bn!

Of course, you can also store a pattern into a string or cell variable:

12See section 11.7.
13Since it works with indexes, not addresses. Consequently, it is a bit slower in general.
4For a 100,000 element cell array

CHAPTER 12. STANDARD LIBRARIES 202

include lib/bitfield.4th \ include the library
variable myvar \ define a variable

0 myvar ! \ initialize it

3 myvar 3 2 Db! \ store ”3” into bit 3 and 4
myvar 3 2 b@ . cr \ print the bitfield

Its character counterparts are named "BC@” and "BC!”, which may not be all that surpris-
ing.
Some may argue that these are not true bitfields, because you always have to provide the

starting bit and the number of bits. With a bit of effort though we can make these bitfields
behave like the real thing. First, include constant . 4th in addition to the bitfield library:

include lib/bitfield.4th \ include the library
include lib/constant.4th \ include "cell-bits"

Let’s define the fields in the usual “starting bit, length in bits” form and add the expression
“CELL-BITS * +”. After that, turn the whole thing into a constant. Just make sure the
bitfields don’t overlap:

0 3 cell-bits * + constant ink does> cell-bits /mod ;
3 3 cell-bits » + constant paper does> cell-bits /mod ;
6 1 cell-bits x + constant bright does> cell-bits /mod ;
7 1 cell-bits » + constant flash does> cell-bits /mod ;

This will scale the bitfield ’length” parameter in such a way, that it stays arithmetically sep-
arated from the starting bit” parameter. Finally, wrap it into a simple "'DOES>’ definition.
This will split the constant into the two components again when it’s used. Now let’s use it
in a real world example:

0 enum black enum blue \ enumerate all colors
enum red enum magenta
enum green enum cyan

enum yellow constant white

24 constant /lines \ length of the display
32 constant /rows \ width of the display
\ allocate display buffer
/lines /rows x buffer: attributes
does> swap rot /rows % + chars + ;
\ make it a two dim. array

white 5 6 attributes —-> ink bc!

red 5 6 attributes -> paper Dbc!
true 5 6 attributes —-> bright bc!
false 5 6 attributes -> flash bc!

\ set colors at line 5, row 6

This program will set the colors in the display buffer of a Sinclair ZX Spectrum. As you
can see for yourself, the bitfields behave as you would expect. Only defining them is a little
clumsier - nothing a preprocessor can’t fix.

12.16 Bit arrays

A bit array (also known as a bitmap, a bitset, or a bitstring) is an array data structure that
compactly stores individual bits (boolean values). Setting it up is a bit awkward, but using
it is very simple. First we have to include the libary:

CHAPTER 12. STANDARD LIBRARIES 203
include lib/bitarray.4th

Then we have to set up the bit array itself. The minimal size of a bit array is one cell. The
total size of a bit array has to be a multiple of cells. Although you can use cells to size the
array, the most portable way is to use bits (128 in this example, to be exact):

128 cell-bits / array mybits

Then we have to declare the execution semantics. Note from that moment on, the array is
no longer accessable as a cell array. So if you want to initialize the array, the easiest way is
to do it before that, otherwise you’ll have to do it bit by bit:

:redo mybits bit-array ;

Or even shorter:

128 cell-bits / array mybits does> bit-array ;

Believe it or not, but that was the hardest part! Manipulating a bit array is dead easy. Bits
are numbered zero and up. To set a bit simply issue:

0 mybits bit-on
Resetting or toggling a bit is no rocket science either:

34 mybits bit-off
63 mybits bit-toggle

Of course, you can query the status of a bit. If the bit is set it returns true, otherwise false:

34 mybits bit?

Because of their compactness, bit arrays have a number of applications in areas where
space or efficiency is at a premium. Most commonly, they are used to represent a simple
group of boolean flags or an ordered sequence of boolean values. However, bit arrays can
also be used for the allocation of memory pages, inodes, disk sectors, etc. In such cases,
the term bitmap” may be used'>.

12.17 Associative arrays (using hash tables)

Associative arrays have been made popular by languages such as Python and PHP. In gen-
eral they are not very efficient, but make it easy to associate keys with their respective
values. 4tH does not have native support for them, but if you want them, they are there.

The first one is small, but limited. First you need to include hash.4th, because this
implementation uses hash tables:

include lib/hash.4th

15Not to be confused with raster images, which is something entirely different.

CHAPTER 12. STANDARD LIBRARIES 204

Second, you allocate an integer array in which you want to store the keys and initialize it:

16 constant /myhash
/myhash array myhash
myhash /myhash hashtable

Third, you need to select the hashing algorithm you want to use. ’SDBM” is a decent one,
but you can use another one if you want or even write your own:

’ sdbm is hash

Now we’re ready to rock 'n roll! Before we save a value, it is wise to see if its key is free:
s" beta" myhash get?

"GET?” returns two values. First a flag. If it is non-zero, the key is free. The second one
is the value associated with the key. When you’re testing (like now) it is useless, so we can
drop it:

0= abort" Key taken!" drop

Now we can do some business:

512 s" beta" myhash put

And if we want to retrieve the value we simply write:

s" beta" myhash get . cr

Well, it’s small, simple and painless, but there is one little catch. What will you do when
a collision'® occurs? Well, frankly that’s up to you. The program does not define any
alternative action. You could try to increase the size of the hash table - but not while the
program is still running of course. You could also define an alternative hash table, but does
that really make life easier?

At least you’ve learned two lessons:

1. Hash tables are not very memory efficient;

2. Hash tables need to take alternative action when a collision occurs.

Of course, there is a version which addresses the latter problem - and uses even more
memory. In order to resolve a collision, memory is divided into buckets. A “bucket” is
a certain number of associated memory locations where the values of keys with the same
hashes are stored. E.g. of you make buckets of eight, you can survive seven collisions
before the program gives up. Buckets are four entries deep by default, but you can override
that:

3 constant /bucket
include lib/hashbuck.4th

16 A collision” means a key is already taken.

CHAPTER 12. STANDARD LIBRARIES 205

Now we have to allocate the hash table. The best strategy is to provide space for many keys
with small buckets. In this example we provide space for fifteen keys:

include lib/hash.4th
15 /bucket 2 * x 1+ constant /myhash
/myhash array myhash

Note that every entry in a bucket takes rwo cells and one extra cell is needed for the hash
table itself. In this example, we have room for fifteen keys, each having buckets of three
entries, each entry taking two cells - and one cell overhead. The rest looks familiar:

myhash /myhash hashtable
’ sdbm is hash

512 s" beta" myhash put

s" beta" myhash get . cr

Note we don’t have to test the key ourselves, the program itself transparently handles any
collisions. And what when we are out of buckets? Well, the program will issue an error
message and quit. If you want to see for yourself if a bucket was full, you need to use
”PUT? which returns a non-zero flag if a bucket was full:

512 s" beta" myhash put? abort" I want to issue my own!"

Finally, there is a version that has none of these drawbacks. It is more memory efficient and
you don’t have to worry about collisions or buckets. But as always, there is a price to pay:
it is slower, since it looks up the keys with a binary search. The overhead is negligible, just
two cells. So this:

include lib/hashkey.4th
include lib/hash.4th

32 constant /myhash
/myhash array myhash

Will get you 15 solid key and associated value pairs. Again, the rest looks familiar:

myhash /myhash hashtable
’ sdbm is hash

512 s" beta" myhash put

s" beta" myhash get . cr

You want to store strings instead of numbers? You can do that too if you use userpad. 4th.
This library member stores strings in a circular buffer, much like the internal PAD'7. After
that, storing strings is easy. You only need to define these words:

sput >r 2>r >pad drop 2r> r> put ;
sget get error? abort" Bad bucket" count ;

And this is where it all comes together:

s" This is the end" s" beta" myhash sput
s" beta" myhash sget type cr

But is it worth all the trouble? In some circumstances where quick access to large tables is
required, may be, but you be the judge of that.

7Which means they will get overwritten at some point.

CHAPTER 12. STANDARD LIBRARIES 206
12.18 Associative arrays (using binary trees)

Sure, it takes much more code and requires dynamic memory, but it has none of the draw-
backs associated with hashtable based implementations. Just include the library, define a
variable and initialize it:

include lib/bintrkv.4th
variable kv
NULL kv !

And off you go!

15 5 kv put
100 6 kv put
5 kv get .

6 kv get . cr

Of course you can define additional arrays or reassign a value:

variable mykv
NULL mykv !

15 5 mykv put
16 5 kv put

You can also use strings as key values:

25 s" alpha" kv put$
35 s" beta" kv put$

s" alpha" kv get$.
s" beta" kv get$. cr

Don’t worry about cleaning up dynamic memory:

kv @ destroy-tree

That will take care of all that, but of course you have to do it for each and every associative
array you created.

12.19 Lookup tables with integer keys

Don’t use a CASE construct? Now how are we supposed to make those complex decisions?
Well, do it the proper way. Leo Brodie wrote: "I consider the case statement an elegant
solution to a misguided problem: attempting an algorithmic expression of what is more
aptly described in a decision table". And that is exactly what we are going to teach you.

Let’s say we want a routine that takes a number and then prints the appropriate month. You
could do that this way:

CHAPTER 12. STANDARD LIBRARIES 207

: Get-Month
case
1 of ."™ January " endof
2 of ." February " endof
3 of ." March " endof
4 of ." April " endof
5 of ." May " endof
6 of ." June " endof
7 of " July " endof
8 of ." August " endof
9 of ." September" endof
10 of ." October " endof
11 of ." November " endof
12 of ." December " endof
endcase

Ccr

This takes a lot of code and a lot of comparing. In this case (little wordplay) you would be
better of with an indexed table, like this:

create MonthTable
" January
" February "
" March "
" April
" May "
" June "
" July "
" August "
" September"
" October "
" November "
" December "

S S S S S S S s S s~~~

: Get-Month (n-—)
1 max 12 min 1- cells MonthTable + @c count type cr

Which does the very same thing and will certainly work faster. True, you can’t do that this
easily in ANS-Forth, but in 4tH you can, so use it! The word ’,"” compiles a string, whose
address can be retrieved by *@C’ as if it were a numeric constant. Note that *@C’ just
returns the address of the string, so you have to use "COUNT’ to obtain an address/count
pair. Of course, there is also an equivalent to ’,"” called *,I’. The latter is delimited by a bar
instead of a quote, but essentially works the same way.

Note this is the fastest way to retrieve a value. It’s over five times faster than an equivalent
"CASE..ENDCASE’ construct. So yes, if you have a set of (almost) sequential values,
every reason to go for an indexed table.

But can you use the same method when you’re working with a random set of values like
"2,1,3,12,5,6,4,7, 11, 8, 10, 9". Yes, you can. But you need a special routine to access
such a table. Of course we designed one for you. It is called "ROW” and you can use it by
adding this directive:

[needs lib/row.4th]

This routine takes four values. The first one is the value you want to search. The second is
the address of the table you want to search. The third is the number of fields this table has.
And on top of the stack you’ll find the excecution token of the word that searches the table.

CHAPTER 12. STANDARD LIBRARIES 208

Two have been predefined, "NUM-KEY” searches numeric values and "STRING-KEY”
searches string values.

This routine can search zero-terminated tables. That means the last value in the index field
must be zero. Finally, it can only lookup positive values. It returns the value you searched,
the address of the row where it was found and a flag. If the flag is false, the value was not
found.

Now, how do we apply this to our month table? First, we have to redefine it:

create MonthTable

1, ," January "
2, , " February "
3, " March "
4, " April "
5 , , n May "
6 , " June "
7 , , n J'Llly "
8 , ," August "
9, , " September"
10 , ," October "
11 , ," November "
12 , ," December "
NULL ,

The first field must be the "index" field. It contains the values which have to be compared.
That field has number zero. Note that this table is sorted, but that doesn’t matter. It would
work just as well when it was unsorted. Let’s get our stuff together: the address of the table
is "MonthTable", it has two fields and we want to return the address of the string, which is
located in field 1. Field O contains the values we want to compare. We can now define a
routine which searches our table:

Search—Month (nl —— n2 f)

MonthTable 2 num-key row \ search the table

dup >r \ save flag

if nip cell+ Q@c else drop then

r> \ if found get value
; \ if not drop address

Because "ROW?” is able to search integer tables and string tables, you have to define which
one it is by using either num—key or string—key. Now, we define a new "Get-Month"
routine:

: Get-Month (n —-)

Search-Month \ search table

if \ if month is found
count type \ print its name

else \ if month is not found
drop ." Not found" \ drop value

then \ and show message

cr

Is this flexible? Oh, you bet! We can extend the table with ease:

3 Constant #MonthFields

create MonthTable
1, ," January " 31 ,
2, ," February " 28 ,

CHAPTER 12. STANDARD LIBRARIES 209

3, " March " 31 ,
4, " April " 30 ,
5, " May " 31,
6 , " June " 30 ,
7, " July " 31,
8 , ," August " 31,
9, ," September" 30 ,
10 , ," October "™ 31 ,
11, ," November " 30 ,
12 , ," December " 31 ,
NULL ,

Now we make a slight modification to "Search-Month":

Search—-Month (nl —— n2 f)
MonthTable #MonthFields num-key row
dup >r \ search table, save flag
if nip cell+ Q@c else drop then
r> \ if found get value
; \ if not drop address

This enables us to add more fields without ever having to modify "SearchMonth" again.
If we add another field, we just have to modify "#MonthFields". We can now even add
another routine, which enables us to retrieve the number of days in a month:

Search-#Days (nl -—— n2 f)
MonthTable #MonthFields num-key row
dup >r \ search table, save flag
if nip cell+ cell+ Qc else drop then
r> \ if found get value
; \ if not drop address

Of course, there is room for even more optimization, but for now we leave it at that.

Are there any drawbacks? Yes, this is up to three times slower than the equivalent’CASE..ENDCASE’
construct. So if you have a lot of non-contiguous values and need every last bit of perfor-

mance, you’d better use a "CASE..ENDCASE’ construct. However, if you exceed the one

hundred integer values there is another construct you can use, as we will see later on.

12.20 Lookup tables with string keys

But what if the table we’re using looks like this:

create MonthTable
, " January" 31 ,
, " February" 28 ,
," March" 31 ,
," April" 30 ,
, " May" 31 ,
, " June" 30 ,
, " July" 31 ,
, " August" 31 ,
, " September" 30 ,
," October" 31 ,
," November" 30 ,
," December" 31 ,
NULL ,

CHAPTER 12. STANDARD LIBRARIES 210

Sure, 4tH compiled some kind of integer value there, but an address to a string is less than
helpful. We have to compare strings in order to find the correct entry, not addresses. So,
we need a word that searches the table and returns the contents of the field that follows the
appropriate string. Well, of course there is such a word. It is "ROW” again. You can use it
by entering:

[needs lib/row.4th]

At the beginning of your program. "ROW” takes an address/count pair of the string that
has to be found, the address of the table it has to search for that string and the number of
fields the table has. It returns the original address/count pair of the string, the address of
the row where the search stopped and a flag. That makes it quite a useful word, e.g. how
many days has June:

: GetDays (an —)
MonthTable 2 string-key row \ search the table
if
cell+ Qc . drop drop \ if found, display the number of days
else \ else an error message
drop type ." 1is not a month!"
then
cr

’

s" June" GetDays

If ’ROW” returns true, the value was found. If it returns false, it wasn’t. Note you have to
indicate which datatype "ROW” has to deal with. "ROW” is quite versatile, but that is not
the only merit of "TROW” as we will see in the next sections.

12.21 Lookup tables with multiple keys

Some tables have multiple keys to search them, e.g. by name or by number. So far all
tables we’ve seen dealt with a single key in the first column. It would be a shame if you
had to split a table into two tables, simply because you had two different ways to access
it. Fortunately, ’lROW” can handle this kind of tables as well as long as you put the key
columns up front and add a NULL at the end of the table for every key, e.g.

create mytable

, " Monday"

, " Tuesday"
;" Wednesday"
," Thursday"
," Friday"

," Saturday"
, " Sunday"
NULL , NULL ,

~ oUW N

This table consists only of key fields. You can search for the name and get a number or
search for the number and get the equivalent name. The trick is to keep in mind what the
key field is and the relative position of the datafield. In this case we want to search on
number, so the corresponding name is the field before the key field. When you start the
search the pointer you pass to "ROW” has to point to the key field you want to search. In
this case that is equivalent to:

CHAPTER 12. STANDARD LIBRARIES 211
mytable cell+

Let’s assume we want to search this table both ways:

day>num (al nl -—— al nl -f | n2 £f)
mytable 2 string-key row dup >r
if nip nip cell+ @c else drop then r>

num>day (nl —— nl -f | al n2 f)
mytable cell+ 2 num-key row dup >r
if nip cell- @c count else drop then r>

The first word doesn’t hold any surprises. It is a vanilla search word. The second one
passes a slightly modified pointer to "JROW” and decrements the address it returns, so it
now points to the name field. We can use both words quite easily and transparently:

s" Friday" day>num if . else type ." not found" then cr

s" New yearsday" day>num if . else type ." not found" then cr
5 num>day if type else . ." not found" then cr
8 num>day if type else . ." not found" then cr

You will see they work as expected.

12.22 Lookup tables with duplicate keys

Although most tables come with unique keys you may find yourself in a situation where
you have to resume a search. "ROW” can handle that situation as well. Let’s examine this
table:

create people

," Ritchie"™ ," Lionel"
," Dijkstra" ," Edsger"
, " Moore" ," Henri"
," Ritchie"™ ," Dennis"
," Wirth" ," Nick"
," Hopper" ," Grace"
, " Moore" , " Chuck"
," Hopper" ," Dennis"
NULL ,

There is one key field, since the table is terminated with only one NULL. We also find
multiple Hoppers and Moores, so we can’t be sure we’ve found the right one right away.
In order to get that one we might have to continue our search. That is exactly what this
program does:

>surname 2 string-key row ; (a n x1 -- a n x2 f)
first? rot cell+ @c count compare 0= ;
>next cell+ cell+ >surname ;

.name type space type ; (al nl a2 n2 --)
>first (al nl x a2 n2 —--)
2>r (an x)
if (an x)

dup 2r@ first? (anx f)

CHAPTER 12. STANDARD LIBRARIES 212

if (an x)
drop ." Found " 2r> .name cr
else (an x)
>next 2r> recurse (anxan)
then (--)
else (an x)
drop 2r> .name ." not found" cr

then (--)

: >name -rot 2>r >surname 2r> >first ;

: demo
s" Ritchie" s" Dennis" people >name
s" Moore" s" Chuck" people >name

" " Ada" people >name

s" Lovelace" s

’

demo \ run the demo

”>NAME” is a wrapper around this programs most important words ">SURNAME” and
”>FIRST”. ”>SURNAME” simply searches for a given surname in the table and returns its
address. ">FIRST” takes over and compares the first name. If it checks out we’re done, if
not it calls ">NEXT”. ”>NEXT” increments the pointer, so it now points to the next row.
Then it calls ”>SURNAME” again, effectively continuing the search. Finally ”>FIRST”
calls itself to check the first name again. Depending on the contents of the table, this
process can be repeated several times.

12.23 Binary search tables

First of all, if you have a series of consecutive values, the direct approach is always the
best:

create MonthName (n —-——)
" January
" February "
" March "
n Apri 1 n
" May "
mw June "
n July "
" August "
" September"
" October "
" November "
," December "
does> swap 1 max 12 min 1- cells + @c count ;

S NS S S S S S S s s~

If you’re not able to create a structure like that, because the values are just too far apart,
you may have to resort to a different technique - as this table will show you:

CASE-ENDCASE | row.4th | brow.4th
Integer 1—-100 - 100 — 0
String - 1-25 25— o0

The figures denote the number of elements in your table. Note these statistics are just a
guideline. Results may differ on your platform - and more importantly: how often a table
is accessed during execution. E.g. if your table is consulted only once, you may not see
any noticeable performance improvements. However, if your table is part of a tight loop,
you may see dramatic leaps in performance.

CHAPTER 12. STANDARD LIBRARIES 213

For those familiar with the ”big O notation!3”, both CASE..ENDCASE and row.4th
have a worst case of ¢'(n), while brow. 4th has a worst case of ¢'(logn).

We’ve already examined row. 4th in detail (section 12.19) and also CASE.ENDCASE
(section 11.19). Here we will show you how to make a binary search table. First thing
you’ll have to remember: a binary search table is always sorted. Forget that and you’ll be
hunting that bug for a long, long time. Second, when your table requires maintenance, be
aware that you’ll have to insert that new row at exactly the right place.

If you’re using a table with string keys, note that the sort-order depends on the ’COMPARE’
settings. Default it is lower-case, but if you changed it, it will affect your table. So beware.

This also means you can’t have a table with multiple keys - since you most probably can’t
have both of them sorted at the same time. You also have to know how many rows your
tables has - although you can let 4tH figure that out for you, e.g.

create mystable
," Aloha" 4
, n Bye" 3
," Doei" 5
," Hello" 1
re mystable

I~ ~ ~ ~

2 / constant /mystable

In this case, if we subtract "MYSTABLE” from "HERE’ we get the number of elements in
"MYSTABLE”. Since there are two elements per row, we divide the number of elements
by that number, giving the constant ”/MYSTABLE”. Note all keys are properly sorted.

Consequently, the call to brow. 4th is slightly different from row.4th. First of all,
you can’t attach the execution semantics to "MYSTABLE” using "'DOES>’. You need to
use :REDOQO’ instead, because we’ve defined a constant in the meanwhile, which tends to
interfere. Second, it takes different arguments. Let’s search for “"Bye’”:

s" Bye" mystable /mystable 2 bstring-key brow

Well, what did we get back?

1. A flag, which is set when the item was found;
2. The row where the key was found, starting at count zero;

3. The address of the lookup table.

Unlike row. 4th, you don’t get back the original value, so you might want to save that one
before you call ’lBROW” if you need it later. Now we have the task to retrieve the value,
corresponding to "Bye”. We have the address of the table, the number of the row and the
knowledge that a single row contains two elements:

if 2+ 1+ cells + @c else drop drop then

The *1+° comes in, because we’re not interested in “Bye” itself, but the value that is asso-
ciated with it - which is one cell further. For integers it is not much different:

create myntable

O ’ 1 4
1, 3,
2 4 5 ’
3, 7,
4 14 9 4

here myntable - 2 / constant /myntable

18https://en.wikipedia.org/wiki/Big_O_notation

CHAPTER 12. STANDARD LIBRARIES 214

Let’s go for 72”:
2 myntable /myntable 2 bnum-key brow

You issue the value you search for, the table and its length, the number of elements per row,
the appropriate word (" BNUM-KEY” for numbers and "BSTRING-KEY” for strings) and
you’re off.

There’s just one thing you’ll have to remember when you’ve got a string-key: the value
you issue may not exceed 63 characters. If you intend to use longer keys, you must adjust
a value. It’s not hard, just issue this before you include brow.4th:

128 constant (/key)
include lib/brow.4th

Conclusion, although binary search offers lots of performance, it’s a bit trickier to set up
and maintain, since there are many opportunities to introduce hard to trace bugs. However,
once it works you can enjoy a very good, flat performance, that is hardly affected by new
additions.

12.24 Dynamic binary search tables

Of course, this is all very nice, but may be you want to manage a binary search table
yourself while executing your program. That means adding and removing entries as you
see fit. If you just want to use strings, you may be better off with an associative array (see
section 12.17), which does all the heavy lifting for you. If not, you’ve found the section
you’re looking for.

Creating a dynamic binary search table couldn’t be easier:

include lib/bstable.4th

10 constant /bstable
/bstable array bstable

bstable /bstable bs.init

You simply define an array (with an even number of elements) and initialize it. Make sure
you size it properly, because full is full - and remember there is a little overhead involved.
After that, you can start to add entries:

5 bstable bs.insert

”BS.INSERT” will return a flag, an index and an address. If the flag is non-zero, the value
already exists - but the index is valid. If the flag is zero, you’re not home-free yet. You have
to check the index. If it equals *(ERROR)’ there were no free entries left. If you passed that
hurdle, you can enter the value associated with this key - but not before you’ve converted it
to a valid address. You can do that with "BS.ENTRY”. Now you got an address that points
to the key. To get to the value, you need to issue "BS.VALUE”, so:

if
drop drop
else
error? abort" Table full!"
bs.entry bs.value 25 swap !
then

CHAPTER 12. STANDARD LIBRARIES 215

In this example we examine the flag, if that’s OK, we examine the index and if that’s fine,
we convert the values returned by "BS.INSERT” into the address of the corresponding
value - and poke 725" into it.

Of course you want to be able to retrieve it. For that we got "BS.FIND”. The stack diagram
is exactly the same as "BS.INSERT” - it takes a value and the table address and returns a
flag, an index and an address. If the flag is non-zero, the value has been found:

5 bstable bs.find

Now all that’s left is to convert that into an address and you can examine the value you
poked in:

if bs.entry bs.value ? else drop drop then

Finally, you may want to delete it. It’s getting boring - that’s almost the same thing all over
again:

5 bstable bs.delete

In that case, you only get a flag. If it’s non-zero, everything is hunky-dory, if not the key
wasn’t found. The reason that all these stack-diagrams are so similar is that all of them use
”BS.FIND” in some form.

Note you can’t discard a dynamic binary search table, unless you place allocate it in dy-
namic memory (see section 12.5). And yes, you can use strings as keys - if you hash them
first (see section 12.17), e.g.

s" my string" fnvla bstable bs.insert

Of course, don’t forget to include hash . 4th first - and of course, you’ll have to hash the
string again when you call "BS.FIND” or "BS.DELETE”. Of course, you can also insert
string addresses into the value - but if you store them in some kind of temporary memory,
don’t forget to free them before you call "BS.DELETE”.

12.25 Fixed point calculation
We already learned that if we can’t calculate it in dollars, we can calculate it in cents. And
still present the result in dollars using pictured numeric output:
: currency <# # # [char] . hold #s [char] $ hold #> type cr ;
In this case, this:
200012 currency
Will print this:
$2000.12

Well, that may be a relief for the bookkeepers, but what about us scientists? You can do the
very same trick. We have converted some Forth code for you that gives you very accurate
results. You can use routines like SIN, COS and SQRT. A small example:

[needs lib/math.4th]

45 sin . cr

You will get "7071", because the result is multiplied by 10000. You can correct this the
same way you did with the dollars: just print the number in the right format.

CHAPTER 12. STANDARD LIBRARIES 216

12.25.1 Fractions

You can also use a delightful little library created by Leo Brodie called "fraction. 4th”.
If you’re using a 32-bit system, this library allows you to do arithmetic in the range of -
13.1072 and 13.1071 with a precision of 0.0001 - which is rather limited of course.

On a 64-bit system, this range is much wider: between -56,294,995,342 and 56,294,995,342.

In order to convert a fixed point number to a fraction, you have to multiply it by ”10K”,
which is 10,000 and call "S>V, e.g. in order to convert *0.7071’ to a fraction you need to
do this:

[needs lib/fraction.4th]

7070 s>v

You can also define a fraction yourself, e.g. this converts two-thirds to a fraction:

2 3 v/

You can add or subtract fractions, e.g. if you want to calculate ’0.7070 - 0.6666”, this will
do:

7071 s>v 2 3 v/ v- v. cr

You can print a fraction using the word "V.” Since a fraction is still a single-cell number,
you can manipulate the stack in the usual way using 'DUP, 'ROT”, etc. In some cases you
can even mix cells and fractions, as the following table will show you:

It even offers a limited range of mathematical functions if you care to load the extensions:

[needs lib/fractext.4th]

vpi 4 10K * s>v vsin v. cr

Which is the equivalent of the sine of a quarter . Of course, "VCOS” and "VTAN” are
defined as well. And these will do fine too - although you should note that the range of
usable numbers may be more limited:

include lib/fractext.4th

123456789 10K x s>v vsqgrt v. cr
2 3 v/ vln v. cr
3 4 v/ vexp v. cr

Which are equivalent to v/123456789, In(3) and exp(3). With the word *V>S’ you can
convert a fraction back to a ”10K” scaled fixed point number. To get back to the integer
equivalent, you’ll have to divide it by ”10K” - but of course you’ll lose the fractional part
entirely.

This library may not give you the most accurate results, but its performance is absolutely
stellar compared to other methods, e.g. floating point - and much, much smaller in size.
So if you don’t need umpteen digits of precision, this one might be exactly what the doctor
ordered.

CHAPTER 12. STANDARD LIBRARIES 217

12.26 Double numbers

C’mon, indulge me, run this program:

max-n . Cr

You will probably see some fairly large number displayed on your screen. What is it? Well,
it is the largest number that can fit in a cell. Larger numbers and 4tH will start to behave
erratically:

max-n 1+ . cr

Still, it is large enough to do the accounting for a reasonably sized enterprise. But it
hasn’t been always like that. Early Forths could barely handle the accounting of an average
schoolboy. In order to get some real work done they had to expand the range somehow.
And if one cell isn’t enough you simply take two cells. That is what double numbers are
all about: they are numbers that are composed of two cells.

The problem is that Forths operators aren’t overloaded. If you try to add up two double
numbers with ’+° you will end up with one double number and the addition of the two
parts of the first double number. So in order to add up two double numbers, a separate
word had to be defined. If you need a special word for addition, you will also need one for
multiplication, subtraction, division and negation.

It is no secret that Charles Moore, the inventor of Forth, thought that double numbers had
become superfluous after the introduction of modern processors and modern Forth compil-
ers. That is one of the reasons that 4tH doesn’t have a native double word implementation.
But should you need this vastly expanded range for one reason or another 4tH allows you
to enter the murky world of double, unsigned and mixed numbers.

So, how does it work. First of all, if you need a full implementation you have to include
these two libraries:

include lib/todbl.4th \ double number input
include lib/dbldot.4th \ double number output

Then you probably need some variables. But hey, if double numbers take up two cells, you
can’t use ordinary variables. That’s true. You will need small arrays:

2 array dvarl \ double variable one
2 array dvar2 \ double variable two

And here comes the next problem. How do you enter double numbers? Depending on the
size of the number, you can use two approaches. The easiest one is to convert a single
number to a double number with "U>D”. The only catch is this only works for positive
numbers. If you want to enter a negative number, you have to negate it afterwards:

500 u>d 60000 u>d d+ \ add 500 and 60000
2dup d. cr \ print the double number
dvarl 2! \ store it in variable one

Yes, every single operation has a double counterpart:

CHAPTER 12. STANDARD LIBRARIES 218

SINGLE | DOUBLE

+ d+
negate dnegate
. d.

2/ d2/
max dmax
min dmin
dup 2dup
@ 2@

! 2!

Table 12.7: Examples of single and double number counterparts

But what if you want to enter a very large number right away? In that case you will have
to convert a string to a double number with ”S>DOUBLE!'?”.

s" 5000000000" s>double \ convert a string to double
2drop 2dup d. cr \ print the double number
dvarl 2@ dmax dvar2 2! \ save the largest in variable two

Finally, when you have done all you needed to do and you’re left with a number that is
small enough you can convert it back to a single number with "D>U”. Note this will only
work for positive numbers:

dvar2 2@ dvarl 2@ d- \ subtract both double variables
2dup d. cr \ print the double number
d2/ d2/ d>u . cr \ divide by 4 and convert to unsigned

Rule of the thumb is: stay away from double numbers if you can. It is slow, cumbersome
and error-prone. If you can’t, goodnight and good luck!

12.27 Floating point numbers (unified stack)

Warning!

This is really complex stuff, I cannot guaran-
tee that it functions flawlessly. You may lose
accuracy or get the wrong result. Don’t use
any of this for any real life applications.

Ok, if you really, really, really want it, 4tH also provides floating point number support. If
you only need the basic operations and are willing to settle for limited accuracy and error
checking, you should try zenfloat.4th. It is small and very easy to use. Just include
it?® and go right ahead:

include lib/zenfloat.4th
include lib/zenfpio.4th
314159265 -8 f. cr

19Note it will bomb out when the string isn’t a double number. If you want to play safe, use “>DOUBLE”.
There is also a single number ">NUMBER” word. In that case you can select the double number version by using
its alias ">DNUMBER”.

20You always have to include zenfloat . 4th manually before you include any other floating point library
member.

CHAPTER 12. STANDARD LIBRARIES 219

That will print the first eight decimals of “pi”. Just read it like ”314159265e-8” or in
laymans terms 7314159265 with eight places after the decimal point. Of course you can
use positive exponents as well. Because ZEN floating point numbers are stored as two
numbers?! on the datastack?2, you can use *2DUP’, 2DROP’ and "2SWAP’ to manipulate
them. This is the way to calculate the surface of a circle with a radius of 10.55:

include lib/zenfloat.4th
include lib/zenfpio.4th
314159265 -8 1055 -2
2dup f* fx f. cr

Which will happily print:
349.667115

You can also convert a number to a float and back:

1960 s>f 2dup f. f>s . cr

If you try to convert a floating point number that is bigger than ’'MAX-N’ to a single number
it doesn’t work of course. You can store a floating point number in a variable if you want:

include lib/zenfloat.4th
include lib/zenfpio.4th

2 array pi
314159265 -8 pi 2!

If you want to write ANS Forth compatible code, you can. Just include zenans. 4th just
after zenfloat.4th. It will allow you to write code like this:

[DEFINED] 4TH# [IF] \ if this is 4tH

include lib/zenfloat.4th \ include the ZEN fp library
include lib/zenfpio.4th \ include the ZEN fp I/O library
include lib/zenans.4th \ make Zen ANS compatible
include lib/zenfsin.4th \ include the SIN library

[ELSE] \ if this is ANS Forth

s" easy.4th" included \ load the compatibility layer
[THEN]

FLOAT array fVar \ a floating point variable
FLOAT array Pi \ a FP variable holding PI

\ store PI in the variable
cr s" 314159265e-8" s>float Pi f!

Pi f@ 4 s>f f/ \ get PI and calculate sine
fsin fdup f. cr fvar f! \ print the result and save it
fvar f@ f. cr \ print the variable

And this is the way it is run:

21The exponent on the TOS, the mantissa on the 20S.
22Consequently, this implementation uses what ANS Forth calls a “shared floating point stack”. Since 2008,
ZEN float is considered a non-standard implementation (see: http://www.forth200x.org/fp-stack.html).

CHAPTER 12. STANDARD LIBRARIES 220

habe@linux-471m:~/Forth> gforth
Gforth 0.6.2, Copyright (C) 1995-2003 Free Software Foundation, Inc.
Gforth comes with ABSOLUTELY NO WARRANTY; for details type ‘license’
Type ‘bye’ to exit
s" fpdemo.4th" included
(Lots of messages you can ignore)
0.707106780551956
0.707106780551956
ok
bye
habe@linux-471m:~/Forth> 4th cxg fpdemo.4th
0.707106778
0.707106778
habe@linux-471m:~/Forth>

Apart from some rounding errors they are identical. Note that this "S>FLOAT” imple-
mentation is quite basic>3, but you can feed it most floating point numbers without any
problems. If you use zenans . 4th, most of the constructions in section 12.28 will work
with zenfloat.4th as well.

The error handling of zenfloat .4th is very basic. If you try to get the square root of
a negative number, it will just stop with an appropriate message. There are lots of floating
point routines included®*, just check the glossary for more details.

12.28 Floating point numbers (separate stack)

Warning!

This is really complex stuff, I cannot guaran-
tee that it functions flawlessly. You may lose
accuracy or get the wrong result. Don’t use
any of this for any real life applications.

If you want something more sophisticated than zenfloat.4th you should try ans—
float.4th. This library is a full ANS-Forth implementation. In ansfloat .4th man-
tissas are double-cell unsigned. Single-cell exponents contain the mantissa’s sign and a
signed exponent. The format used is non-standard for simplicity. Exponents are almost a
whole cell wide, leading to a wider dynamic range than most IEEE formats. Range and
digits of precision versus cell width are listed below.

CELL WIDTH \ DIGITS OF PRECISION \ RANGE = 10~* to 10* \

32 18 x = 323196289
64 37 x=1.3881175%10™
n INT ((n—1)%0.602) x=0.301%(2"2)

Table 12.8: Range and digits of precision

Floating point arithmetic is easy to use, but be careful to watch where your inaccuracies
are coming from. Floating point numbers are approximations. You can lose up to half
a bit of precision in each operation. Differences between large numbers can be trouble
spots. If you need transcendental functions, they can often be done in integer arithmetic

BThere is also a full ANS Forth implementation available: fpin.4th and fpout.4th. If you want to use
these instead, remove zenfpio. 4th and include them after you've included zenans. 4th.
24 All compatible library members are prefixed with >zen+’. See also chapter 25.3.

CHAPTER 12. STANDARD LIBRARIES 221

since you don’t need floating point’s run-time auto-scaling. Floating point arithmetic uses
a dedicated, shallow stack?. There is no depth checking, so underflows and overflows may
occur unless error checking is added. Since floating point support is implemented in high
level 4tH it is also rather slow and big.

So, how does it work. First of all, if you want to use floating point, you always need to
include this library before any other floating point library:

include lib/ansfloat.4th \ floating point words

This will also create the floating point stack. If you want a larger stack, just create this
constant accordingly before including the library:

32 CONSTANT FLOATING-STACK \ size of float stack
include lib/ansfloat.4th \ floating point words

This will create a stack of 32 floating point items. You probably want to do some I/O, so
let’s take care of that one too:

32 CONSTANT FLOATING-STACK \ size of float stack
include lib/ansfloat.4th \ floating point words
include lib/ansfpio.4th \ floating point I/O words

Then you probably need some variables. But hey, if floating point numbers take up more
than a cell, you can’t use ordinary variables. That’s true. You will need small arrays:

FLOAT array fvarl \ double variable one
FLOAT array fVvar2 \ double variable two

Finally, you have to initialize the library and specify the precision®’:

fclear \ initialize library
8 set-precision \ set precision to eight

And here comes the next problem. How do you enter floating point numbers? Depending
on the size of the number, you can use two approaches. The easiest one is to convert a
single number to a floating point number with ”S>F”.

500 s>f 60000 s>f f+ \ add 500 and 60000
fdup f. cr \ print the floating point number
fvarl f! \ store it in variable one

Note the double numbers library is loaded by default as well, so "D>F” is available too.
Every single operation has a floating point counterpart:

25 ANSS Forth defines a six item stack. A larger FP stack is an environmental dependency.
26The number of significant digits used by F.

CHAPTER 12. STANDARD LIBRARIES 222

SINGLE | FLOAT

+ f+
/ f/
* f*

negate | fnegate

f.
max fmax
min fmin
dup fdup

@ f@
! f!

Table 12.9: Examples of single and floating point number counterparts

But what if you want to enter a floating point number right away? In that case you will
have to convert a string to a double number with ”>FLOAT”.

s" 5000.575" >float \ convert a string to a float
drop fdup f. cr \ drop the flag and print the number
fvarl f@ fmax fvarz f! \ save the largest in variable two

A drawback of defining floating point constants that way is that ”>FLOAT” is notoriously
slow. A much faster library - called tofloat.4th - is available, but is not ANS-Forth
compliant®”:

include lib/ansfloat.4th \ include the fp library
include lib/tofloat.4th \ include fast >FLOAT library
include lib/fpout.4th \ include FP output library
FLOAT array fVvarl \ double variable one

FLOAT array fvar2 \ double variable two

initialize variable one

convert a string to a float

drop the flag and print the number
save the largest in variable two

fclear 60500 s>f fvarl f!
s" 5000.575" >float

drop fdup f. cr

fvarl f@ fmax fvar2 f!

o

Defining constants this way is about four-five times faster. This is especially useful when
you need a constant in a tight loop. There is another library which enables you to enter
floating point numbers the “mantissa + exponent” way, if you prefer®®:

include lib/ansfloat.4th \ include the fp library
include lib/ansfpio.4th \ include the fp i/o library
include 1lib/fpowlO.th \ include the F10x* library

5000572 -3 me>f f. cr
314159265 -8 me>f f. cr

Note that the mantissa must fit in a single cell number and the exponent must be in the
range of -24 to 24, otherwise you won’t get the correct result. But it is pretty fast as well
and in some cases a good alternative for tofloat . 4th.

Most ANS-Forth floating point words are available, although these words usually have their
own library file. For technical reasons they will not automatically include the floating point
number library for you, but abort instead if it is not loaded. So if you want to calculate the
sine of 45 degrees, you have to do this:

2TBut neither is ansfpio. 4th as we will see.
28See section 12.27.

CHAPTER 12. STANDARD LIBRARIES 223

include lib/ansfloat.4th \ include the fp library
include lib/ansfpio.4th \ include the fp i/o library
include lib/fsinfcos.4th \ include the library

fclear \ clear the fp stack

8 set-precision \ set precision to eight

pi 4 s>f £/ fsin f. cr \ calculate the sine

Since a full circle (360 degrees) requires 2 times PI, we have to divide it by 4 to get the
equivalent in radians®. But what if you make an error? What if a conversion overflows,
you divide by zero or try to get the square root of a negative number? There is where
“FERROR” comes in. It is a variable that holds the last floating point error that occurred.
Here you got an example:

include lib/ansfloat.4th \ include the library
include lib/ansfpio.4th include the fp i/o library

-

fclear

8 set-precision
1 s>f 0 s>f f/
ferror ? cr

clear the fp stack

set precision to eight
divide by zero

examine FERROR

e

In this case, "FERROR” returns two. But what does that mean? Well, here you got a handy
table of all IEEE 754 exceptions. In 4tH, these are predefined constants.

] CODE | MEANING

FE.NOERRORS | No error
FE.OVERFLOW | FP overflow
FE.UNDERFLOW | FP underflow
FE.DIVBYZERO | Division by zero
FE.INEXACT Inexact result
FE.INVALID Invalid operation

Table 12.10: IEEE 754 FP math errors

You can simply clear any errors by invoking "FCLEAR” again. Note that this clears
your floating point stack too, so you have to start all over again. And no, "THROW’ and
"CATCH’ do not restore your floating point stack. No easy recovery here!

12.29 Floating point functions

ANS-Forth floating point comes with a large number of libraries, sometimes two or more
for the same mathematical function. Table 12.11 may help you to select the proper one for
your specific problem.

Note several ANS-Forth floating point libraries are used within other libraries. If a library is
marked “default”, it is the default that will be selected for inclusion if you haven’t included
another library already. Most of the time you can override the default selection by simply
explicitly including it, e.g. instead of:

include lib/ansfloat.4th
include lib/ansfpio.4th
include lib/fexpint.4th

29”ESIN” takes its parameter in radians.

CHAPTER 12. STANDARD LIBRARIES 224

You could set up the program like this:

include lib/ansfloat.4th
include lib/ansfpio.4th
include lib/fexpt.4th

include lib/flnflogb.4th
include lib/fexpint.4th

In some cases a library member may assume a certain dependency is already resolved and
bomb out. In that case, you’ll have to figure out yourself which dependency that is and
resolve it manually. If that happens, you may find chapter 25.3 quite useful.

Note that Zen float comes with lots of floating point functions as well (sometimes two or
more for the same mathematical function), but it lacks the more specialized functions like
numerical integration, Bessel, Riemann Zeta, elliptic integrals, etc.

12.30 Floating point configurations

In order to simplify setting up floating point support, there are five predefined configura-
tions. The only thing you have to do is to include a single file. All configurations support
basic floating point operations and floating point I/O. You can see in table 12.12 which
configuration meets your particular needs.

For your information: precision is definitely not the same thing as accuracy. If you're still
not sure what to choose configuration 2 (fp2.4th) is a safe bet. Note that "FLOAT”
is always defined when having included any of the configurations, which enables you to
check whether floating point support has been loaded, e.g.:

[UNDEFINED] float [IF] [ABORT] [THEN]

If you need to differentiate between Zen floating point or ANS floating point, you just have
to check whether the constant ”ZENFP” has been defined, e.g.:

[DEFINED] ZenFP [IF] .(Zen float is loaded) cr [THEN]
[UNDEFINED] ZenFP [IF] .(ANS float is loaded) cr [THEN]

If you enter the realm of full fledged floating point numbers, you may find it very hard
to resolve all dependencies. Well, it is not so hard as you think as long as you apply the
following rule of the tumb. Before including any other floating point library file include
this one:

include lib/fp3.4th
\ now you may include other library files

If you don’t mind the size or the speed but do require full ANS Forth compliance, begin
your program like this:

include lib/fp4d.4th
\ now you may include other library files

You will see that this resolves most of your dependency problems’. Note configuration 5
is a special one, offering a high speed ">FLOAT” routine, which is not completely ANS
Forth compliant.

Bottom line: if you don’t need floating point numbers, avoid them and apply other tech-
niques. But sometimes it cannot be avoided and I guess you’ll agree with me that it’s good
it’s there.

307f not, take a look at chapter 25.3.

CHAPTER 12. STANDARD LIBRARIES 225

12.31 Forth Scientific Library

4tH includes serveral library members of the Forth Scientific Library. The FSL contains
several very complex and highly specialized mathematical words. Some of these words
have been adapted to work with 4tH. All you have to dois to include fs1-util . 4th after
you’ve included ansfloat.4th, ansfpio.4th and preferably also fpconst .4th.
It doesn’t work with zenfloat . 4th.

include lib/ansfloat.4th
include lib/ansfpio.4th
include lib/fsl-util.4th

Note that like ansfloat.4th, fsl-util.4th isn’t included automatically by other
library members, so you have to include it explicitly. If not, the compiler will simply abort.
Since the FSL uses special datatypes, you have to do some work in order to get them to
work with 4tH. If you want to declare an fsl-array of e.g. ten floats:

10 FLOAT MARRAY MyFSL

You have to declare it like this:

10 FLOATS 1+ ARRAY MyFSL (allocation)
FLOAT LATEST FSL-ARRAY (initialization)
DOES> (FSL-ARRAY) ; (runtime behavior)

If you want to declare an fsl-matrix of e.g. 16 by 8 floats:

16 8 FLOAT MMATRIX MyFSL

You have to declare it like this:

16 8 « FLOATS 2 + ARRAY MyFSL (allocation)
16 8 FLOAT LATEST FSL-MATRIX (initialization)
DOES> (FSL-MATRIX) ; (runtime behavior)

Surely, this is a bit awkward, but it is required to be as compatible as possible with sources
that use the FSL. Note that all restrictions and reservations concerning floating point sup-
port also apply to the FSL words.

12.32 Statistical functions

4tH features a small array of statistical functions that can be used in conjunction with both
the ANS and the Zen floating point libraries. First you have to declare the floating point
stack of your choice:

false constant shared-fp \ select ANS- or ZEN float

\ include the ZEN float library
shared-fp
[IF] include 1lib/fp2.4th

[ELSE] include lib/fp4.4th
[THEN] \ include the ANS float library

CHAPTER 12. STANDARD LIBRARIES 226

After you’ve included the statistical library itself you have to allocate the statistical struc-
ture required:

include lib/statist.4th \ include the statistical library

/st_var array stats \ allocate a statistics structure

That was the hardest part. Now, initialize the floating point library and clear the structure
so it is ready for use:

fclear 100 set-precision \ initialize FP library
stats st.clear \ clear the structure

You can now add your floating point numbers to the structure by issuing:

s>f stats st.add
s>f stats st.add
s>f stats st.add
s>f stats st.add
s>f stats st.add
s>f stats st.add
s>f stats st.add
s>f stats st.add

O 3 OGN

If you have forgotten how many numbers you added, simply query the structure as if it
were a normal variable:

stats @

A number of statistical functions are now at your disposal, e.g. variance, standard deviation,
and several means. You can call them at any time by issuing, e.g.:

stats st.stddev f. cr

Note you can have several statistical structures at the same time and manipulate or query
them independently. You can also clear them individually at any time without any side
effects.

12.33 Numerical integration

Although 4tH comes with lots of functions, you may encounter a situation where you need
a function and it isn’t there. If you’re willing to make a full implementation, please do -
and send the result to me for inclusion. However, if you need it fast, you may want to resort
to numerical integration. A well-known method for numerical integration is ”Simpson’s
rule’!”. We offer three versions of it:

1. Standard method;
2. Composite method;

3. The ”3/8” rule.

31https://en.wikipedia.org/wiki/Simpson%27s_rule

CHAPTER 12. STANDARD LIBRARIES 227

None of these methods is ”the best”. You simply have to try which one works best for you

in a given situation. So how do you go about it? First you have to find the derivative of

the function you want to approximate. If you are not very good at math, you may have to

find one. In this example we want to approximate /n(x). The integral of the derivative % is
i %dt. Now we have to turn the derivative into a function:

: £() 1 s>f fswap f/ ;

That wasn’t too hard, was it? Finally, we have to put the entire Simpson construction into
place:

include lib/fp3.4th
include lib/simpson.4th

: £() 1 s>f fswap f/ ;
(In) 1 s>f fswap [’] f£() 1000 simpson ;

Of course that’s all very nice, but where do all these parameters come from? Well, look
at the integral. The parameters of the integral state that it goes from 1 to x”, where x is
the parameter of the /n(x). That’s why we do a "TFSWAP” in the ”(LN)” function. We also
pass the execution token of the "F()” function. That has always one parameter, which is
the parameter that ”SIMPSON” feeds it. The dr simply indicates what the name of this
parameter is: f.

Basically, an integral calculates the surface of a function. ”SIMPSON” simply chops that
curve up in little, tiny segments and ¢ represents the number of chops>2. The more chops,
the more accurate the result will be - but also the more time it will take. The number of
chops must be even for the composite rule and divisible by three for the 3/8” rule. So, let’s
put the thing to work now:

fclear 100 s>f (1ln) f.

That results in 4.60517038495714201, which is not half bad when you think of it, since
4tH’s own "FLN” returns 4.60517018598809136.

So let’s do another one, the erf(x) function. It’s defined as ﬁ I e~ dt. Since ﬁ is about
1.1283791671, we already got that one and since it is not part of the integral we can leave
that one out of the equation. So we’re left with [e’ “dr:

: g() fdup fx fnegate e fswap fxx ;

Now let’s assemble the whole thing:

include lib/fp3.4th
include lib/falog.4th
include lib/simpson.4th

: g() fdup fx fnegate e fswap fxx ;

(erf)
0 s>f fswap [’] g() 100 simpson
s" 1.1283791671" s>float fx

’

321t’s a bit more complex than that, but it gives you an idea.

CHAPTER 12. STANDARD LIBRARIES 228

Why only a hundred slices? Because it is enough. It returns 0.71115563366031653 for
0.75, where our native "FERF” function returns 0.71115563365344696 and the actual
value is 0.71115563365351513. That ain’t half bad!

Sometimes you got a really difficult one, like the gamma function. That one is defined
as [t""'e~'dt. There are several problems with this one. First it calculates the entire
thing from here to eternity. The only way out of this is to find a sane way to define our
own eternity. I won’t go into the details, but 10,000 works. The second thing is, that the
parameter is now part of our integral. The only way out of this is to save it in a variable and
subsequently use it in the formula. Finally, we end up with something like this:

include lib/fp3.4th
include lib/falog.4th
include lib/simpson.4th

float array (x)

: h() fdup fnegate fexp fswap (x) f@ 1 s>f f- fxx f£x ;
(gamma) (x) f£! 0 s>f 10000 s>f [’] h{() 10000 simpson ;

Ten thousand slices? Yup, that’s what’s needed here - this one takes a long time. No
results? No. We’re not out of the woods yet, but the fix has nothing to do with numerical
integration, so we’ll leave that one be. Note the other Simpson variants work exactly the
same and you can combine the lot if you want it. But we have another way to do numerical
integration - and it’s a [ot faster. If it works.

The only thing you have to do is initialize it - and then you can relax, because you won’t
be bothered with the question how many slices you want. The method is Gauss-Legendre.
And this is how it works.

include lib/fp3.4th
include lib/falog.4th
include lib/gauslege.4th

: g() fdup fx fnegate e fswap f#** ;

(erf)
0 s>f fswap [’] g() lege_inte
s" 1.1283791671" s>float fx

lege_coef lege_roots
3 s>f 4 s>f £/ (erf)

You only have to initialize these roots and coefficients once before the first use of "LEGE_INTE”.
After that you’re home free and you can do all the calculation you want. The result isn’t

half bad: 0.71115563365634331. So why wouldn’t use it and leave Simpson be? Because

it doesn’t always work. Our /n(x) function is a lot worse: 4.52401046228249623. And
when functions got singularities*?, this method does not work at all.

33In mathematics, a singularity is in general a point at which a given mathematical object is not defined, or a
point of an exceptional set where it fails to be well-behaved in some particular way. E.g. f (x):% has a singularity
at zero.

CHAPTER 12. STANDARD LIBRARIES

Algorithm Library Returns Standard API
KISS gmkiss.4th single Yes
super KISS gmskiss.4th single No
Mersenne twister | mersenne.4th | singlelfloat No
MINSTD minstd.4th single Yes
Mifare Crypto-1 | mif-prng.4th single No
MRG32k3a mrg32k3a.4th | single Yes
ACM V31N06 plecuyer.4th float No
GGUBS prng.4th float No
RAN4 ran4.4th double No
Frank Buss randbin.4th single No
Lehmer randlcg.4th single Yes
SimScript randlcg.4th single Yes
EPM2 randlcg.4th single Yes
RANDU randlcg?2.4th single Yes
CUPL randlcg?.4th single Yes
SuperDuper randlcg2.4th single Yes
Derive randlcg?.4th single Yes
BCPL randlcg2.4th single Yes
Turbo C++ randlcg?.4th single Yes
Turbo Pascal randlcg2.4th single Yes
ANSI-C randlcg?.4th single Yes
Simula BS2000 randlcg2.4th single Yes
Atari ST randlcg?.4th single Yes
C-RAND randlcg2.4th single Yes
APL randlcg?2.4th single Yes
Tektronix randlcg2.4th single Yes
BSPR randlcg2.4h single Yes
EPM randlcg2.4th single Yes
Starting Forth randlcg2.4th single Yes
MWC v/d Horst | randmwcp.4th | single Yes
BSD random.4th single Yes
Microsoft random.4th single Yes
Doom randoom.4th single Yes
ACM V12N04 runiform.4th float No
TT800 tt800.4th float No
WELLS12 well512.4th single No
Wichman Hill wichill.4th float No
ZX Spectrum zxrandom.4th | float No

Table 12.3: 4tH randomizers

229

CHAPTER 12. STANDARD LIBRARIES 230
| ALGORITHM LIBRARY | COMBINE? [SIZE | SPEED |
Slow sort slowsort.4th No 2.3)
Stooge sort stoosort.4th No 2.7 >500,000
Bubble sort bublsort.4th No 14 2500
Cocktail sort cocksort.4th No 2.6 2800
Cocktail sort coc2sort.4th No 2.0 1800

(improved)
Simple sort simpsort.4th No 1.0 1800
Simple sort ismpsort.4th No 1.1 1300
(improved)
Insertion sort instsort.4th No 1.5 1500
Insertion sort ins2sort.4th No 1.7 1000
(improved)
Binary Insertion binssort.4th No 32 10.5
sort
Selection sort selcsort.4th No 1.2 1200
Cycle sort cyclsort.4th No 2.7 4100
Pancake sort pancsort.4th No 2.4 3600
Oyelami sort oyelsort.4th No 4.4 7.7
(MDIS)
Heap sort hea2sort.4th No 3.9 2.4
Intro sort intrsort.4th No 11.1 1.2
Quick sort gsort.4th No 3.9 1.2
Quick sort gsort.4th No 3.0 1.0
(unsafe)
Comb sort com2sort.4th No 3.2 1.4
Shell sort shelsort.4th No 2.6 4.3
Shell sort shelsort.4th No 3.9 3.0
(A033622)
Shell sort shelsort.4th No 4.1 2.6
(A108870)
Circle sort circsort.4th No 2.0 10.5
Circle sort cir2sort.4th No 7.1 6.1
(improved)
Bitonic sort bitosort.4th No 3.6 7.6
Merge sort mergsort.4th No 2.6 10
Odd-even merge | odevsort.4th No 3.0 8.4
sort
Tim sort (simple) | timsort.4th No 5.1 9.8
Table 12.4: 4tH sorting algorithms (address based)

| ALGORITHM LIBRARY | COMBINE? [SIZE | SPEED |
Heap sort heapsort.4th Yes 3.0 3.0
Comb sort combsort.4th Yes 3.2 2.5
Selection sort sel2sort.4th Yes 1.3 3900
Bubble sort bub2sort.4th Yes 14 6000
Gnome sort gnomsort.4th Yes 1.3 6000
Gnome sort gno2sort.4th Yes 1.8 4200
(improved)

Table 12.5: 4tH sorting algorithms (index based)

CHAPTER 12. STANDARD LIBRARIES

| 20S | TOS | Word | Result
fraction | fraction V* fraction
fraction cell V* cell
cell fraction V* cell
fraction | fraction v/ fraction
cell cell v/ fraction
cell fraction v/ cell
fraction | fraction V+ fraction
fraction | fraction V- fraction

Table 12.6: Fraction words

231

FAMILY FILE DE- SPEED | ACCU- | SIZE | ALGORITHM
FAULT RACY
FSIN fsinfcos.4th Y + + + Remez
fsincost.4th N + o + Taylor
FEXP fexp.4th Y + + 0 Remez
fexpt.4th N 0 o + Taylor
fexpflni.4th N ++ - 0 Fixed point
FLN flnflog.4th Y + + 0 Remez
flnflogb.4th N - ++ + Brute force
fexpflni.4th N ++ —-— 0 Fixed point
FERF ferf.4th N/A o + Taylor, approx.
erfl.4th N/A 0 - 0 Approximation
erf.4th N/A - + - Chebyshev
GAMMA | gamma.4th N/A + 0 o) Fourier series
gammaln.4th N/A 0 + + Lanczos
fgamma.4th N/A 0 ++ + Spouge
Table 12.11: ANS-Forth functions
FILE Family FP stack ANS-FORTH SIZE PRECISION | PORTING | PORTING
COMPLIANCE TO ANS-
ANS- FoOrTH
FORTH
fp0.4th Zen Unified None Small Low No No
fpl.4th Zen Unified ANS 1994 Small Low Yes Limited
compatible
fp2.4th Zen Unified ANS 1994 Medium Low Yes Yes
compilant
fp3.4th ANS Separate ANS 200x Medium High Yes Limited
compatible
fp4.4th ANS Separate ANS 200x Large High Yes Yes
compliant
fpS5.4th ANS Separate ANS 200x Large High Yes Limited
compatible

Table 12.12: Floating point configurations

CHAPTER 12. STANDARD LIBRARIES

FuNcTION

|

WORD \

Standard deviation

st.stddev

Variance

st.variance

Arithmetic mean

st.amean

Geometric mean

st.gmean

Harmonic mean

st.hmean

Root mean square

st.rms

Table 12.13: Statistical functions

232

Chapter 13

Special libraries

13.1 Infix formula translation’

Part of the elegance and simplicity of Forth comes from the use of Reverse Polish or postfix
notation. As such, there are no requirements for precedence rules, parentheses, or compli-
cated parsers. However, complicated mathematical and scientific equations that are often
written in infix notation can be tedious to convert to Forth code.

To simplify such a conversion, Julian V. Noble (one of the founders of the Forth Scientific
Library, see section 12.31) wrote a FORmula TRANSslator” to convert infix code to Forth
code. Later Wil Baden, using Noble’s concepts implemented a different version. For an
implementation in 4tH, Wil Baden’s version was chosen as it seemed simpler. The 4tH
version of this (opgftran.4th) consists of four main words:

FTRAN (al nl — a2 n2) converts a text string from infix to postfix notation
FLOAT-MATH (—) sets FTRAN to produce floating point code as the output text
DOUBLE-MATH (—) sets FTRAN to produce double precision integer code as the

output text

SINGLE-MATH (—) sets FTRAN to produce single precision integer code for the
output text

To see how these work, consider the following code segment:

include lib/opgftran.4th

s" (12 - 2)*(6 - 3)" 2dup
float-math ftran type cr cr
double-math ftran type cr cr
single-math ftran type cr

Which results in the following output:

s" 12e" s>float
s" 2e" s>float F-
s" 6e" s>float

! Article written and contributed by David Johnson.
2 Also known as “Operator Precedence Grammar”.

233

CHAPTER 13. SPECIAL LIBRARIES 234

s" 3e" s>float F- Fx
s" 12" s>double

s" 2" s>double D-

s" 6" s>double

s" 3" s>double D- D=
12 2 - 6 3 - *

As you can see, the floating point version of the output produces the appropriate floating
point code needed to do the calculation, while the single word version just produces the
vanilla 4tH output. Much more complicated expressions can be evaluated in which func-
tions and variables are also handled. Variables begin with a letter and are not followed by
a left parenthesis mark; whereas, function-calls are followed by parentheses, e.g.

h = max (h,0)

Expands to:

h @0 max h !

Note that the comma also serves as a comma operator. It allows you to separate two distinct
expressions, e.g.

£,10>]

Expands to:

f e 0>

Constants can also be handled by using embedded 4tH code. Line brackets (e.g., lembedded
4tH codel) are used for this, and all the text between the ’|” brackets is taken as pure 4tH
code - and is not expanded.

For example, consider that PT has been defined as a floating point constant (or similar).
Then | PI| can be used in the expression to be evaluated as a constant.

include lib/opgftran.4th

81 string Eg$
s" Stress=G/ (2*|PI|*(1-v)*r)+bxsin(theta)" EgS$ place

EgS$ count float-math ftran type cr cr
Eg$ count single-math ftran type cr

In the equation for St ress, the variables are G, v, r, b, theta and Stress, while PI
is a constant and sin is a function. These are expressed in the resulting output as:

G F@ s" 2e" s>float PI Fx
s" le" s>float v FQ F- F* r F@ F* F/
b F@ Fx theta FQ@ Fsin Fx Stress F!

G@ 2 PI » 1 v@-*r@=*/
b @ theta @ sin » Stress !

The floating point version of the output uses “F!” and “F@” for the variables and assumes
that all functions should start with the letter "F’. If this is not the case, the function is
renamed (e.g. sin vs. £sin). Likewise for “double-math”.

However, the “single-math” version does not make such an assumption. Of course, PI is
treated the same in all cases - it’s embedded 4tH code.

CHAPTER 13. SPECIAL LIBRARIES 235

13.2 Evaluating infix formulas at runtime’

In the case in which the end-user my not wish to use RPN notation, the use of opgftran.4th
allows for the conversion to postfix notation. A simple example is a calculator where the
user can use either postfix or infix notation. The 4tH library already supplies an interpretive
format; as a minimal example (from dc.4th), consider:

include lib/zenfloat.4th
include lib/zenans.4th
include lib/fpin.4th
include lib/fpout.4th
include lib/evaluate.4th
include lib/opgftran.4th

_+ £+ ;

—— =

_x fx

_/ £/ ;

. f. space ;

let [char] ; parse ftran evaluate ;

_quit quit ;

create wordlist

;o ot
," _n r — ,
," *ll 4 _* ,
A T/
,vv " ’ .,
,"oquit" ’ _quit ,
, " let" r let ,
NULL ,
wordlist to dictionary \ assign wordlist to dictionary
\ The interpreter itself
mycalc
single-math
begin \ show the prompt and get a command
." OK" cr refill drop \ interpret and issue oops when needed
["] interpret catch if ." Oops " then
again \ repeat command loop eternally
’
mycalc

Thus, the calculator could be used with infix notation such as:

let (2-1)/3;

or with postfix notation such as:

21 -3/

A more complete implementation is given by the fdc . 4th example.

3 Article written and contributed by David Johnson.

CHAPTER 13. SPECIAL LIBRARIES 236

13.3 Converting infix formulas*

Using the 4tH library and convert. 4th, infix equations can be added to your source
code and converted before compiling. An example program to do this is pp4th.4th.

In Wil Baden’s original program, the single end-user word was “LET” based on same
word in BASIC. This idea is implemented in the preprocessor where a formula to is found
by parsing the text between a “LET” and “;” pair. For example, consider the following
program:

include lib/zenfloat.4th

include lib/zenans.4th

include 1lib/fpin.4th

include lib/fpout.4th

include lib/zenfsqgrt.4th

[FLOAT] \ enable FP support

FLOAT array a FLOAT array b FLOAT array c

FLOAT array disc \ Used for discriminant
\ Example from
: FQUADRATICROOT (F: abc-—1rlr2) \ Wil Baden’s OPG.TXT
c F! b F! acF! \ Pickup coefficients
LET disc = SQRT (bxb-4xaxc); \ Set discriminant
LET (-b+disc)/(2*a), (-b-disc)/(2+*a); \ Put values on f-stack
r
(Solve xX*xX—3*x+2) LET FQUADRATICROOT (1,-3, 2) : F. F. cr

This program can be executed by using the preprocessor. For example (assuming that it is
named mytest . 4pp) one could use:

pp4th —-x mytest.4pp

Some more complicated examples are also giveninthe testlopg. 4pp and test2o0pg. 4pp
files.

13.4 Interpreters

Those of you who know Forth will be very surprised to see that 4tH doesn’t have a Forth
prompt. Some will be even more surprised to see that 4tH does have an interpreter. It is a
library routine, written in 4tH, that can easily be adapted and expanded. If you can write
4tH and maintain a table, you can use it. The next question you have to ask yourself, is
do you want your interpreter to be case sensitive or not? If it is, "id" will work, but "Id"
or "ID" will not. If you want it to be case sensitive, add the pragma casesensitive.
Example:

[pragma] casesensitive \ don’t ignore case
[needs lib/interprt.4th]
S e

: id ." This is 4tH" cr ;

Well, that isn’t very hard, is it. Now we add a table to all that:

4 Article written and contributed by David Johnson.

CHAPTER 13. SPECIAL LIBRARIES 237

create wordlist

T
” n 14

r . _ r
," id" 14 ld ,
NULL ,

Remember to terminate your table with "NULL"! Every entry consists of a string and
an address to your routine. What will happen is that your user enters the string and the
appropriate routine will be called. In this case, your interpreter has three commands: "+",
"." and "id". We’re a hair away from a real interpreter. We just have to assign our table to
the dictionary. These lines do the job:

wordlist to dictionary
refill drop interpret

Now you can compile your application and run it. Enter:
45 12 + .
And it will print:

57

Yes, it’s just as easy as that! If you enter something the interpreter doesn’t recognize it will
try to convert it to a number and throw it on the stack. But you will also see that it exits
after you’ve entered that single line. That is because the interpreter is called just once. If
you change that to:

begin refill drop interpret again
It will return with an new prompt. In that case it is wise to add a routine like:
: _quit quit ;

And add it to your interpreter, because otherwise your user will not be able to leave the
application. Note that you have to do all the error-checking. E.g., if your user calls "_+"
without putting sufficient items on the stack, 4tH will exit with an error. Of course, you can
catch any exceptions. ZINTERPRET” has a builtin word, ”NotFound”, that deals with any
unrecognized strings. You can define your own if you want to. The only thing you have to
do is to write a word which takes an address/count string and returns nothing, e.g.:

:noname 2drop ." I don’t understand this!" cr ; is NotFound
Or more elaborate:
:noname ." I don’t what ’" type ." '’ means!" cr ; is NotFound

You could even integrate it with the exception trapping, if you defined one:

1 constant #UndefName

:noname #UndefName throw ; is NotFound

CHAPTER 13. SPECIAL LIBRARIES 238

When a word is not found, a user exception is thrown. This example is taken from dc . 4th:

: dc
begin \ main interpretation loop
." OK" cr \ print prompt
refill drop \ get input from use
[’] interpret \ interpret it
catch dup \ catch any errors
if \ if one occurred
ShowMessage \ show a message
else \ otherwise
drop \ drop the throw code
then
again \ loop back

You can still see the basic structure, but this one is much more advanced. You can also
remove the code from the interpreter that decodes numbers. In that case, if a word is not
found in the "dictionary" table it will exit immediately and report an error. Simply define
this pragma before including the library:

[pragma] ignorenumbers
include lib/interprt.4th

Note that only the use of integers is supported in these interpreters. If you want floating
point support you have to include ZEN floating point support® before including interprt . 4th,
either:

include lib/zenfloat.4th
include lib/zenfpio.4th
include lib/interprt.4th

include lib/zenfloat.4th
include lib/zenans.4th
include lib/fpin.4th
include lib/fpout.4th
include lib/interprt.4th

The difference between both form is that the former only supports floating point entry in
the scientific form. Consequently, the latter is more suited for humans like you and me.

Don’t let anybody ever tell you you can’t make interactive applications with 4tH. As you
have seen, you can with very little effort.

13.5 Menus

The menu is a well-known user interface on the console. Typically, it displays a list of
options from which the user can choose. 4tH allows you to create such menus with very
little effort. First, include the appropriate library file:

include lib/menu.4th

3See section 12.27

CHAPTER 13. SPECIAL LIBRARIES 239

Each option needs his own word. Note that an option - any option - can’t take nor leave
any items on the stack:

helloworld ." Hello world!" cr ;
calculate ." 1 + 1 ="11+ . cr ;
bye ." Goodbye!" quit cr ;

Now we have to define our menu. The first item is the title of the menu:

create MyMenu
," My beautiful program"

All subsequent entries are options. Each option consists of a description and an execution
token. The menu is terminated by "NULL”:

create MyMenu

"

," My first little programs"

," Hello world" ' helloworld ,
," 1L+ 1n ’ calculate ,
, " Exit" " bye ,

NULL ,

Now all we have to do is to bind it to the main menu and run it:

MyMenu MainMenu
RunMenu

That’s it! But what if we want to nest menus? Well, a nested menu is simply an option
which opens up a new menu. For each additional menu we need to do two things. First,
define a variable:

variable NextMenu

The variable will hold the address of the menu table you will declare later on. Second,
define a word that allows us to enter the menu:

>NextMenu NextMenu >Menu ;

That particular word is needed when we add an extra option to the main menu, which gives
the user access to the sub menu we’re about to define:

create MyMenu
," My first little programs"

," Hello world" ’ helloworld ,
P ! calculate ,
," More programs" ’ >NextMenu ,
, " Exit" " bye ,

NULL ,

Next, we have to define the sub menu itself:

create MyNextMenu

"

," More little programs"

," Bottles of beer" ’ bottlebeer ,
," FooBar" " foobar ,
," Return to main" '/ >MainMenu ,

NULL ,

CHAPTER 13. SPECIAL LIBRARIES 240

Hey, where did ">MainMenu” come from? Well, it’s part of the library, so it’s always at
your disposal. And it’s included in this menu, because otherwise the user would be stuck
in this menu and wouldn’t be able to return to the main menu. Finally, you have to add the
menu by feeding the table and the variable you declared to ”AddMenu””:

MyNextMenu NextMenu AddMenu

Done! Next time you execute "RunMenu”, you’ll see have an extra option giving you
access to the sub menu you just created. BTW, You can have as many menus as you like
and can nest them as deep as you want.

Another nice feature is that when an error occurs during execution, the menu will display
the appropriate message and simply return. In other words, it won’t bomb out, no matter
how bad a programmer you are.

13.6 Finite state machines®

Some tasks are easy to specify, but hard to program procedurally. Consider the task of
accepting numbers from the keyboard. An unfriendly program lets the user re-enter the
entire number because he made a small error. A friendly program, by contrast, filters the
input so small errors are automatically corrected. For example, a number input routine that
only allows signed decimal numbers. Decimal points, numerals and leading signs are all
legal, but no other ASCII characters (including spaces) will be recognized.

If you try writing a single routine to ’EMIT’ or ' DROP’ a key according to these rules
and you will find that there are just too many conditions for comfort. A test for each of
the three classes of acceptable input, and tests for whether a sign or a decimal point have
already been received.

The first state tests for all three possibilities, the second for two, and the last for only one
(0-9). Is there a simple way to program that clearly? Yes, instead of nesting words within
each other we can pass control as states on the data stack. In this context a state is simply an
execution token, which when executed leaves another state on the stack for each possible
exit condition. The program is simply a loop which continuously executes states.

Several states are identical in the tests made and actions taken, differing only in the state to
be executed next. We need to be able to define the action to be taken and the transition to
be made separately. The number returned can be used as an index into a two-dimensional
array holding the action to be taken and the index of the state to be executed next. Well,
this is what we call a Finite State Machine (FSM). It is very easy to define an FSM in 4tH.

First, the include file. In order to make this pig fly, we also have to include another file,

since we will be using its definitions later on:

include lib/fsm.4th
include lib/row.4th

Second, you have to declare an array large enough to hold the FSM and its header infor-
mation. We have three states and four possible inputs. Each entry requires two cells and
finally we have to take the overhead into account:

3 4 x 2 % fsm.head + array fixed.pt

SPart of this section is based on an article in Forthwrite UK by Jenny Brien.

CHAPTER 13. SPECIAL LIBRARIES 241

Ok, But before we can define our FSM, we have to create the execution tokens. These tiny
definitions do all the hard work:

:token (drop) drop ;
:token (emit) emit ;

And these take care of the transitions to another state:

:token >0 0 ;
ttoken >1 1 ;
:token >2 2 ;

Now we can setup the FSM itself by declaring the number of classes (its width) and the
array that holds it. Note the use of the word "WIDE” is mandatory:

4 wide fixed.pt fsm

\ input other [digit [- sign | decimal point
\ state ——mmmmmmm
(0) (DROP) >0 || (EMIT) >1 || (EMIT) >1 || (EMIT) >2 []
(1) (DROP) >1 || (EMIT) >1 || (DROP) >1 || (EMIT) >2 I
(2 (DROP) >2 || (EMIT) >2 || (DROP) >2 || (DROP) >2 [

That’s all! Before you can use an FSM, you first have to activate it and set the initial state.
Note that upon definition the FSM already is activated with state zero, but is a good habit
to explicitly initialize it:

fixed.pt to fsm.current
0 fsm.state !

We only have to transform the character to the appropriate class in order to make this baby
fly:

0 enum ’other’ enum ’"digit’ enum ’sign’ constant ’point’

create categorize

char 0 , ’digit’ ,
char 1 , ’digit’ ,
char 2 , ’digit’ ,
char 3 , ’digit’ ,
char 4 , ’'digit’ ,
char 5 , ’digit’ ,
char 6 , ’digit’ ,
char 7 , ’digit’ ,
char 8 , ’digit’ ,
char 9 , ’digit’ ,
char + , ’sign’ ,
char - , ’sign’ ,
char . , ’'point’ ,
char , , ’'point’ ,
NULL ,
does>

2 num-key row if cell+ @Qc else drop ’'other’ then nip

Time to execute, which is hardly rocket science either:

CHAPTER 13. SPECIAL LIBRARIES 242

s" bad-345.rubbish4467invalid"
begin
dup
while
over c@ dup categorize
fsm.run
chop
repeat 2drop cr

Mission accomplished. Note you can define as many FSMs as you need. If you want to
switch between them just activate them before use. Since the state is part of the FSM, it
will remain unchanged between calls.

13.7 Virtual memory

Although computers have lots of memory nowadays, you may find yourself in a situation
where you don’t have enough memory to cater for your needs. In that case you may resort
to using 4tH’s virtual memory library.

4tH’s virtual memory library uses block files, so you may need to create one before you
can use it. Since block files are character-oriented you need to include another library if
you need numerical data:

include lib/vmem.4th
include lib/ncoding.4th

That’s all so let’s define some variables and open the block file we created previously:

variable nl nell vallot latest ! does> paging
variable sl 32 vallot latest ! does> paging
variable s2 128 vallot latest ! does> paging
variable s3 512 vallot latest ! does> paging
variable s4 512 vallot latest ! does> paging
s" vmemtest.scr" open-blockfile

NeoNe N N S

When setting this up, you have to take three things in consideration:

1. Although itisn’t required, you’d better define virtual memory variables in order, from
the smallest to the largest;

2. The size of a virtual memory variable may not exceed "B/BUF" address units;

3. You have to make sure that all data fits in the block file. Take into consideration that
no variable can span two blocks, so there’ll be some overhead. The easiest solution
is not to take any risks and simply oversize it - disk space is relatively cheap.

Now you can access them like any other variable:

2960 nl n! &
s" This is a virtual memory string" sl place &

It looks (almost) completely normal, doesn’t it? Except for that ampersand, of course. This
ampersand has to be added every time you write to a virtual memory variable. It signals to
the underlying block management system that the block is now "dirty". If you think that’s
too cumbersome for your taste, you may adopt another solution - it’s not that complicated.

Reading a variable is no problem at all: do as you’ve always done:

CHAPTER 13. SPECIAL LIBRARIES 243
nl n@ . sl count type cr

And what about arrays? Well, first of all they have to be character based. And they’re
restricted to "B/BUF" address units. Or are they? As a matter of fact, they don’t - but they
do need some special treatment.

First of all, you have to think of the element size, which must be a power of two and may
not exceed "B/BUF" address units. Second, you need to know how many rows you require.
Now we can define it:

64 constant /row

80 constant #row

variable al 20 nells vallot latest !
does> swap nells +paging ;

variable a2 /row #row x vallot latest !
does> swap /row % +paging ;

So "al" is an integer arrays and "a2" is a string array. So far, so good. But what have we
defined at the 'DOES>’ part? Well, to address an array we’re going to write:

5 al 10 a2

Which will return the addresses of the sixth element of "al" and the eleventh element
of "a2" - we’re counting from zero. Consequently, we pass the element number and the
address of the array to the ’'DOES>’ part of the definition.

That’s were the ’SWAP’ comes in, since that one puts the element number on top, which
we multiply with the element size to get the offset of that specific element in the array.
Then we pass the whole bunch to "+PAGING". That’s where the magic begins! If you e.g.
prefer a more FSL-like array, now you know what to do..

The same rules apply here, if you want to write to a variable don’t forget the ampersand:

2960 5 al n! &
s" This is a virtual memory string" 10 a2 place &

And you can just as easily retrieve it:
5 al n€ . 10 a2 count type cr

That’s all! When you’re done, you’ll have to close your blockfile, of course. But that ain’t
too tricky:

close-blockfile

Will do just fine. Tip of the day: there is also a preprocessor library’ which supports this
virtual memory. Not only is it far more efficient, it also allows for much cleaner code.

7See section 15.1.

CHAPTER 13. SPECIAL LIBRARIES 244
13.8 Triple numbers

Sometimes you need to handle integers so big, they won’t even begin to fit in a double
number. Well, not all is lost - 4tH offers triple numbers as a last resort. But don’t expect a
nice and clean wordset, it is more like a toolbox. We’ll tell you here how to use it.

First you have to include the appropriate library:

include lib/triple.4th

This gives you access to triple word arithmetic and comparison words. If you want to enter
triple length words, you need this one:

include lib/totriple.4th

And if you want to print a full triple word number, this one comes in handy:

include lib/trisharp.4th

Both I/O libraries will automatically load triple.4th.

BTW, you get what the name implies: facilities to construct your own triple word numeric
output words. You won’t find things like "T." or "UT.R" - you want anything like that,
you’ll have make them yourself.

Finally, you might want to include 3dup3rot . 4th, because that one provides three item
stack operators like "3SWAP", "3DUP", etc. But if you already loaded t risharp.4th,
you got that one automatically anyway.

Now we’re loaded and ready. First, let’s enter a triple number:

s" —295147905179352825855" s>triple

Now that’s easy isn’t it? If you want to convert a double number to a triple, you’ll have to
do some work, e.g.

0 constant ud>t
s" 4294967295" s>double ud>t

Adding or subtracting them is easy enough, just use "T+" or "T-". However, when you
want to divide or multiply them, you will be confronted with a myriad of words like "UT*",
"MT*" and "TU*" and nothing as simple as "T*".

The point is, that calculating the triple result of these operations becomes harder and harder
each time a cell is added in order to increase the range of an integer. The best advice I can
give you is to study them carefully and pick the most appropriate word for your particular
situation.

If you want to print a triple word, you will have to put some work into it. Yes, the complex-
ity here increases as well - e.g. setting a triple number up for signed output is so complex,
we defined a special word for it, "(TSIGNED)". So if you want the triple word equivalent
of "D.", this is it:

: t. (tsigned) <t# t#s tsign t#> type space ;

The reason we’re not holding your hand here all the time is, that you will rarely need triple
word precision - and if you do, you need to know 4tH inside out already in order to avoid
errors and bugs. Most likely, you won’t need all of the functionality of the triple word
libraries - that’s why we kept it lean.

CHAPTER 13. SPECIAL LIBRARIES 245

13.9 Timers

There is a very low level word in 4tH that keeps track of time. It has several uses. Like
a timer that measures how long certain operation takes, like the execution of a colon-
definition ("DO-SOME-WORD" in this case):

time do-some-word time
swap -
." Do-Some-Word took " . ." seconds." cr

There is a somewhat more elaborate library member that does it all for you:

[needs lib/timer.4th]
timer-reset

do-some-word
.elapsed

This always prints the number of seconds that have elapsed. If you want to create your own
display, you can define one easily:

[needs lib/timer.4th]

:noname <# # 6 base ! # decimal 58 hold # #> type ." mins" ;

is timer-stop

You define "TIMER-STOP” after inclusion of “time.4th”, but before the first usage of
” ELAPSED”.

13.10 Time & date

There is also an internal word in 4tH that will tell you what time and what date it is. With
a little trouble ;). That word is called "TIME’ and it will tell you how many seconds have
gone since January 1Ist, 1970. That is the POSIX time format, which probably is of little
use to you. However, combined with the appropriate library you can find out how late it is
right now:

[needs lib/time.4th]

now ." hours:" . ." minutes:" . ." seconds:" . cr

Note that it doesn’t know about daylight-saving! It does know about timezones, which may
be neccesary on some systems. You can determine your timezone by looking at an email
message from a local friend. It will probably say somewhere:

Date: Mon, 25 Feb 2002 22:28:59 +0100 (CET)

The *+0100” means that you’re in timezone CET, which is one hour later than GMT. If it
said:

Date: Sun, 16 Dec 2001 02:19:40 -0800 (PST)

CHAPTER 13. SPECIAL LIBRARIES 246

This indicates that you’re in timezone PST, which is eight hours earlier than GMT. In that
case ’tz’ would be:

-8 3600 * +constant tz \ Pacific Standard Time

If you need it, define it accordingly before the inclusion of time.4th. There are also
several words that will allow you to convert any POSIX time:

time posix>time . . . cr

Which will return the number of seconds (TOS), the number of minutes and the number of
hours. "POSIX>JDAY” will convert any POSIX time to a Julian day. The day of the week
is another thing you can easily calculate:

[needs lib/time.4th]

: Weekdays
dup 0 = if drop s" Monday" exit then
dup 1 = if drop s" Tuesday" exit then
dup 2 = if drop s" Wednesday" exit then
dup 3 = if drop s" Thursday" exit then
dup 4 = if drop s" Friday" exit then
dup 5 = if drop s" Saturday" exit then
dup 6 = if drop s" Sunday" exit then

’

today weekday Weekdays type cr

By the way, didn’t you hate the way we had to define "Weekdays"? Ugly, isn’t it? Well,
there is a better way to do it. You’ll learn that in the next chapter (see section 12.19)! You
can also print the full date:

[needs lib/time.4th]

today ." year:" . ." month:" . ." day:" . cr

Just don’t ask me how this thing works, Everett F. Carter figured this one out. "TODAY”
does the easy work. "JDATE” converts the Julian day to the Gregorian date. There is also
a way to convert a Gregorian date to a Julian day, called "JDAY":

[needs lib/time.4th]

26 02 2002 jday 64 - jdate
today ." year:" . ." month:" . ." day:" . cr

This can be quite handy if you want to calculate which date it was 64 days ago. ANS-Forth
also defines a word that does it all called "TIME&DATE”. This word throws seconds,
minutes, hours, day, month and year (TOS) on the stack, but always returns GMT:

[needs lib/ansfacil.4th]
time&date cr

And finally, we even got a word that returns the date of easter:
[needs lib/easter.4th]

2005 easterSunday ." year:" . ." month:" . ." day:" . cr

Well, tell me, isn’t that kind of neat?

CHAPTER 13. SPECIAL LIBRARIES 247
13.11 Tokenizing strings

Sometimes you want to split up a string in several different parts. This is called “tokeniz-
ing”. Doing it with 4tH is (as usual ;-) quite easy. Just include tokenize.4th. Now
you got several words to get what you want. tokenize.4th creates a deferred word®
called ”IS-TYPE”. It decides whether a character is of a certain type. In this example, we
just want to know whether it is a lowercase 'a’:

include lib/tokenize.4th
:noname [char] a = ; is is-type

Now it’s time to play ball:
s" 01234aBcDe01234" scan> type cr

”SCAN>" will now skip all characters unless it is an "a’. When it is found, it stops and
returns the remainder of the string:

aBcDe01234

Yes, ”SCAN>” starts at the beginning of the string. But there is also a word that starts at
the end of the string:

s" 01234aBcDe01234" scan< type cr
It returns a different result too:

01234a

And what about the rest of the string? Well, that is discarded. But if you need it, there is
also a word that just splits up the string:

s" 01234aBcDe01234" split> type cr type cr
So, ”SPLIT>” returns two strings:

01234
aBcDe01234

And of course, he’s got a little brother that works the other way around:
s" 01234aBcDe01234" split< type cr type cr

”SPLIT<” returns two strings too:

01234a
BcDe01234

8See section 11.7.

CHAPTER 13. SPECIAL LIBRARIES 248

That was quite easy. But what if you want to find the first non-digit? That’s what we
got ”SKIP>" for! ”SKIP>" skips all characters of a certain kind. We’ve already seen
how we can distinguish characters in section 8.26. So in this case we just got to include
istype.4th and assign "IS-DIGIT” to ”IS-TYPE”:

include lib/tokenize.4th
include lib/istype.4th

4

is-digit is is-type

s" 01234aBcDe01234" skip> type cr

”SKIP>” returns a single string:

aBcDe01234

And he has a counterpart too:

include lib/tokenize.4th
include lib/istype.4th

7 is-digit is is-type

s" 01234aBcDe01234" skip< type cr

May be this result will surprise you, although it is completely correct:

01234aBcDhe

What exactly did we ask for? We wanted the first non-digit, starting from the end. ’e’ is
the first non-digit, so "SKIP<” is completely correct.

13.12 Regular expressions’

Regular expressions (also called “regex”) represent a way to identify patterns in a text.
They can be used to search for patterns. You can define simple ones in 4tH. They don’t
even have to take up too much code. The library t re . 4th for instance, only supports the
metacharacters ”*” and ”.”.

In regular expression syntax, a dot means “any single character.” So the regular expression
”b.b” will match “bib”, “bob”, “brb”, or “bub". It will also match two b’s with a space or
a tab between them; the dot matches these “whitespace” characters also. The star means
“zero or more of the previous character.” So the regex "Bb*” will match “B”, “Bb”, “Bbb”,
“Bbbb”, and so on. (Note that you must have the capital B, or the match will fail; the B
must match before b* can try to). So, with library t re . 4t h you can define these queries:

s" aa" s" ax" match-reg . cr
s" ab" s" .x" match-reg . cr

s" aab" s" cxaxb" match-reg . cr

You can do some pretty sophisticated matching with these two already. If that isn’t enough,
you may require kpre . 4th. That one was originally written by Brian W. Kernighan and
Rob Pike. It supports all the metacharacters listed in table 13.1.

9Part of this text is derived from http://http://misc.yarinareth.net/regex.html by Dorothea Salo under the ”Cre-
ative Commons Attribution 3.0 United States License”.

CHAPTER 13. SPECIAL LIBRARIES 249

META CHARACTER | MEANING

Matches any single character.

A Matches the starting position
within the string.
$ Matches the ending position of the

string or the position just before a
string-ending newline.

* Matches the preceding element
Zero or more times.

? Matches the preceding element
Zero or one time.

+ Matches the preceding element one

or more times.

Table 13.1: KPRE supported metacharacters

The question mark means “zero or one of the previous character.” So the regex "Bb?” will
match “B” (one capital B, zero lowercase b) or “Bb” (one capital B, one lowercase b). The
plus means “one or more of the previous character.” So the regex ”"Bb+" will match “Bb”,
“Bbb”, “Bbbb”, and so on, but will not match “B” by itself. A few other characters have
special meanings in a regex:

* The ” character, if it appears at the start of a regex, means “at the beginning of a
document.”

» The $ character, if it appears at the end of a regex, means “at the end of a document.”

These are a few of the expressions you can define with kpre. 4th:

s" 0,9" s" 70,?9$%" match-reg . cr
s" 0:9" s" 70,?9$" match-reg . cr
s" aaaaaabac" s" abxa$" match-reg . cr
s" abbd" s" abxd$" match-reg . cr

You might exclaim “but where are my bracket expressions”. Rightly so, but we don’t have
’em. Instead we have predefined (non-standard) character classes. Regex engines allow
you to use “character classes” that narrow a search to specific collections of characters.
Think of it as a dot, but more specific.

In 4tH, character classes are prefixed with a percent sign. E.g. "% _" is about equivalent to
”\s” and ” % & approximates “\w”. But there is more, as you can see in table 13.2.

CHARACTER CLASS | EQUIVALENT | VIM |

%9 [0-9] \d
% a [a-z] \\|

%A [A-Z] \u
% # [A-Za-z] \a
% & [A-Za-z0-9] \w
%-_ [\x00-\x20] _s

Table 13.2: KPRE character classes

With character classes, it is very easy to e.g. recognize a floating point number:

CHAPTER 13. SPECIAL LIBRARIES 250

s" -1234.56" s" -?%9+\.?%9x$" match-reg . cr
s" -1234" s" —?2%9+\.?2%9x$" match-reg . cr
s" 1234.56" s" -?%9+\.?%9%$" match-reg . cr
s" 1234" s" —?2%9+\.?%9%$" match-reg . cr

But what if you want to find an actual period (or an actual plus, or an actual question mark,
or an actual star) in a regular expression? The backslash signals to a regular expression that
the following character, if it has a special regular expression meaning, should be interpreted
literally, not in its special regex sense. So ”.”” by itself means “any single character,” while
”\.” with the backslash means an actual period. This works for any character that has
a special meaning in a regular expression: “*” means an actual star, and ”\+” means an
actual plus. Of course, the backslash works on itself, too; to search for a literal backslash,
a regex pattern must contain "\\” .

The disadvantage of regular expression is that you have to drag along the entire pattern
matching engine, which is written in high level code. Advantage is that you may change
the expression you want to evaluate at runtime - you can even enter it at the prompt if you
like.

13.13 String pattern matching

If that isn’t enough for you, 4tH also offers a small library for string pattern matching. Most
regular expressions are static, that means they’re not entered at runtime, but hard-coded into
the program. That means you’re dragging along the entire engine just to parse a string. 4tH
offers almost the same possibilities, but you have to do a [ittle more effort. Let’s say [want
to see if a string contains my first name:

include lib/chmatch.4th

: myname?
s" Hh" char-match >r
s" Aa" char-match r> and >r
s" Nn" char-match r> and >r
s" Ss" char-match r> and

’

s" Hans is the creator of 4tH" myname? . type cr

Of course, there are easier ways to do this, but you’ll see it works. "CHAR-MATCH” will
return a “true” value if one of the characters specified matches and a “false” value if it
doesn’t. E.g.:

s" Hans" s" Hh" char-match
Will return a ”true” value and ’ans”. On the other hand:

s" Hans" s" Aa" char-match

Will return a “false” value and "Hans”. Now you understand how it works: "M YNAME?”
chops off character by character until it is done. But what it I want to check whether ”Hans”
appears in the middle of a string? Easy:

CHAPTER 13. SPECIAL LIBRARIES 251

include lib/chmatch.4th

myname”?

s" Hh" skip-until

" Hh" char-match >r

" Aa" char-match r> and >r
" Nn" char-match r> and >r
" Ss" char-match r> and

s" In October 1994 Hans created 4tH" myname? . type cr

This will wind the string upto the first "H” and then start scanning. But what if there’s
another "H” in the string? Again, you can handle that:

include lib/chmatch.4th

myname ?
begin
s" Hh" skip-until

s" Hh" char-match >r
s" Aa" char-match r> and >r
s" Nn" char-match r> and >r
s" Ss" char-match r> and >r
dup 0<> r@ 0= and

while
r> drop

repeat r>

s" The 4tH compiler was created by Hans in 1994" myname? . type cr

You want to know whether it was at the very end of the line? Yes, you can:

include lib/chmatch.4th

myname?
begin
s" Hh" skip-until
" Hh" char-match >r
" Aa" char-match r> and >r
" Nn" char-match r> and >r
Ss" char-match r> and >r
dup 0<> r@ 0= and
while
r> drop
repeat r> over 0= and

S
S
s"
s"

s" The 4tH compiler was created by Hans" myname? . type cr

Let’s try something more difficult now, let’s see if we can parse a number. The first part is
very easy:

include lib/chmatch.4th

s" 0123456789" sconstant ’'digits’
s" Oendshere" ’digits’ char-match . type cr

That works, the correct flag is returned and the string “endshere” is returned. But a number
may be of arbitrary size, how do we do that? Simple, after the first number we can simply
discard any trailing digits:

CHAPTER 13. SPECIAL LIBRARIES 252

include lib/chmatch.4th
s" 0123456789" sconstant ’‘digits’

s" 0123456789endshere"
’digits’ char-match >r
’digits’ skip-while

r> . type cr

Still, it returns the correct flag and the correct string. But a number may also come with an
optional sign. Now that complicates life, does it? No it doesn’t:

include lib/chmatch.4th

s" 0123456789" sconstant ’‘digits’
s" +-" sconstant ’'sign’

s" -123456789%endshere"
’'sign’ char-match drop
’digits’ char-match >r
’digits’ skip-while

r> . type cr

What? Aren’t we evaluating the flag? No, why should we. The sign is optional, isn’t it?
Note that "CHAR-MATCH’ not only sets a flag, but also discards the character matched.
Soititisn’t a sign, it will simply remain there and be caught by the digit test. But we’ll take
it a step further. What about a decimal point? A number may come with one or without
one. And it may appear anywhere in the number. Now how we do that?

include lib/chmatch.4th

s" 0123456789" sconstant ’‘digits’
s" +-" sconstant ’sign’
char . constant 'point’

s" -123456.789%endshere"
’sign’ char-match drop
’digits’ char-match >r
'digits’ skip-while
’point’ char-equal drop
’digits’ skip-while

r> . type cr

When parsing stops, because the program reached the point where there are no more digits,
we simply check for an optional decimal point. If it is there, we continue checking for
digits. If it isn’t there, parsing stops. Note that the check for trailing digits fails too, but
you may make it optional if you want, it won’t change the result:

include lib/chmatch.4th

s" 0123456789" sconstant ’'digits’
s" +-" sconstant ’sign’
char . constant ’point’

s" -123456.789%endshere"

’sign’ char-match drop

’digits’ char-match >r

’digits’ skip-while

'point’ char-equal if ’digits’ skip-while then
r> . type cr

CHAPTER 13. SPECIAL LIBRARIES 253

Note that "CHAR-EQUAL” performs the same function as "CHAR-MATCH”, it’s only
more efficient if there is only one character to compare!'®. Our program still doesn’t allow
for 7-.45”. Yes, you can add an optional test for that, but we don’t want ’-.45.67” to
succeed. That one can be handled too:

include lib/chmatch.4th

s" 0123456789" sconstant ’'digits’
s" +-" sconstant ’'sign’
char . constant 'point’

s" —.789.000endshere000."
"sign’ char-match drop
’point’ char-equal >r

’digits’ char-match r> swap >r >r

’digits’ skip-while

r> 0= if ’"point’ char-equal if ’'digits’ skip-while then then
r> . type cr

Now the test will only be performed if the previous test failed, which is exactly what we
want. Try it. Where ever you place the dot, it won’t make any difference: it will always
return ~.000endshere000.”. Unfortunately, that also applies to:

s" -0..000endshere000."

If you require that a decimal point is always followed by a digit, simply enforce it:

include lib/chmatch.4th

s" 0123456789" sconstant ’‘digits’
s" +-" sconstant ’sign’
char . constant 'point’

s" -0..000endshere000."

’'sign’ char-match drop

’point’ char-equal >r

’digits’ char-match r> swap >r >r
"digits’ skip-while r> 0=

if
'point’ char-equal
if
"digits’ char-match r> and >r
"digits’ skip-while
then
then

r> . type cr

Note this doesn’t change the string returned (up to the trailing point it was still a valid
number), but it does change the flag: this is not a valid number!

I hope you see that 4tH can do some pretty sophisticated pattern matching with very little
effort without dragging along an entire regular expression engine, either in code or in the
compiler itself.

101f you want to speed up a single character search, scanskip. 4th offers the words you're looking for.

CHAPTER 13. SPECIAL LIBRARIES 254

13.14 Wildcard pattern matching

If you feel that regular expressions are a bit too complex for your taste, you can also use
wildcards for basic pattern matching. First you have to include it:

include lib/wildcard.4th

include lib/wildcrdr.4th

For the recursive version, which is a bit shorter. You’ve probably used wildcards before.
It is very easy. A ”*” stands for zero or more characters and a ”’?” stands for a single
character. E.g. if you’re looking for a line that begins with a date in the 21st century, then
the word "INVOICE” and finally ends with a name, you could try this:

mystring count s" 20??-??-?? == INVOICE == «" match-wild

"MATCH-WILD” returns true if the string matches and false if the string doesn’t match,
which is different from "COMPARE”. Both strings are consumed, so save their address/count
pair if you need them later on. Note that "MATCH-WILD” is case sensitive, so if you need
a case insensitive comparison you will have to convert them first.

Finally, "MATCH-WILD” is faster than regular expressions, but also less precise. E.g.

”er?y” will not only return ’grey” and “gray”, but also “groy”; “reg*exp*” will not only
return “regular expressions”, but also “registered express mail”.

13.15 Escape characters

Sometimes you need a string with embedded control characters. You could try to patch
them into your sourcecode, but that is usually not a good idea. You could also patch them
into a variable, but that is cumbersome. 4tH offers a word that will allow you to use the
control characters listed in table 13.3.

ESCAPE CHARACTER | MEANING |

\a Bell

\b Backspace

\e Escape

\f Formfeed

\l Linefeed

\n Linefeed

\q Quote ()

\r Carriage return
\t Tab

\v Vertical tab

\z Null character

Table 13.3: Supported control characters

Using this facility is quite simple:

CHAPTER 13. SPECIAL LIBRARIES 255

include lib/escape.4th
s" \tThis is the \gC:\\4tH\g directory” s>escape type cr

Which will print:

This is the "C:\4tH" directory

Note that other escaped characters are printed “as is”, like the backslash in this example.
If you need even more flexibility, we have another card up our sleeve. The only catch is
you’ll have to know the ASCII code of the characters you want to insert, either in binary,
octal, decimal or hex:

include lib/embed.4th
s" %$1001This is the&42C:\4tH#34$20directory" s>embed type cr

Which will also print:

This is the "C:\4tH" directory

* Every number prefixed with a %’ character is interpreted as a binary ASCII code;
* Every number prefixed with *&’ character is interpreted as an octal ASCII code;
* Every number prefixed with a ’#’ character is interpreted as a decimal ASCII code;

» Every number prefixed with a ’$’ character is interpreted as a hexadecimal ASCII
code.

How much flexibility do you need? Of course, all this flexibility comes at a price. The
strings are not expanded at compile-time but at run-time, so it will cost you a little more
space and a little more time compared to other string literals.

13.16 Internationalization

It’s a small world after all - but with a lor of languages. Less than 200 of them have
been assigned a unique code in the ISO 639-1 standard, last time I looked. You may think
that everybody speaks English, but that’s not the case. In the EU alone, less than half the
population is able to communicate in that language'!.

You may not rejoice in the knowledge that you may have to make - and maintain - three
or more different versions of the same program. And if you decide to use conditional
compilation to solve that problem, it won’t turn out to be one of the prettiest programs on
earth. But there is a solution. Use the 118n library:

include 1ib/il8n.4th

The next thing you’ll have to do is define what languages you will be supporting. Just
follow the two-letter ISO 639-1 standard - and be sure to be using lower case:

n

create languages ," en" ," nl" ," de" ," fr"

https://en.wikipedia.org/wiki/Languages_of_the_European_Union

CHAPTER 13. SPECIAL LIBRARIES 256

You don’t have to name it "LANGUAGES” - any name will do. But don’t forget its name,
you will need it later on, along with with the number of languages you support. Let’s make
4tH take care of that right after its definition:

here languages - constant #languages

So, now we have to let 4tH know about ’em:

languages #languages i18n.languages

But which language will we actually be using? Unix-like operating systems, such as Linux,
have an environment variable named $LANG or $SLANGUAGE. You may feed that content
to the library. Or maybe you want to allow the user to select his language by issuing the
appropriate option at the command prompt like ”~1 nl:fr” or something. As long as
it’s a colon delimited list, it’s fine. You decide.

Here we query the environment variable $LANGUAGE:

s" LANGUAGE" environ@ il8n.select drop to il8n.lang

“I18N.SELECT” will take a colon delimited list and return an index and a flag. If the flag
is zero, it has selected the default language, since there was no matching language. If the
flag is non-zero, it returned the matching language as an index.

Note you have to assign your choice to the predefined variable "I118N.LANG”. There is
also "I18N.SUPPORT” which takes a single two-letter ISO 639-1 and returns a flag and an
index - only if that language is supported. If not, you get that same zero flag and default
language index.

That ”default language” is known to the system as "I18N.DEFAULT” - and always points
to the first entry, e.g. in this case:

create MSG.HACK
," User %USER% attempted to enter ’%HOST%'"
, " Gebruiker $USER% probeerde ’$HOST%’ binnen te dringen”
," Angriffsversuch auf ’%HOSTS%’ von Benutzer SUSERS"
," L’utilisateur $USER% a tenté d’entrer ’$HOSTS'"

The default language is English. "MSG.HACK” is what you would call ’the message
id” - and obviously every valid 4tH name will do here, so if you want to call it ’hack-
ing_attempt_by”, that’s fine.

Note the order of the messages matches exactly the order in which you defined the lan-
guages previously, i.e. the TLANGUAGES” array. You may have noticed the placeholders
”%HOST%” and "%USER%”. This allows you to switch the order of these placeholders
in the message, without any ill effects.

Of course, you will have to define them before use, using "I18N.SET":

s" root" s" USER" il8n.set \ set string parameter %USER%
s" 192.168.60.5" s" HOST" il8n.set \ set string parameter %HOST%

If you want to assign an integer number, you’ll have to use "I118N.LET"”:

15 s" ERR" il8n.let \ set numeric parameter S$ERR%

CHAPTER 13. SPECIAL LIBRARIES 257

If you want to use a floating point number - or any other unlisted type - you’ll have to
convert it to a string first. A good thing about placeholders is that they retain their values
between calls, e.g. if you want to issue a warning on another system this user attacked, you
only have to change "%HOST %

s" 192.168.60.8" s" HOST" il8n.set \ give parameter %$HOST% another value

Ok, now we’re ready to generate the appropriate message:

MSG.HACK il8n.msg type cr \ expand the message and type it

Just feed the message-id to "I18N.MSG” and it’ll return an address/count pair. The library
uses a fixed buffer to expand the message and when you generate another message, it’s
gone. The default size of the buffer will accommodate most messages, but if not - redefining
“"I18N.MSGLEN" before you include the library will fix this:

256 constant il8n.msglen \ length of internal buffer

Although the solution is pretty robust - if [may say so myself - you might want to examine
“I18N.STATUS”. It will contain a negative value on error and a positive one if everything
is hunky dory. The positive value represents the number of substitutions that were made.

If you want to discard all placeholders and reset the entire system, simply issue "[18N.RESET”.
If you want to exit the program, be sure to reset the system before leaving - even if it’s the
last thing you do:

il8n.reset \ shut the 1i18n subsystem down

Finally, a little piece of advise if you want to use placeholders that need translations them-
selves , e.g. months or weekdays: order them by language. The advantage is twofold. First,
it’s quite easy to add another language. Second, calculating the correct offset is a lof easier:

create day.name (day —— a n)

, " Monday" , " Tuesday" ," Wednesday" ," Thursday" ," Friday"
," Saturday" ," Sunday"

, " maandag" ," dinsdag" ," woensdag" ," donderdag" ," vrijdag"
," zaterdag" ," zondag"

, " Montag" ," Dienstag" ," Mittwoch" ," Donnerstag" ," Freitag"
," Sonnabend" ," Sonntag"

, " lundi" , " mardi" ," mercredi" ," jeudi" , " vendredi"

4

," samedi" " dimanche"
does> 1l18n.lang 7 * th swap 0 max 6 min th @c count ;

Ok, let’s break this down. We know our current language - it’s in "I18N.LANG”. We know
the number of weekdays - that’s seven. So we can easily calculate our primary offset by
calculating "I18N.LANG” times seven. We got the correct language now. Then it’s time to
determine the correct position in this offset for the correct day, given we call it like:

5 day.name

First, we clip that value to size by moving the value within the zero to six range. Then we
add it to the offset we calculated before and get the address/count pair. We can feed that
result straight into "T18N.SET”:

5 day.name s" DAY" il8n.set

Done! Oh yeah, before I forget: what if your message contains a ”%” sign? You simply
double it. Like this ”%%”. Big deal.

CHAPTER 13. SPECIAL LIBRARIES 258
13.17 Chinese characters

There are several encodings for Chinese characters, e.g. Unicode, GBK and Big5. As long
as the ASCII-7 range of characters is respected, 4tH is able to handle them. 4tH can even
convert between some of these encodings. The unicdgbk . 4th file forms the centerpiece
of this functionality. Basically, it offers conversion between Unicode and GBK/2. Since it
is very large, it isn’t included automatically.

4tH offers conversion between UTF-8 and GBK/2 - and vice versa. GBK/2 offers about
7,500 characters. UTF-8 is more prevalent under Linux, while a GBK/2 derivate is more
prevalent under Windows. Using the UTF-8 to GBK/2 conversion couldn’t be easier:

include lib/unicdgbk.4th
include lib/utf8gbk2.4th

s" Some UTF-8 encoded Chinese characters"
utf8>gbk2 type cr

Note this is a destructive conversion. After this, your original string is gone. If you want
to preserve it, you have to save it first to another string variable. The string it returns is not
terminated, so if you’re converting a string variable this might be a good idea:

include lib/unicdgbk.4th
include lib/utf8gbk2.4th
64 string mystring

s" Some UTF-8 encoded Chinese characters"
mystring place

mystring count utf8>gbk2 >string

This in place” conversion is possible, because a GBK/2 encoding never requires more
space than an UTF-8 encoding. However, the opposite isn’t true, so depending to the size
of your original GBK/2 source string, you’ll need a larger UTF-8 buffer, e.g.:

include lib/unicdgbk.4th
include lib/gbk2utf8.4th
64 string myfirststring

128 string mysecondstring

s" Some UTF-8 encoded Chinese characters"
myfirststring place

myfirststring count mysecondstring 128 gbk2>utf8
>string mysecondstring count type cr

Note you don’t need any external libraries or programs to accomplish this. 4tH is all you
need.

13.18 Sequences

A sequence is a set of integers, strings or other sequences, which are packed into a dynamic
array. Creating sequences is quite easy, e.g.

CHAPTER 13. SPECIAL LIBRARIES 259

include lib/sequence.4th

{12 48 16 32 64 128 256 }
{ s" Hello" s" world" s” !" }s

Note that sequences are created in dynamic memory - so you will have to free them at one
time or another. It also means, that the previous example left two pointers on the stack: one
for the string sequence and one for the integer sequence.

You can free integer sequences with "FREE”, but you’ll have to free a string sequence with
”SFREE”. Remember that, because I don’t want you to leak memory all over the place!
There is another way to create a sequence:

5 iota

Which will create a sequence with the numbers 0 up to 4. If you choose another number it
will create a sequence from 0 unto that number. Don’t forget that before these numbers are
turned into a sequence, they are stored on the stack. If you make your sequences too large
you will most likely exceed the stack capacity.

Now we got that all out of the way, what can you do with a sequence? Well, you can

perform actions on them. This one will print out all the numbers of the sequence:

{ 98765432101} dup [. ;] each cr
free abort" Cannot free sequence"

It is as if every value in this sequence is input to the quotation, which issued to "EACH”.
Hence, that value is printed. We can step up our game and use "MAP!” - which not only
accesses the value, but writes back the result which is left after executing the quotation:

5 iota dup [: dup * ;] map!
dup [: . ;] each cr
free abort" Cannot free sequence"

Ok, this gets complex, let’s break it down:

* "IOTA” produces a sequence with the numbers 0, 1, 2, 3 and 4;

» Each of this values is offered to the "DUP *” quotation, which produces the results
0,1,4,9and 16;

» These values are written back to the sequence, replacing the original numbers;
* Now the sequence is offered to "TEACH” - which prints these numbers;

* And finally, the sequence is freed.

And finally, there is "REDUCE!”. This word required a value on the stack and applies
the quotation to each value and the value on the stack. Hence, this quotation requires two
values. This one returns the sum of all the values in the sequence:

5 iota dup 0O [: + ;] reduce!
dup [: . ;] each cr
free abort" Cannot free sequence"

CHAPTER 13. SPECIAL LIBRARIES 260

So, the first time the quotation is encountered, there is a zero on the stack and a zero value
- which is added and amounts to zero. The second time there is a zero on the stack and a
value ”’1” - which is added and amounts to ”’1”. The third time there is a ”’1” on the stack
and a value "2 - which is added and amounts to ”3”. You catch my drift..

If you want to access a specific value, you can. It’s not much different from accessing an
array, as a matter of fact:

5 iota dup 3 nth ? cr
free abort" Cannot free sequence"

Note "NTH” doesn’t return a value, but an address - if not it would be quite difficult to
store a value there. Like "TH” indexes, ”’NTH” indexes start at zero. So in this case the
value ”’3” would be displayed.

You can also search sequences. If you’re looking for exact matches, "INDEX” is your man:

5 iota 3 over index
stow nth ? cr
free abort" Cannot free sequence"

This one will - of course - return ”3”. If the index returned is bigger of equal to the length
of a sequence, the value was not found. If you need something more sophisticated, you
might try “FIND”. This word simply applies a quotation to each value - and the first one
that renders true is the winner:

{ 9876543210} dup [5 < ;] find
stow nth ? cr
free abort" Cannot free sequence"

So, this one returns ’4” - which is the first number smaller than ”5”. Now, I know there is
one question left to answer: how do I get the length of a sequence? That ’s easy:

5 iota dup length . cr
free abort" Cannot free sequence"

That’s how you get the length of a sequence. If you're not happy with the length, you can
set it according to your wishes. If you increase the length, additional elements are added
at the end, if you decrease the length, elements are removed from the end:

{ 98765432101} 4 set-length
dup length . cr
free abort" Cannot free sequence"

This poor sequence now consists of the elements ”9”, 87, ”7” and ”6”. Note that "SET-
LENGTH?” actually destroys your sequence and creates a new one - so it returns the address
of your new sequence, while the address of your old sequence is invalidated.

13.19 Managing INI files

An INI file is a plain ASCII file that is used to configure software. It was designed by Mi-
crosoft and dates back to the times of MS-DOS. However, you will find it as well nowadays
on Linux and Unix systems, because INI files are human-readable and simple to parse.

CHAPTER 13. SPECIAL LIBRARIES 261

It’s for that reason we chose to support them in 4tH. As a matter of fact, we created two
distinct libraries. The first and the most simple one just offers an interface to evaluate an
INI file.

It is quite simple. Let’s say you just want to store the values in the INI file in your program.
First you create a few words to achieve that goal. Note that values are presented to you as
strings and your word must consume them entirely:

include lib/inifile.4th

variable numl
16 string strl

: getnuml number numl ! ;
: getstrl strl place ;

Then you create a table with the following layout: first the section, then the key and finally
the execution token of the word that must process the value:

create myini
," config" ," numberl" ’ getnuml ,
," init" ," stringl" '’ getstrl ,
NULL ,

And finally you just send the name of this table and the filename (with path if required) to
"INIFILE". It will leave a true flag if an error occurred. That’s all!

myini s" myini.ini" inifile

However, if you want to create or modify an INI file, you need something more sophis-
ticated. It’s time for the INI file management library. Note that this piece of software is
highly dependent on dynamic memory, so if your program is already using the heap or if
you want to manage a really big INI file, you may want to increase the size of the heap(s).

But first, let’s define a new INI file. Of course, you do have to include the library:
include lib/inimanag.4th

Then you have to signal you want to define an INI file from scratch:
begin.inifile

Next, define a new section. Yes, you can do without, but I don’t think it is really neat:
s" Compiler" section.inifile

And now you can define your keys and values. Note, first the value then the key. Let’s not
forget we’re using Forth ;-)

s" 4tH" s" Name" keypair.inifile
s" 3.62.5" s" Version" keypair.inifile
s" Forth" s" Language" keypair.inifile

Of course, you can start a new section and add some more keys:

CHAPTER 13. SPECIAL LIBRARIES 262

s" Platform" section.inifile
s" Linux" s" Name" keypair.inifile
s" 4.1" s" Version" keypair.inifile

And when you’re finally done, you can save it to disk with a single line:

s" myfile.ini" put.inifile abort" Cannot write .INI file"
destroy.inifile

These are two distinct actions. The first line saves the file to disk. The second line removes
the INI file from memory. So yes, you can save your file preliminary and continue working
with it - as long as you don’t issue "DESTROY.INIFILE", of course.

Reading it back is just as simple:

inifile get.inifile abort" Cannot read .INI file"

Just don’t forget that both "PUT.INIFILE" and "GET.INIFILE" return a non-zero flag when
there’s any trouble. Ok, we got this thing in memory now, let’s make some changes:

s" Version" s" Platform" delkeypair.inifile
abort" Cannot delete key from named section"

That one deleted a key. It also returns a non-zero flag on error, e.g. because the key or the
section could not be found.

s" J.L. Bezemer" s" Author" s" Compiler" addkeypair.inifile
abort" Cannot add key to section”

This one adds a key to a certain section. You can also use it when defining an INI file, of
course, but you can save yourself a lot of typing by using "KEYPAIR.INIFILE" instead.

s" Hans Bezemer" s" Author" s" Compiler" set.inifile
abort" Cannot modify key in named section"

And of course, you can modify a value as well - initials are so formal. Finally, you can
write it to disk - we’ve seen that one before. Yes, you can also retrieve a value with this
library:

s" Author" s" Compiler" value.inifile

But you have to write your own handling of the string it returns (address and length). And if
that’s the only reason you’re using this library, you’re creating a lot of overhead and you’d
be better off with inifile.4th.

13.20 Extract, transform and load

"Extract, transform and load" is the name of one of the most used conversion methods.
First you rip the data from the source, then you manipulate it and finally you move it to
its destination. Well, although what we do is more appropriately called "Extract, load and
transform" you can apply the same principles when reading a .CSV file with 4tH. It is very
handy if you don’t know the exact layout of the file, but do have a header line with the
correct field names'?. Of course, first thing you have to do is to include the library:

125ee RFC 4180, section 2.3

CHAPTER 13. SPECIAL LIBRARIES 263
include lib/etl.4th

The data has to end up somewhere, so next thing to do is to define the layout and allocate
enough space for a record:

struct
16 +field Population
32 +field State
16 +field Capital
buffer: States

You know I prefer to define a word to parse a field'3, so let’s do that now:
field> [char] ; parse-csv csv> ;

Now the real fun starts. We have to make a table that maps the column header of the .CSV
file to the fieldname of the structure. On top of that, we have to determine if we want to
manipulate that field and how:

create Mapper

," Population" ’ Population , ’ >comma ,
," State" ’ State , ’ none ,

, " Capital" ’ Capital , ! >upper ,
NULL ,

Note our field is manipulated after it has been placed in the structure - not before. The
reason is simple. We don’t want to clobber our source record - which could easily happen
when a field expands.

You probably wonder where ">COMMA", "NONE" and ">UPPER" come from. Well,
these words manipulate our fields. They all take the address and length from their respective
fields and return nothing. E.g. "NONE" could easily be defined as:

: none 2drop ;

Next, 4tH needs to know how much lines there are in "MAPPER". Of course, you could
define:

3 constant #etl

But you could also let 4tH figure it out for you:
here Mapper 1+ - /fieldmap / constant #etl

Finally, we need to define the "transformation array" this library requires:
#etl /etl x array Transpose

Now we’re ready to rock 'n roll. Let’s read the header:

refill 0= abort" Cannot read header"
Transpose Mapper [’] field> read-header

13See section 9.23.

CHAPTER 13. SPECIAL LIBRARIES 264

Yes, we feed it the "transformation array", the mapping and an execution token to read a
field. That’s all. After it has executed, the address of the "transformation array" and its
actual length are on the stack and 4tH truly knows how to read your file. All you have to
do is call "READ-TUPLE" for each following line:

2dup States [’] field> read-tuple

"READ-TUPLE" takes four parameters: the address of the "transformation array", its
length, the address of the target structure and an execution token to read a field. That’s
all to need to read an entrire record. Note the first two stack items are provided by "READ-
HEADER".

You may be asking yourself why you should use this. Well, this library doesn’t care in what
order the fields are presented and simply ignores any superfluous ones. With this you are
immune to slight changes in the layout of your .CSV files. That’s why!

13.21 Writing spreadsheet files

4tH is able to write to a variety of spreadsheet formats, both proprietary and FOSS (see
table 13.4). All these formats are known to work with OpenOffice 3.x, Libreoffice 4.x and
MS-Excel 20xx. KOffice 1.x can read .ksp files. The interface is almost identical and
very straight forward:

* Open a spreadsheet file;
e Start writing at cell Al;
* If you’re finished, go to the next row;

¢ Write some more cells;

All done, close the file.

] \ Type \ Extension \ 4tH library \ Worksheets? \ Integers only? ‘

XLS 2.1 Binary | xls msxIs2-w.4th No Yes
FODS XML fods oofods-w.4th Yes No
MS-XML | XML xml, .xIsx | msxlms-w.4th Yes No
KSP XML ksp koksp-w.4th Yes No
csv CSV .Csv csv-w.4th No No
HTML HTML | .html html-w.4th No No

Table 13.4: Spreadsheet formats supported by 4tH

Let’s assume you want to write a flat Open Document Sheet. First you have to open the
file:

include lib/oofods-w.4th
s" mysheet.fods" FODSopen

It will return a flag, which is true when an error has occured. No, you don’t have to specify
it’s an output file - you can’t read it anyway. It won’t return a handle either, the library will
take care of that. Note that the moment you’ve successfully opened the file, it is active.
If you want to use another output file, you have to "USE’ it first. And every time you’ve
written to your spreadsheet you have to repeat that procedure. Now, let’s handle any errors:

CHAPTER 13. SPECIAL LIBRARIES 265

abort" Cannot open spreadsheet"

Since flat Open Document Sheet supports different sheets, we have to open a worksheet
first:

s" Sheetl" FODSsheet

We’re ready to do business now. Let’s punch out a few labels. We’re starting in cell Al and
continue with cell B1 and C1:

s" Labell" FODStype
s" Label2" FODStype
s" Label3" FODStype

Let’s continue with row 2 and write some data:

FODScr
1 FODS.
2 FODS.
3 FODS.

We move to row 3 and repeat the same procedure:

FODScr

100 FODS.
450 FODS.
325 FODS.

Finally, we finish the worksheet and close the file:

FODSend
FODSclose
A B C
1 | Labell | Label2 | Label3
1 2 3
3 100 450 325

Table 13.5: Example spreadsheet

That’s all! You got a spreadsheet like the one in table 13.5. Writing other formats is just as
easy. Take a look at table 13.6 which words are available for which format.

13.22 Writing other tabular formats

There are a few more tabular formats 4tH can write although they cannot be considered
”spreadsheets”, since there is no major spreadsheet program that actually supports them.
However, the API of the library members that support them follows the conventions of
those listed in section 13.21.

The first format is a new kid in town, called JSON. The second one is able to write a
complete 4tH table, the kind you find in section 12.19, which is great for making e.g.
program generators.

CHAPTER 13. SPECIAL LIBRARIES 266
msxls2-w.4th \ oofods-w.4th | msxims-w.4th | koksp-w.4th | csv-w4th | html-w.4th
OPEN | XLSopen FODSopen XMLSopen KSPopen CSVopen | HTMLopen
sheet - FODSsheet | XMLSsheet KSPsheet - -
. XLS. FODS. XMLS. KSP. CSV. HTML.
- FODS# XMLS# KSP# CSV# HTML#
TYPE XLStype FODStype XMLStype KSPtype CSVtype | HTMLtype
CR XLScr FODScr XMLScr KSPcr CSVer HTMLcr
atxy XLSatxy - - KSPatxy - -
end - FODSend XMLSend KSPend - -
CLOSE | XLSclose FODSclose | XMLSclose KSPclose CSVclose | HTMLclose
Table 13.6: Spreadsheet words
json-w.4th | create-w.4th
OPEN | JSONopen | CREATopen
. JSON. CREAT.
JSON# CREAT#
TYPE JSONtype | CREATtype
CR JSONcr CREATcr
CLOSE | JSONclose | CREATclose

Table 13.7: Other tabular formats

13.23 Writing IATEX files

You can write I&TEX files with 4tH very easily. The files it produces can be processed by
most popular IATEX typesetting programs. Although 4tH only supports a tiny IATEX subset,
one could typeset most of this manual with it. If you don’t know any I&TEX, don’t worry:
you don’t need to. As a matter of fact, it is very much like HTML.

So let’s start by including the library:

include lib/latex.4th

Next we have to decide what kind of document we want to write. Let’s say we want to
write an entire book:

%$texBook

If you are a little less ambitious, try writing an article:

$texArticle

Now you have to give the document a title and claim your rightful place as the author. The
flag decides whether you get a "table of contents”. If you want one, supply a TRUE flag:

$beginTex

s" Hans Bezemer"

Define your first section and you’re off:

s" My life with 4tH" true S%texTitle

CHAPTER 13. SPECIAL LIBRARIES

" Foreword" %$subSection

" First, I want to thank my parents, my teachers," %$print
" my girlfriend, my hairdresser and most of all" %print
my dog Snoopy, who never lost faith in me." %$print

Ok, that was good enough for a Pulitzer Prize. Let’s go on with the next section:

%$endSection

s" The beginning" %subSection

s" It was late at night, I couldn’t catch sleep." %print
s" So I decided to create a compiler in order to" %print
s" archieve world peace and love and harmony for" %print
s" all mankind." %print

267

That’s enough babble, now let’s make a subsection. The difference between making a
section and a subsection is that if you want to make a new section you close it with ”%end-

Section”. If you want to make a subsection, you don’t:

" Basic philosophy" %subSection

" To make the best product on the market, give the" S%print

" best possible service to our paying customers and" $print
" squeeze each and every penny out of their pockets." %print

Note you have have to balance the ”%subSection” and ”%endSection” as if they were loop

control words. Now let’s make a numbered list:

%$endSection
%$endSection

s" Pedigree" %$subSection
%$enumerate begins

s" Artic Forth" %item

s" SpecForth" %$item

s" gForth" %item
%$enumerate ends

You can also make descriptions:

%$description begins

s" Word" s" A function in Forth." %describe

s" Flag" s" A boolean in Forth." %describe

s" Cell" s" A native integer number in 4tH." %describe
%description ends

You can even insert source code:

%listing begins

." : rot >r swap r> swap ; \ define ROT" cr

." 2 3 4 rot \ application of ROT" cr
%$listing ends

Even tables are not much of a problem:

%$table begins

CHAPTER 13. SPECIAL LIBRARIES 268

CHARACTER | MEANING

1 left justified column
c centered column
r right justified column

| vertical line
I double vertical line

Table 13.8: IXTEX table format

Now you have to decide on a layout. For that you have to compose a string, using a
combination of the characters in table 13.8.

Let’s make this table two left justified columns and one centered column, separated by
single vertical lines:

s" | 1 | 1 | c |" %$layout $%line
The “%]line” word draws a single horizontal line. Now we’re ready to insert the cells:

s" Artic Forth" s" Spectrum" s" 1983" 3 %cells %line
s" FPC" s" MS-DOS" s" 1991" 3 %cells %line
s" 4tH" s" Linux" s" 1994" 3 %cells %line

The “%cells” word needs to know how many cells you're going to insert. Since three
strings were supplied, three strings need to be declared. They will be printed in the order
you specified, not the stack order. Finishing a table is just as uneventful:

%table ends

If you need links, that’s supported too, but it needs the “hyperref” package. If you don’t
know if that one is installed, enter:

kpsewhich hyperref.sty

If it is, you may write something like:

s" Ok, guys. If you want to know more just" %$print
s" google" s" http://www.google.com" %$link
s" it! I don’t have the time for this." %print

You have to enable it, though. All it needs is a '[PRAGMA]’ at the beginning of your
program:

[pragma] UseURLs

Ok, that’s enough writing for tonight, let’s end this:

%$endSection
%endTex

CHAPTER 13. SPECIAL LIBRARIES 269

When you run this program you will find it writes to the screen. That’s because you have to
take care of all the filehandling yourself; 4tH only takes care of the proper I&IEX generation.
That may not seem like much, but note you’ve just combined a typesetting language with a
powerful programming language, which enables you to handle the most complex document
generation tasks with ease.

If you have installed pdfTEX'# you can make beautiful PDF files out of the box. For those
who need to generate office documents, keep an eye on the ISTEX2RTF'> converter. Both
are fully compatible with the IATEX 4tH generates and easily integrate with 4tH'®,

13.24 Writing RTF files

If you find generating IATEX is dead easy, you’re in for a treat because writing RTF is not
much different. There is a catch, though. You can write either RTF or I&IEX files, both
libraries are incompatible - but don’t worry, 4tH will catch that error for you. Like IATEX,
you start with including the library and the kind of document you want to write.

include lib/rtf.4th

%$RTFbook
%beginRTF
s" Hans Bezemer" s" My life with 4tH" false %$rtfTitle

Note the flag is only there for I&TEX compatibility - it doesn’t do anything. After that you’re
in business and if you know how to do a IATEX file, this should come as no surprise:

s" Foreword" $subSection

s" First, I want to thank my parents, my teachers," %print
s" my girlfriend, my hairdresser and most of all" S%$print
s" my dog Snoopy, who never lost faith in me." %println

Note RTF is a bit quirky where linebreaks are involved, so it’s good practice to terminate
the last line of a paragraph with ”%println” instead of ”%print”. If you ever need additional
linebreaks, you can add them with ”%cr”. Now let’s make a numbered list:

%$enumerate begins
s" Artic Forth" $%enumeration
s" SpecForth" %enumeration
s" gForth" %enumeration
%$enumerate ends

Note that the items of a numbered list are terminated by ~%enumeration” instead of ”%item”.
You can also make descriptions:

%$description begins

s" Word" s" A function in Forth." %describe
s" Flag" s" A boolean in Forth." %describe
s" Cell" s" A native integer number in 4tH." %describe

%description ends

Yhttp://www.tug.org/applications/pdftex/
http://latex2rtf.sourceforge.net/
16provided your 4tH implementation supports pipes. MS-DOS is not supported.

CHAPTER 13. SPECIAL LIBRARIES 270

Yep, completely identical. Links, listings, sections, quotes, lines, linebreaks, you name it:
it’s all the same. Tables are only slightly different'”:

%$table begins
s" Artic Forth" s" Spectrum" s" 1983" 3 %cells
s" FPC" s" MS-DOS" s" 1991" 3 %cells
s" 4tH" s" Linux" s" 1994" 3 %cells
$table ends

Ok, that’s enough writing for tonight, let’s end this:

$endSection
%endRTF

Big surprise.. If you use this library properly it will generate fully RTF Specification 1.6
compliant files. Like IATEX, when you run this program you will find it writes to the screen.
That’s because you have to take care of all the filehandling yourself; 4tH only takes care of
the proper RTF generation.

13.25 Writing HTML files

If you find generating IATgX and RTF is dead easy, you're in for a treat because writing
HTML is not much different. There is a catch, though. You can write either RTF or HTML
or ISTEX files, all three libraries are incompatible - but don’t worry, 4tH will catch that error
for you. Like I&TEX and RTF, you start with including the library. After that you go straight
to the title, after you’ve defined one (and only one) optional stylesheet:

include lib/html.4th
%$beginHTML
s" mystyle.css" %styleSheet
s" Hans Bezemer" s" My life with 4tH" false %htmlTitle

Note the flag is only there for ISIEX compatibility - it doesn’t do anything. Because if you
want to do fancy stuff, you will need to do it with CSS - that’s the only way. For arguments
sake, let’s say you want a very plain-looking table - then define a CSS filemystyle.css
like this:

div.plain table { width: 50%; }
div.plain td { padding: 5px 5px 5px 0; vertical-align: top; }
div.plain th { padding-right: 10px; text-align: left; }

Keep that in mind, we’ll come back to it later. After that you’re in business and if you know
how to do a ISTEX file, this should come as no surprise:

s" Foreword" $%$subSection
s" First, I want to thank my parents, my teachers," %print
s" my girlfriend, my hairdresser and most of all" %print
s" my dog Snoopy, who never lost faith in me." %print

Now let’s make a numbered list:

17 Although you can get away with a lot of IATEX specific stuff, since it’s simply ignored. Only $1ine is
problematic.

CHAPTER 13. SPECIAL LIBRARIES 271

%enumerate begins
s" Artic Forth" %item
s" SpecForth" %$item
s" gForth" %item
%enumerate ends

Yep. Completely identical. You can also make descriptions:

%$description begins

s" Word" s" A function in Forth." %describe
s" Flag" s" A boolean in Forth." %describe
s" Cell" s" A native integer number in 4tH." %describe

%$description ends

Again, no different. Links, listings, sections, quotes, lines, linebreaks, you name it: it’s all
the same. Tables are only slightly different'®:

%$table begins
s" Artic Forth" s" Spectrum" s" 1983" 3 %heads
s" FPC" s" MS-DOS" s" 1991" 3 %cells
s" 4tH" s" Linux" s" 1994" 3 %cells
%$table ends

Remember the stylesheet we made? What we actually did was defining a DIV class, which
is a blocktag as a matter of fact. Within that class you can format whatever tag you like.
You’re not limited to tables, it can be anything. Now let’s apply this class to the table we
just defined:

s" plain" %$setStyle
$table begins
s" Artic Forth" s" Spectrum" s" 1983" 3 %heads

s" FPC" s" MS-DOS" s" 1991" 3 %cells
s" 4tH" s" Linux" s" 1994" 3 %cells
%$table ends
%$endStyle

You'll see that the format we defined is applied to the table, but after ”%endStyle” it returns
to the default format. This way you can apply all sorts of styles to different sections of your
document. If you defined default styles in your stylesheet they’re automatically applied
to your document and you don’t have to do anything. Needless to say, if you don’t use a
stylesheet!® it will be a pretty plain looking document altogether.

Ok, that’s enough writing for tonight, let’s end this:

$endSection
%$endHTML

Big surprise.. If you use this library properly it will generate fully HTML 4.01 Transitional
compliant files. Like I&TEX, when you run this program you will find it writes to the screen.
That’s because you have to take care of all the filehandling yourself; 4tH only takes care of
the proper HTML generation.

18 Although you can get away with a lot of IATEX specific stuff, since it’s simply ignored. Only $1ine is
problematic.
19You will find a stylesheet html4th. css in the standard distribution.

CHAPTER 13. SPECIAL LIBRARIES 272

13.26 Converting to XML and HTML

You can’t ignore XML and HTML nowadays and 4tH also supports these formats. Let’s
say you want to write XML. The problem with XML is that there are several characters
which aren’t allowed in XML files, like apostrophes, quotes and ampersands. How do you
know you’re dealing with a special character? Well, that’s easy:

include lib/istype.4th \ for XML detection
include lib/asciixml.4th \ we’ll need this later

\ string with XML characters
s" Here’s Johnny! >>> (Johnny)"

bounds ?do \ let’s scan it for XML
i c@ dup emit is-xml \ check for XML
if ." Yes, it’s XML" else ." Nope" then cr
loop \ all done

Ok, now we know which characters are XML. But how do we convert them to XML char-
acter entities? That is where the second library comes in:

include lib/istype.4th \ for XML detection
include lib/asciixml.4th \ we’ll need this later

\ string with XML characters
s" Here’s Johnny! >>> (Johnny)"

bounds ?do \ let’s scan it for XML
i c@ dup is-xml \ check for XML
if ASCII>XML type else emit then

loop cr \ all done

Note that ”ASCII>XML” will always convert a character to an XML character entity, that’s
why you need “IS-XML” to determine whether it needs conversion or not.

If you’re converting an ISO-8859-1 or a CP437 encoded document to HTML, things get
even more complicated since you’ll have to take even more special characters into consid-
eration. Fortunately, 4tH has all the tools you need to get the job done. First, we’ll have to
determine whether we’re dealing with a special character or not. Second, if we did find a
special character we’ll have to convert it.

for XML detection
the conversion table
the conversion word

include lib/istype.4th \
\
\
\ string with HTML characters
(
\
\
e

include lib/westhtml.4th
include lib/cp437htm.4th

convert-line
bounds ?do

an ——)

let’s scan it for XML
i c@ dup is-html check for XML
if CP437>HTML type else emit then

loop cr \ all done

\ read and convert a file
convert-file (--)

begin

refill \ read a line
while \ while not end-of-file

0 parse convert—-line \ parse line and convert it
repeat

7
(Opening files and writing headers, don’t bother..)

The library westhtml . 4th contains the ISO-8859-1 and CP437 conversion tables. Be-
cause of its size, you’ll have to include it manually before you include the cp437htm. 4th

CHAPTER 13. SPECIAL LIBRARIES 273

or 18859htm. 4th libraries. "IS-HTML” works just like "IS-XML”, but also reports a
HTML character entity when it’s not printable or simply outside the ASCII-7 range.

Like ”ASCII>XML” the "CP437>HTML” word always returns a HTML character en-
tity, even when there is no real equivalent to HTML. E.g. the first CP437 block charac-
ter renders to "°”. If you don’t want that you’ll either have to maintain an addi-
tional table or examine the character entity "CP437>HTML” returns. Needless to say that
”ISO8859>HTML” works the same way. The only exception is the NULL character, which
is not allowed at all. In that case an empty string is returned.

13.27 Databases

4tH also has a small database package which perfectly blends in with the language. First
define a structure. That will be your database buffer:

include lib/dbm.4th

struct
16 +field Firstname
32 +field Lastname
end-struct /Person

/Person buffer: (Person)

Second, create a database file. You have to do this only once. If you do it again, it will
create another empty database file, so take care!

s" Persons.dbm" db.create

Now add it to the data dictionary. All you have to do is to declare the buffer, its size and
the database file. It will return a database handle.

(Person) /Person s" Persons.dbm" db.declare to Person

After that, you have to tell the datadictionary that you want to use it - or make it current, if
you prefer:

Person db.use

Now we’re ready to add records. Simply clear the buffer, fill in the fields and insert the
record. When you’re done, repeat the operation:

db.clear
s" Hans" db.buffer -> Firstname place
s" Bezemer" db.buffer -> Lastname place
db.insert

db.clear
s" Chuck" db.buffer -> Firstname place
s" Moore" db.buffer -> Lastname place
db.insert

Finally, when you’re done simply shut it down:

CHAPTER 13. SPECIAL LIBRARIES 274

db.close

That’s all! If you want to use it again, simply define the buffer and declare it to the datadic-
tionary:

include lib/dbm.4th

struct
16 +field Firstname
32 +field Lastname
end-struct /Person

/Person buffer: (Person)

(Person) /Person s" Persons.dbm" db.declare to Person

Of course you can add additional structures and files, the procedure remains the same. If
you want to use a table, simply use it:

Person db.use

Since this is the first time you are accessing the table it is automatically positioned at the
first (sequential) record. Just fetch the values:

db.buffer -> Firstname count type space
db.buffer -> Lastname count type cr

db.buffer always points to the current table. Of course, you can also address the buffer
directly - that is up to you:

(Person) -> Firstname count type space
(Person) —> Lastname count type cr

If you explicitly want to go to and fetch the first sequential record, you can also issue:
db.first

The next (undeleted) sequential record is reached by issuing:
db.next

If you want to know which record you’re at, you can consult db . rowid:

db.rowid . cr

This number is important, because it never changes and uniquely identifies a record. If you
want to return to a specific record, you can by using this number:

1 db.goto

Note that whether you access the record random or sequentially, the buffer is always up-
dated accordingly. You can also search for a specific string:

CHAPTER 13. SPECIAL LIBRARIES 275

db.first
db.key Firstname s" Hans" db.find

This will return you the first record containing "Hans”. In order to find the next record
simply issue:

db.key Firstname s" Hans" db.find

If there isn’t a second “"Hans”, the database will return an End of file error. You can query
the database by using db.error:

db.error EDB.EOF =

You'll find a full list of error codes in the source. You can print the error message by using
db.message:

db.error db.message

If you want to delete the current record, simply issue:

db.delete

Note the record is invalidated at that moment and you will have to navigate away from it.
If you want to change the current record, simply make the changes to the buffer and issue
db.update:

s" Chuck" db.buffer -> Firstname place
db.update

Finally, you can switch between tables at all times. E.g. you can make changes to a
“Profession” table and return to the “Person” table at any time. The ’Person” table will be
untouched:

Profession db.use

(Here we consult or change the ”"Profession” table)
Person db.use

(As if we never left it..)

Note that db . close closes the entire database system, not just the current table. However,
if we want to revive it all you have to do is to db . use it. You will start at the first record
though.

13.28 Indexing a database

Sometimes neither random nor sequential access is sufficient: you want to retrieve the
records in order. 4tH supports simple indexes, but don’t try to maintain millions of records
with it, because they are maintained in dynamic memory. If the default allocation is not
enough, you can tweak it*" before including the library file.

Having said that, it is not very difficult. Let’s say you already have a database and you want
to index it. First you have to decide how many records have to be indexed. Second, which
sorting routine do you want to use. You can also use any address based sorting algorithm?!
if you want to, the compiler will figure it out:

20See section 12.6
21See section 12.14.

CHAPTER 13. SPECIAL LIBRARIES 276

include lib/shelsort.4th
include 1lib/dbmidx.4th

Now open your database as usual:

(Person) /Person s" Persons.dbm" db.declare to Person
Person db.use

Then you have to index your database. You have to do this only once:

8192 {char} db.key Firstname idx.create
abort" Can’t make index"
to Pers.First

What actually happened is that 4tH stored all the rowids in dynamic memory and sorted
them on the field “Firstname”. In this case you can index a database table with up to
8192 records. The ”{CHAR}” word tells the index to treat it as a string when sorting or
searching. The word ”{CELL}” is available for numeric fields, but you can add your own
"field type” if you need to. Access it like this:

Pers.First idx.first

And it fills the buffer with the very first record. The subsequent record can be reached by
issuing:

Pers.First idx.next

And so on. But how do you know you’ve reached the last record? Easy, the word "IDX.ERROR”
will be set to non-zero. So printing a records in the proper order is as easy as:

Pers.First dup idx.first begin
dup idx.error 0= while
db.buffer -> Firstname count type cr
dup idx.next

repeat idx.clear

Note you can clear any errors by invoking "IDX.CLEAR”. The word "IDX.KEY” will
return the address of the key field in the current database buffer. E.g. this is perfectly valid:

Pers.First idx.key count type cr

In this example it would print the “Firstname”. Of course, you will rarely create an index
on an already filled table. Normally, you will define your table, define your indexes and off
you go. Sure, you can do that too:

s" Persons.dbm" db.create
(Person) /Person s" Persons.dbm" db.declare to Person
Person db.use

8192 {cell} db.key Firstname idx.init

abort" Cannot create ’'First’ index" to Pers.First
8192 {char} db.key Lastname idx.init

abort" Cannot create ’Last’ index" to Pers.Last

Note you have to declare indexes when the table is actually "used” at the time, otherwise
it will not be properly initialized. The snippet above will create two empty indexes along
with an empty database. If creating an index fails, it will return a ’true” flag. In any case
it will return a reference to the index created, which you will need to pass to almost any
word in the index library. Finally, you don’t need to include a sorting routine, because there
won’t be any sorting.

CHAPTER 13. SPECIAL LIBRARIES 277

13.29 Binding the indexes

Ok, we got two indexes now. How do we update ’em? Well, like this:

db.clear
s" Hans" db.buffer -> Firstname place
s" Bezemer" db.buffer -> Lastname place
db.insert

Pers.First idx.insert drop
Pers.Last idx.insert drop

It works the same for "DB.DELETE” and "DB.UPDATE”: first you commit changes to
the database buffer, then you update all indexes. This is very important. If you don’t,
some system variables may not be updated properly and you may corrupt your indexes.
"IDX.DELETE” does not return a flag. The flag "IDX.INSERT” and "IDX.UPDATE”
return indicates that the index now contains duplicate keys. If you’re not interested, you
can discard it just like we did.

You can also use a dictionary extension. It begins by including a different file:

include lib/dbms.4th

The second step is to bind the indexes after we’ve issued the usual red tape. Note the table
to bind has to be current:

s" Persons.dbm" db.create
(Person) /Person s" Persons.dbm" db.declare to Person
Person db.use

8192 {cell} db.key Firstname idx.init

abort" Cannot create ’'First’ index" to Pers.First
8192 {char} db.key Lastname idx.init

abort" Cannot create ’Last’ index" to Pers.Last

Pers.First Pers.Last 2 dbs.bind
abort" Cannot bind indexes"

After that you can insert, update and delete records using "DBS.INSERT”, "DBS.UPDATE”
and "DBS.DELETE” without worrying about updating the indexes. But it comes at a cost.
If you’re shutting down, you must unbind all the indexes. You can do that one by one:

db.clear

s" Hans" db.buffer -> Firstname place
s" Bezemer" db.buffer -> Lastname place
dbs.insert

Person dbs.unbind abort" Cannot unbind Person indexes"

And repeat that for all tables you’ve whose indexes you’ve bound. That’s a lot of work, but
this way you can mix bound and unbound tables in the same program. You can close them
all with one single word, but in that case you have to bind all your tables to their indexes -
even if they have no indexes at all, e.g.:

0 dbs.bind abort" Cannot bind table"

CHAPTER 13. SPECIAL LIBRARIES 278

Now you can use "DBS.RELEASE” to release all indexes of all tables at once:

dbs.release abort" Cannot release indexes"

Finding a value in an index is a breeze as well. Again, you have to make sure that the
corresponding table is used:

s" Hans" Pers.First idx.find 0= abort" Not found"

If ZIDX.FIND” returns a true flag, your database buffer will contain the first record con-
taining that value. You can use the "IDX.PREVIOUS” word to get any records that are
smaller than that value or "IDX.NEXT” to get any records that equal or are greater than
that value. If "IDX.FIND” returns false, your value was not found and the contents of the
database buffer are undetermined.

If you’re not sure about the first value, you can use "IDX.SEARCH”. E.g. if you want the
first surname beginning with "H”, you can issue:

s" H" Pers.Last idx.search 0> abort" End of index"

If "IDX.SEARCH?” returns a positive value, it is simply not found. If it returns a zero value,
the exact value was found in the database and you can use the associated buffer. If it returns
a negative value, a value bigger than requested was put in the database buffer. If a buffer is
valid, you can navigate from there using "IDX.NEXT” or "IDX.PREVIOUS”.

Finally, you can search any field using "DBS.FIND” - whether it is indexed or not. It
takes the same parameters as "DB.FIND” and returns a non-zero value when the record
was found. It also returns the index it used or a negative value ("N/A”) when none was
available:

(find a record by key, abort if not found)
db.key Firstname s" Hans" dbs.find 0= abort" Not found"

(if an index was used, get previous record)
dup N/A = if drop else idx.previous then

Of course, it is a shame when you have to rebuild all your indexes when you restart a
program. That’s why you can save and reload them. Saving them just takes a single line:

Pers.First s" persfrst.idx" idx.save

No, it won’t return a flag, but you can examine "IDX.ERROR” if you want to. Loading
takes little code as well:

{char} s" persfrst.idx" idx.load abort" Can’t load index"
to Pers.First

It returns the same stuff as "IDX.CREATE” and "IDX.INIT”, you’re already familiar with
that. You don’t have to supply any more information than the type, because the rest of the
required information was saved with the index itself. Finally, you will have to close the
index. I suggest you close it when you’re closing the table or database itself:

dbs.close abort" Cannot release indexes"
Pers.First idx.close abort" Cannot close index"
Pers.Last idx.close abort" Cannot close index"

CHAPTER 13. SPECIAL LIBRARIES 279

If it returns a true flag, it failed - which means your dynamic memory is corrupted somehow.
Finally, do not forget you can retrieve lots of information on the current status of an index
by using the following words:

idx.error Returns the last error encountered,;

idx.size Returns the total capacity of an index;
idx.used Returns the number of entries used.
That’s all folks!

13.30 Speech synthesis

4tH can talk! All you need is the “Festival” speech synthesis package®” and a small 4tH
interface. If you want to imitate old Arnold, this will do:

include lib/say.4th
s" I'11l be back!" say abort" Festival not available"

Well, that’s cool, isn’t it? You can also use the “eSpeak” package?’, which offers even
more possiblities. E.g. this will be spoken in a Scottish female voice:

include lib/speak.4th
s" I’11 be back!" s" en-sc+fl" speak abort" eSpeak not available"

Not only English is available, other languages are supported as well. An added advantage
is that the package is also available for Windows.

13.31 GUI applications

You can create GUIs with 4tH. Not because 4tH has extensive language bindings, but be-
cause it has an interface with GTK-server’*. After you've successfully installed GTK-
server and made sure it’s in your path, simply write®:

include lib/gtkserv.4th
gtk-srv-start

GTK-server is now initialized and awaits your commands. There are two simple words to
do that, "GTK{” and ”}GTK"”. Everything between it is sent to GTK-server. Creating a
window is as simple as:

gtk{ ." gtk_window_new 0" }gtk

Now this command returns a result, the number of the window. Now how can you get it?
Very simple: any responses from GTK-server are stored in TIB, which you can process as
usual:

22Homepage: http://www.cstr.ed.ac.uk/projects/festival/.

23Homepage: http://espeak.sourceforge.net/

2*Homepage: http://www.gtk-server.org/

25The following interface only works with Unix-like platforms, except OS/X. This is due to limitations of
GTK-server.

CHAPTER 13. SPECIAL LIBRARIES 280

0 parse number error? abort" Invalid response"

Ok, we got the window number now on the stack. Let’s give the thing a title:

s" My title" gtk{ ." gtk_window_set_title " dup . -rot "type" }gtk

""TYPE"” is a word of the interface, which works just like "TYPE’, but places the string
within double quotes. Note that after this the window number is still on the stack. You're
probably gonna need it..

Since this is not a tutorial on GTK-server,
we simply show you how to shut GTK- =iy habe@inux A7 - 4th.dev -
server down. Session Edit View Bookmarks Setfings Help

xq gtkdeno, 4th

gtk-srv-stop

Hello world

This implementation works with named
pipes and is pretty fast. However, if it
doesn’t work for you, you may try an al-
ternative interface which uses an unnamed
pipe. Starting it is very similar:

include 1lib/gtkipc.4th Figure 13.1: GTK demo

gtk-srv-start
gtk{ s" gtk_window_new 0" s>msg }gtk
0 parse number error? abort" Invalid response"

The difference is that the GTK command

has to be assembled in memory in its en-

tirety before it is sent to GTK-server. For that, three words have been defined: "S>MSG”,
”’S’>MSG” and "N>MSG”. Each one adds a leading blank before the actual payload is
appended, so you don’t have to worry about that. The first one, ”S>MSG” appends a
string. Its little brother, ”’S’>MSG” adds a quoted string, much like ”"TYPE"”. Finally,
”N>MSG” adds an integer. And yes, any responses are stored in TIB.

So, now let’s see how we can give this window a title:
s" My title" gtk{ s" gtk_window_set_title" s>msg dup n>msg -rot ’s’>msg }gtk
Well, that isn’t shocking, isn’t it? Finally, when you’re done shut GTK-server down?®:

gtk-srv-stop

Note this interface is slower, uses more CPU and is slightly more difficult to handle than
the default one, so if both interfaces work: use the default.

26This might trigger an error due to 4tHs implementation of popen () , but the interface handles it transparently
for the programmer.

CHAPTER 13. SPECIAL LIBRARIES 281

13.32 Card games

One of the least useful, but funniest libraries may be the playing card library, cards . 4th,
which is dedicated to making card games. It’s very easy. After including the library, you
take a new deck:

include lib/cards.4th
new-deck

Like any deck of cards, you have to shuffle it first. You need another library for that, called
shuffle.4th. It contains two shuffle words, one for a range of cells, the other for a
range of characters. The deck is made up of characters. You have to feed it the address of
the character array and its length:

include lib/cards.4th
include lib/shuffle.4th
new-deck

deck /deck cshuffle

Ok, now we got a deck of shuffled cards. Now, let’s deal:

deal

This will return an integer, representing the card. If you take modula 13, you will have the
value of the card, numbered from 0 to 12 or Ace to King. If you divide it by 4 you will have
the suit of the card, numbered from O to 3 or Diamonds, Hearts, Clubs and Spades:

dup 13 mod . cr
dup 4 / . cr

If you want a string representation, simply use "CARD”. This will return a string (ad-
dress/count) containing the card. Simply type it:

card type cr

Of coure, a deck of cards is limited. If you want to know if it’s time for a new deck of
cards, call "CARDS-LEFT”. This will tell you how many cards are left in the current deck:

cards—-left . cr

Note it’s your responsibility to track how many cards are left in the deck. If you don’t
the program will abort with an error! And what when you run out of cards? Well, you
simply take a new deck and start all over again. It’s simple! This tiny program implements
a blackjack game:

include lib/shuffle.4th
include lib/cards.4th
include lib/yesorno.4th

score 13 mod dup if 1+ 10 min else 11 + then ;
: next-card deal dup card space type cr score + ;

: player ." Player: " cr 0 begin next-card s" Hit" yes/no? 0= until cr ;

: dealer ." Dealer: " cr 0 begin next-card dup 16 > until cr ;

: won? dup 21 > if drop ." is bust!" else ."™ has " 0 .r ." ." then cr ;
shuffle-deck new-deck deck /deck cshuffle ;

: minijack shuffle-deck player dealer ." Dealer " won? ." Player " won?

minijack

The beauty is that it is very easy to read and understand. All the technical stuff is handled
by the cards. 4th library. So next time you want to make a nice cards game, don’t forget
about this one!

2

Chapter 14

Graphics libraries

The majority of 4tH’s graphics subsystem’s code and documentation has been contributed
by David Johnson. The initials at the end of an article indicate its author.

14.1 Portable bitmap graphics

You can make simple graphical drawings in 4tH using a virtual screen or bitmap. For
example, consider the following:

include lib/graphics.4th
10 20 100 200 line
s" test.ppm" save_image

This short program will create a portable Netpbm file which can be converted to other
graphical formats using the Netpbm libraries or viewed in numerous imaging programs.
The image test . ppm is 800*600 pixels in size and simply consists of a white line plotted
on a black background. However, one is not limited to such simple images. The PPM-
format allows for true color resolution with each pixel consisting of 3 bytes for red, green,
and blue. Each byte can have a maximum value or intensity of 255. The geometry of a 4tH
graphic image is as follows:

* The point 0,0 is located at the very top left;

» The x-axis is vertical, the y-axis is horizontal.

The ppm-format is a simple way to describe a "raw" image file in a widely recognized
format. The format of the file header consists of a magic word, the size of the image, and
the maximum intensity of the pixels. Following this is then the raw data. This format was
created by Jeff Poskanzer as part of his Pbmplus graphical utilities (now called Netpbm).
The PPM/PGM formats are used in the 4tH library routines, and since the PGM format is
the simpler of the two, it will be presented first.

Here is a simple 8*8 PGM image of a diagonal line (white) on black background. The
header consists of the magic number "P2" which indicates that the file is PGM image with
the data stored as text. The next line is a comment (marked with a "#), followed by the
image size (8x8) and the maximum value of the data (or pixel). If the data after the file
header is stored as binary, the the magic number is given by P5.

282

CHAPTER 14. GRAPHICS LIBRARIES 283

P2
Simple test of 8x8 PGM grayscale
8 8

255

255 0 0 0
0 255 0 0
0 255 0
0 255
0 255
0 0 255
0 0 0 255
0000 25

0
0
0
0

o O O O o
O O O O O o

0
0
0
0
0
0
0
5

O O O O O O
o O O O O

0
0
0
0

Color PPM images are stored with a similar format except 3 bytes are required to specify
each pixel (e.g. red, green, blue). Thus PPM images are 3 times larger than the PGM
grayscale images. The magic numbers for PPM files are ”P3” for text and ”P6” for binary.
Both text and binary PPM/PGM files can be loaded using the 4tH library. However, images
are always saved using the binary (P3, P6) format.

As an example for the P3, P6 color format, try loading and saving apps/data/icon_p3

include lib/graphics.4th

s" apps/data/icon_p3.ppm" get_image
cr image_comment$ count type

s" 4th_icon.ppm" save_image

Now compare the contents and size of the two files. Better yet, see if you can view the file'.

When a PPM/PGM image is loaded in 4tH (via "GET_IMAGE”), the data from the im-
age file header is is stored in the 4tH variables: "PIC_HEIGHT”, "PIC_WIDTH”, and
“"PIC_INTENSITY”. Additionally, both color PPM files (P3, P5) and grayscale PGM (P2,
P5) files are supported. The main difference is that there is only one byte per pixel for
grayscale image. As another example, consider the following:

\ Define, draw and save an image
include lib/graphics.4th

: bar (——) 10 0 do 50 i + 50 50 i + 200 line loop ;

300 pic_width ! \ Define the current image size
300 pic_height !

color_image \ Define and draw our image
blue background
yellow bar

s" testimage.ppm" save_image \ saved to file

Try using "GRAYSCALE_IMAGE” instead and view the results. Note, that grayscale

. ppm.

Netpbm files often have a file extension of *.pgm instead of *.ppm, but most viewing/graphical

programs do not care.

After defining the picture type and size, a couple of basic commands can be used to cre-
ate and manipulate the image. These commands work with both color and grayscale im-
ages. However, there is one difference. For color images, each pixel requires three bytes
which we’ll abbreviate as rgb; whereas, grayscale images have only one byte per pixel.
Therefore, the stack pictures corresponding to the pixel count will depend upon the type
of image in use. For example, if you were to specify a "7GRAYSCALE_IMAGE” instead
of "COLOR_IMAGE?” in the following program , then "COLOR@” would leave just one
value on the parameter stack.

IGimp, OpenOffice, xnview and many more should work fine

CHAPTER 14. GRAPHICS LIBRARIES 284

include lib/graphics.4th

300 pic_width !
300 pic_height !
color_image

0 0 255 color! \ sets the "current" color to blue (e.g., rgb: 0 0 255)

cr ." current color is " color@

white \ now set the "current color" to white (255 255 255)
background \ set every pixel in the image to white

blue \ current color is blue

100 100 set_pixel \ will color the pixel at (100,100) to blue

cr ." Pixel at (100,100) is "

100 100 pixel@ . . . \ check to see if it’s blue

255 0 0 100 100 pixel! \ change it to red (e.g. rgb: 255 0 0)

10 10 98 98 1line \ draw line from (10,10) to (98,98)
s" dotline.ppm" save_image \ save the image to view it

You may notice that the word "BACKGROUND?” is rather slow. If you just wanted to set
the background to white or to some level of gray, you can use the word "WHITEOUT”
which is much faster. That is:

255 whiteout
190 whiteout
0 whiteout

\ set the image to white;
\ set image to some gray level;
\ set image to black.

To summarize, the basic graphical commands with stack pictures are’:

WORD STACK EFFECT COMMENT

pic_width -y address contains image width

pic_height - X address contains image height

pic_intensity -n address contains maximum byte
value for pixels

save_image an-— save portable bitmap to file

get_image an— load file containing portable bitmap

color_image - work with color (rgb) pixels

grayscale_image - work with grayscale (single byte
pixels)

color! rgbln- define current color

color@ —r1gbln get current color

pixel@ rxcy —rgbIn get pixel values at specified point

pixel! rgblnrxcy— set pixel values at specified point

set_pixel X, Cy — set pixel at specified point using
the "current color"

line rx1 cyl rx2 cy2 — draw line using the "current color"”

background - set image background to current
color (slow)

whiteout n-— set image background to white
(n=255) or gray (fast)

red - set the "current" color in use for
color or grayscale images to red

blue - set the "current" color in use for
color or grayscale images to blue

2

X = row or x; cy = column of y; rgb = red green blue.

CHAPTER 14. GRAPHICS LIBRARIES 285

WORD STACK EFFECT COMMENT

green - set the "current"” color in use for
color or grayscale images to green

white - set the "current" color in use for
color or grayscale images to white

black - set the "current" color in use for
color or grayscale images to black

yellow - set the "current" color in use for
color or grayscale images to yellow

magenta - set the "current” color in use for
color or grayscale images to
magenta

cyan - set the "current” color in use for
color or grayscale images to cyan

There are some graphical words used in converting between image types (color vs. grayscale
and so on) and these will be discussed later (also check the example 4tH files).

Note that when you provide coordinates outside the bitmap, they will be reassigned to
coordinates inside the bitmap - at the edge, to be precise - no matter whether you’re reading
or writing a pixel. If you’re pretty sure of yourself, you can defeat this feature by using
the [PRAGMA]’ "UNSAFEBITMAPACCESS”, which will make your program a little bit
faster as well.

Lastly, should you wish to work with images that contain more than 800%600 pixels, then
simply change the maximum defaults in the graphics. 4th file. Note that this may have
effects on the default dimensions of other routines - which may cause them to behave errat-
ically. (dj)

14.2 More lines

First, a simple library that may give you stunning results. Ever seen a group of lines that
emanate from a single focal point? That’s what the “burst” library does for you. You simply
supply the number of lines you want to see, the coordinates of the focal point, the length
of the number and the line generating execution token and you’re home free. E.g. this will
give you 22 red lines with a length of 150 pixels, emanating from point 300, 300:

include lib/graphics.4th
include lib/gburst.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
red 300 300 150 22 [: line ;] burst
s" example.ppm" save_image

But that will becoming quite boring pretty quickly if there is only one kind of line you can
use. In order to fix that, we have another library:

include lib/graphics.4th
include lib/gburst.4th
include lib/glines.4th

600 pic_width ! 600 pic_height ! color_image 0 whiteout
red 300 300 150 22 [: rainbow ;] burst
s" example.ppm" save_image

CHAPTER 14. GRAPHICS LIBRARIES 286

This one uses lines with all the colors of the rainbow. You can use "RAINBOW” exactly
the same way you would use "LINE”, but no matter its length, it will always render a multi-
colored line. There is a multitude of different lines in this library - although some require
additional parameters.

¢ dotted will render dotted lines. The length of your dot (or dash) depends on its
additional parameter, e.g. 5 dotted” will have 5 pixel long dots and 5 pixel long
intervals;

 ray will only render the last portion of the line. The percentage of the line to be
rendered is its additional parameter, e.g. ”20 ray” will only render the last 20% of
its length, so drawing a “’classic” sun won’t take you all day to figure out;

* behind will draw a line until it "hits” another color - and then stop rendering. Sub-
sequential “other” colors won’t change that. If it hits the same color, it still won’t
start rendering. That will only happen if it has passed another area of ”other colors”
and encounters the same color again. This is great for drawing e.g. horizons since
“objects” that are placed in front of it won’t be affected as long as they’re constituted
of two edges.

You want to invent your own lines? That’s easy. This library uses a digital differential
analyzer. One of the words you can use is "THYPOTENUSE”. This will take a set of coor-
dinates and return the length of the line. E.g. "RAY” uses this to figure out when it should
start rendering:

100 swap - >r hypotenuse r> % 100 / (start) !

It stores that value in one of the predefined variables of the library - but if you want to
define your own routine, you’ll have to provide that one yourself, of course. Now it’s time
to prepare to execute the line drawing routine:

0 (count) ! [’] (ray) is dda_hook dda

It resets another predefined variable, ”(COUNT)” and supplies the actual line drawing ex-
ecution token to the digital differential analyzer. So, what does this actual line drawing
routine do?

(ray) (count) @ (start) @ < if 2drop else set_pixel then 1 (count) +! ;

The line drawing routine, no matter which one, always expects a coordinate, which is
supplied by the digital differential analyzer. In this case, as long as the actual number of
pixels rendered is less than the limit stored in ”(START)”, no pixel is set and the coordinate
is discarded. Finally, the count is incremented. That’s all. As you can see, you can design
plenty of lines yourself with very little effort. (hb)

14.3 Circles, ellipses and arcs

Let’s start with the easy part: a circle. It’s just as simple as you think it is. A coordinate, a
radius - and there you are:

CHAPTER 14. GRAPHICS LIBRARIES 287

include lib/graphics.4th
include lib/gcircle.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
blue 300 300 150 circle
sn

example.ppm" save_image

This will render a circle with a radius of 150 pixels at coordinate 300, 300. Now we’ve
mastered that one, let’s turn to ellipses. An ellipse has two radii - one horizontal (y-axis)
and one vertical (x-axis):

include lib/graphics.4th
include lib/gellipse.4th

800 pic_width ! 600 pic_height ! color_image 255 whiteout
blue 300 400 150 250 ellipse
s" example.ppm" save_image

This one will render an ellipse with a horizontal radius of 250 pixels and a vertical radius
of 150 pixels at coordinate 300, 400. And yes, if the vertical radius equals the horizontal
radius you’ll end up with a circle anyway.

But may be you don’t need an entire circle. May be you only need an arc of a circle. For
that, we have a library as well. It takes the same parameters as "CIRCLE” - but also two
additional ones. ”ARCCIRCLE” starts rendering at the “’three o’clock” position and then
continues clockwise. The first parameter determines how much this starting point is shifted.
You have to issue it in radians, scaled by 10,000. Since a full circle is 27 radians, issuing
7 here will make it start rendering at the “’nine o’clock” position. The second parameter is
also in 10K radians. This determines how much of the circle is rendered. Again, issuing 7
here will make it render half a circle:

include lib/graphics.4th
include lib/garccirc.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
blue 300 300 150 PIx10K PIx10K arccircle
s" example.ppm" save_image

In short, if you execute this program you will end up with half a circle, rendered clockwise
from the “nine o’clock” position. Note that "PT*10K” is a constant, which is provided by
the (math) library. If you’re curious where the end-points are, you can use ">ARCCIR-
CLE<”. Provide it exactly the same parameters as "ARCCIRCLE” and it will return the
required set of coordinates.

However, if you want to render an arc from a known set of coordinates, you can do so as
well. It’s even more versatile. For that we provide quadratic Bézier curves. A Bézier curve
is delimited by two end points and a so-called “’control” point. Note that the ”control” point
is usually not part of the curve and may even lie outside the canvas - so yes, you may end
up with negative coordinates for the “control” point in order to get the curve you want.

Agreed, it may take some time and some experimenting before you’re completely familiar
with the concept, but it’s well worth the effort. You issue the points as shown in figure 14.1:
P1, P2 and P3:

include lib/graphics.4th
include lib/gbezier.4th

800 pic_width ! 600 pic_height !
color_image 255 whiteout black
10 0 0 1000 500 O bezier

s" example.ppm" save_image

CHAPTER 14. GRAPHICS LIBRARIES 288

oP,

Q:

0 t=.25 Pz

Figure 14.1: Bézier curve with end points Py and P, and control point P

It’s clear that 0,1000 are the coordinates of the control point, since it is way off canvas.
And, as I mentioned before, it’s also perfectly acceptable to use negative coordinates, like:

599 100 -200 -200 599 500 bezier

Note that Bézier curves are polynomials, so you will have a hard time if you want to pro-
duce a circle with it.

Finally, you may ask yourself why there are three libraries that can potentially draw a cir-
cle. Well, that’s easy. Both gcircle.4th and gellipse.4th use fast, very accurate
algorithms to render their respective shapes. Others are slower and less accurate in that
respect - although you may never notice the difference with the naked eye. (hb)

14.4 Filling shapes

Ok, now you got all those nice circles, ellipses and arcs and all you got is a coloring page.
Wouldn'’t it be nice if you could add a little color. Well, hold on to your center points, there
is a way to do just that. Let’s revisit our circle:

include lib/graphics.4th
include lib/gcircle.4th
include lib/gflood.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
black 300 300 150 circle

red 300 300 flood

s" example.ppm" save_image

You simply set the color, issue the coordinates of the point where you want coloring to start
and off you go. Yes, it takes uses a bit of memory, but if you got lots of stackspace left or
the area that needs to be flooded is not foo large, you can use this routine without using any
additional memory. Just add the appropriate pragma:

[PRAGMA] usestackflood

include lib/graphics.4th

CHAPTER 14. GRAPHICS LIBRARIES 289

include lib/gcircle.4th
include lib/gflood.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
black 300 300 150 circle

red 300 300 flood

s" example.ppm" save_image

If you got it wrong, it will simply bomb out - that’s it. In very rare circumstances though,
”FLOOD” will not provide the required result. In that case, you canuse gfi11.4th. It
will takes the same parameters and does the very same thing, but it uses a large amount of
memory> and is a bit slower. The upside is that it uses a bulletproof algorithm:

include lib/graphics.4th
include lib/gcircle.4th
include lib/gellipse.4th
include lib/gfill.4th
include lib/gflood.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
black 150 150 150 circle

blue 440 300 150 250 ellipse

red 150 150 flood

green 440 300 gfill

s" example.ppm" save_image

Yes, you can even use them in the same program if you like. In short, use gflood.4th
by default and gfi11.4th if you really need to. (hb)

14.5 Turtle graphics

Turtle graphics provide a simple set of words for drawing simple and complex shapes.
There are three basic words: "XHOME”, ”XROTATE”, and "XMOVE”. The ’x’ here rep-
resents the turtle. A simple program to draw a box can be defined as:

include lib/graphics.4th
include lib/gturtle.4th

200 pic_width !
200 pic_height !
color_image

box (n -——) 4 0 do dup xmove 90 xrotate loop drop ;

255 whiteout

xhome

50 blue box

30 green box

s" box.ppm" save_image

The motion of the turtle can also be directed by the words: "FORWARD”, "BACK”,
“RIGHT”, ”LEFT”, ”XPENUP”, and ”XPENDOWN”. Here is an interesting example where
a simple shape can be used to make a more complex drawing.

include lib/graphics.4th
include lib/gturtle.4th

3Two to four megabytes, depending on your architecture.

300 pic_width !
300 pic_height !
color_image

clear—-screen

CHAPTER 14. GRAPHICS LIBRARIES

290

xhome
xpendown
: octagon (-——) 8 0 do 25 forward 45 right loop ;
: tile (——) 8 0 do octagon 45 right loop ;
tile s” tile.ppm” save_image
In summary, we have the following:
WORD STACK EFFECT COMMENT
turtle! Xy-— set turtle position
turtle@ -Xy get turtle position
compass! n-— set turtle directional heading in
degrees
compass @ -n get turtle directional heading in
degrees
xhome - place turtle in center of image and
set the heading to O degrees
xrotate n- Rotate turtle by n degrees, positive
numbers are counter clockwise.
xmove n-— Move n pixels, can move forward
(+) or backwards (-)
forward n-— Move n pixels forward
backward n- Move n pixels backwards
left n-— Turn left (rotate) by n degrees
right n- Turn right (rtate) by n degrees
clear-screen - Clear to white background
xpenup - Change color to white so that
movent of turtle does not leave a
trail on white background
xpendown - Change color to blue; e.g., same as
using the word blue.

A couple of other words that may prove useful. Should the turtle get lost, then "TUR-
TLE@” will give the coordinates while "COMPASS @” will give the directional heading.
Likewise "TURTLE!” and "COMPASS!” will reposition the turtle. (dj)

14.6 Annotating portable bitmap images

The basic words are summarized as follows:

CHAPTER 14. GRAPHICS LIBRARIES 291

WORD STACK EFFECT COMMENT

gbanner rxcyan-— print the string a n at position rx cy

horizontal - plot the text horizontally

vertical - plot the text vertically

textup - change the text direction to upright

textdown - change the text direction to upside
down

To annotate the turtle graphic image from the last example, try the following:

include lib/graphics.4th
include lib/gbanner.4th

s" box.ppm" get_image

red horizontal text_up 5 25 s" boxes!" gbanner
black vertical text_up 75 20 s" yea!" gbanner
green vertical text_down 190 190 s" Hello there!" gbanner
magenta horizontal text_down 190 150 s" Bye bye!" gbanner

s" box2.ppm" save_image

The general syntax is just the screen position and the string with the key word being
"GBANNER”. To make it interesting, the orientation and direction of the text can eas-
ily be changed. Note the starting positions for the text in this example as the text may be
written from right to left for some orientations. (dj)

14.7 Color palettes

Since the Netpbm grayscale images are 3 times smaller than the color ones, one way to
improve the efficiency (if true color resolution is not needed) is to store the color informa-
tion in the grayscale format. While the setup shown here is not that useful, it was easily
implemented. Instead of converting a color pixel to a grayscale pixel, a 6 level rgb format
is used. For this, colors have a maximum intensity of 5, and the conversion is : palette =
38*red + 6*green + blue giving a maximum value of 215. The word "PALETTE_IMAGE”
will set the correct defaults, e.g.:

include lib/graphics.4th
include lib/gturtle.4th
include lib/palette.4th

300 pic_width !

300 pic_height !

palette_image

(use some graphical routines)
s" ptest.ppm" save_image

This will save the image as a PGM image (with a PS5 magic word). Thus when you view
the image, it will appear as a strange looking grayscale image (as another example, try the
gtest4.4th demo program) To view ptest . ppm in color, you must convert the image
to a PPM color file. There are two example programs to do this. One is color2pal.4th
and the other is pal2col. 4th. Note for this particular color palette, once it is converted
back to the color format (with a P6 magic word) it should have a maximum pixel intensity
of 5. Unfortunately, many graphical viewers have trouble displaying this correctly (though
many work fine). Therefore, the col2pal.4th example will scale up the pixels values
to the 255 level.

CHAPTER 14. GRAPHICS LIBRARIES 292

Conversion between color and grayscale pixels can be performed using the words "COLOR>GRAY”
and "GRAY>COLOR”. If color palette and/or grayscale images are defined, the words
”COLOR>N" and "N>COLOR” can be used instead. (dj)

WORD STACK EFFECT | COMMENT

color>gray rgb—n Covert 3 byte color format to 1
byte grayscale

gray>color n-rgb Convert grayscale to color format.
The pixel still has the gray color
though

to_color - Set the library primitives so that
pixel and color data will use 3
bytes.

to_gray - Set library primitives so that pixel
and color data will use 1 byte

color_image - Set defaults for using color (PPM)
images

grayscale_image | — Set defaults for using grayscale
(PGM) images

palette_image - Set defaults for using color palette.
Similar to grayscale and image will
be save in PGM format.

color>palette rgb—n Convert color information to
palette code

palette>color n-rgb Convert palette code to color

to_palette - Set library primitives so that pixel
and color data will use 1 byte
palette code.

color>n rgb—n Convert color to palette (or
grayscale) format

n>color n—rgb Convert palette (or grayscale) to
color format

14.8 Viewing and modifying bitmap images

Consider the use of bitmap images in the simple vanilla implementation of 4tH; is it possi-
ble to actually view the images? One possibility (and a fun exercise) is to use simple ASCII
text to show the images.

For example, consider an 8 character “grayscale” palette consisting of “M # % o +

space” or perhaps a different version consisting of “B @ & ¢ = ; ' space”.
By using these ASCII palettes, a bitmap image can be approximated and viewed. In this
case, to possibly enhance the ASCII image, a random switching between the two text
palettes will be used. The library file for this is gpic2txt .4th which can be used as
follows:

include lib/graphics.4th

include lib/gshrink.4th

include lib/gaspect.4th

include lib/gpic2txt.4th

s" 4th/apps/graphics/wldchild.ppm" get_image

shrink \ reduce image by 2x

hshrink \ reduce height by 2x

70 200 2 60 show_image \ col=70 to 200; lines=2 to 60

CHAPTER 14. GRAPHICS LIBRARIES 293

If a monospaced font is used and if the output consists of dark characters on a light back-
ground, than an ASCII art version of a bitmap image wldchild.ppm is produced. A
screen capture of an example output is shown in figure 14.2 in which a bold Ubuntu Mono
9 point font was used.

Figure 14.2: ASCII art view of a color bitmap image

However, if the output would have consisted of light characters on a dark background, then
a negative (or inverted) view of the image would have been produced. The can be corrected
with the use of the word normal-view? which allows the image to be viewed in either
the positive or negative format. This modification is made as follows:

false normal-view?
70 200 2 60 show_image

Similarly, if you prefer to use just one ASCII palette, this can be chosen by using:

false hi-contrast?
70 200 2 60 show_image

The word show_images treats the bitmap image like a text file consisting of lines (or rows).
Thus a pixel is addressed by its line number and column position. To get the image to a size
that which can reasonably be captured in ASCII text, the bitmap image is reduced using
“shrink” from gshrink.4th.

Likewise, since text spacing is much finer than the line spacing, the height of the image is
reduced by a factor of two using hshrink from gaspect.4th. Note that all changes
to the image size are done “in-place” within the virtual screen size defined by variables
pic_width and pic_height. A summary of the library files and words are given in
table 14.5.

These words are used in the example programs ipaint3.4th and ppm2txt .4th. Two
other examples programs that can produced some interesting effects as well as reducing
the amount of information in the bitmaps are dither.4th and bwdither.4th. Both
these use a Floyd-Steinberg_dithering scheme to produce visually pleasing images at much
reduced resolutions. Example usages for all the programs are given in the source listings.

(dj)

14.9 3D plotting

Plotting or drawing in 3D using the 2D graphics library in 4tH simply requires a few words
to map the 3D coordinates to 2D. The orientation of the default coordinate system has the

CHAPTER 14. GRAPHICS LIBRARIES 294

Word Stack Effect Comment Library
image>grayscale - Convert bit true color gcol2gry.4th
image to grayscale (0 to
255 pixel intensity)
shrink - reduce bitmap image by gshrink.4th
factor of 2
hshrink - reduce height by 2x gaspect.4th
hexpand - increase height by 2x
wshrink - reduce with by 2x
wexpand - increase with by 2x
show_line nl n2 n3 output line-nl in ASCII gpix2txt.4th
text format from columns
n2 to n3
show_image nl n2 n3 n4 render the bitmap image
from lines n3 to n4 and
columns nl to n2 as ASCII
art
normal-view? flag true = positive view; false
= negative view
hi-contrast? flag true=use of two ASCII
palettes; false=use only
one

Table 14.5: Viewing and modifying bitmap images

origin towards the top left of the screen with the x-axis running down the screen rows and
the y-axis running left across the screen columns.

With a right-handed coordinate system the z-axis is then pointing out of the screen (towards
the observer). Two words that show this are “CUBE” and “AXIS”. The mapping from 3D
to 2D is done with the word “3D>2D”. The use of these words is shown below:

CHAPTER 14. GRAPHICS LIBRARIES 295

\ Example of cube using the "mirror-left" and "mirror-right" words
\ The blue line from different corner-corner orientations are

\ better viewed using different mappings of 3D to 2D

\ Loading this also loads the graphics.4th and gbanner.4th word-set
include lib/gplot3d.4th

\ Place the 3D axes in center of image
colorimage 255

whiteout

center-plot

\ Line from top-left to bottom-right is clearly visible.
mirror-left

0 0 0 100 black cube

0 0 0 3d>2d 100 100 100 3d>2d blue line

-50 0 0 red axis

\ Conversely, line from top-right to bottom left is clearly visible.
mirror-right

0 150 0 100 black cube

0 250 0 3d>2d 100 150 100 3d>2d blue line

-50 150 0 red axis

s" 2cubes.ppm" saveimage

The resulting image is shown in figure 14.3. Note the orientation of the two cubes. The
right cube is drawn with the box coming out of the page torwards the right side of the image
and this is the default orientation. One could have easily drawn the cube with an orientation
tilted towards the left size of the image.

A)

Figure 14.3: Mirrored boxes

The orientation of 3D mapping can be controlled with two other words “MIRROR-LEFT”
and “MIRROR-RIGHT” (which is the default). One reason for switching between these
orientations is that the blue line drawn in the two cubes would not be easily visible if the
orientation was switched.

For the 3D plotting to be really useful, one would also need to be able to rotate the coordi-
nate axes to any desired orientation. This can be accomplished by defining the Euler angles

CHAPTER 14. GRAPHICS LIBRARIES 296

@7, @, and ¢,. These represent a rotation about the z-axis, then about the new x-axis, and
finally about the newest z-axis.

Positive values for the Euler angles represent a counter-clockwise rotation. For example,
assume the z-axis should be placed parallel to the vector znew = —1i+2j+ 3k or [—1 2 3].
This can be accomplished using ¢; and &.

The first rotation about the z-axis is ¢; = angle between vector = —1i+2j 4+ 0k and the
x—axis+90°. Thatis ¢; = angle between [—12 0] and [1 0 0] +90° or ¢; = acos (%) +Z
and hence ¢; = 206.6°.

Now a rotation about this x-axis will place the z-axis to the desired position, or @ = angle

. . o 3 o o
between [—12 3] and [0 0 1]. This gives ® = acos (ﬁ) =36.7°.

Lastly, a rotation about the newest z-axis ¢, can place the the x- and y-axes to any desired
location. Thus with the Euler angles of ¢; =206.6°, ® = 36.7° will place the z-axis parallel
to[—1 2 3] and the rotation ¢, can then be used to set the x- and y-axes.

In 4tH, the word “EULER!” is used to set the Euler angles and these angles are defined
in degrees. Here, integer math is used to calculate the coordinate transformation. Once
the Euler angles are set, plotting is done as usual with the new orientation, which can be
viewed with the word “AXIS”. See the simple demo example below (gdemo3d. 4th):

include lib/gplot3d.4th

colorimage \ define bitmap picture
600 picwidth !

400 picheight !

center-plot

255 whiteout

magenta \ draw a big box

0 0 0 euler! \ keep default axis orientation
0 0 =50 100 cube

0 0 -50 black axis

green \ draw a smaller rotated box
90 45 -20 euler! \ rotate the coordinate system
0 0 0 50 cube

0 0 0 blue axis

s" box.ppm" saveimage

The corresponding image is shown in figure 14.4. To summarize, the 3D plotting word set
is to be used in conjunction with those words already defined in the graphics package. The
complete wordset is listed in table 14.6. (dj)

14.10 3D turtle graphics

For the turtle graphics library* gturtle.4th, the word that moves the turtle by the
number of pixels issued is “XMOVE”. Essentially, a short line of length n is drawn. If
the turtle is moving in 3D then this can be specified in “XMOVE” using the defered word
“XDSCALE”. By default, “XDSCALE” executes the word ‘“2DPLOT”, which takes no
parameters and does absolutely nothing. However, in 3D one could define:

4See section 14.5.

CHAPTER 14. GRAPHICS LIBRARIES

WORD STACK EFFECT COMMENT

origin! Xy-—

set the location of 3D-axis within
the 2D image

center-plot | —

place the 3D-axis axis origin at the
image center

euler! phil Psi phi2 — Set Euler angles to define plot
orientation

XyZnew xold yold zold —x y z | apply coordinate transformation to
map point to the new system

3d>2d rxcy z1 —rx cy map X,y,z to 2D for the graphic.4th
wordset

axis Xyz- draw the current axis orientation at
point xyz.

cube Xy Zsize — draw a cube at xyz

mirror-left | — when mapping from 3d to 2d use

the “left” version of the cube view

mirror-right | —

Use the “right” version of the cube
view (default condition)

Table 14.6: 3D plotting wordset

variable turtlez

0 turtlez !

: zturtle!

x y z ——) turtlez ! turtle! ;

\ place the turtle in 3D
: 3dplot (x1 yl -- x2 y2) turtlez @ 3d>2d ;
’ 3dplot is xdscale

297

As aresult, when “XMOVE*" is executed the turtle moves on the specified z-plane to create
an image. Some included examples and demo files using 3D plotting are listed in table

14.7. (dj)

’ File

\ Description

gmirex.4th

Example shows the use of cube, axis, 3d>2d, and
mirror-left andmirror-right.

gdemo3d.4th

Demo shows use of euler! to rotate the coordinate
axes

plt3dex.4th

Example to plot of a simple 3D surface with two
different views.

3ddemo.4th

sin y/x2-+y?
2

\/x2+y?

This demo plots with many views.

g3spiral.4th

Example of using 3D plotting with turtle graphics.

Table 14.7: 3D plotting examples

CHAPTER 14. GRAPHICS LIBRARIES 298

-

Figure 14.4: Two boxes

Chapter 15

Preprocessor libraries

15.1 Introduction

Some people start to frown when you mention preprocessors. But most don’t even realize
that when you compile C, you’re always using a preprocessor - and with good reason!
Without a preprocessor you really wouldn’t want to write C, it would be awkward. C++
started its life as a preprocessor!. Several Forth compilers won’t even compile without a
preprocessor. Face it: there is nothing wrong with preprocessors!

Preprocessors are wonderful tools to hide awful constructs under a silky smooth syntax,
enhance your productivity, simplify maintenance and prevent programming errors. 4tH
comes with a preprocessor” that is more powerful than C’s and shares many characteristics
with M4, like:

* Recursive macro expansion;

» Text replacement;

¢ Parameter substitution;

¢ File inclusion;

¢ Conditional evaluation;

* Arithmetic expressions.

In order to further enhance it, 4tH provides preprocessor libraries, which are in fact prede-
fined macros. You use a preprocessor library like you would use an ordinary one, e.g.:

include 4pp/lib/standard.4pp

After you’ve run the preprocessor, you compile as usual. Note there is no protection against
including a preprocessor library twice, but on the other hand it won’t be included by (or
include) other libraries, so that is pretty academic. If you’re running a Unix-like Operating
System, you could use make to make your life a little easier, e.g. by defining the following
rules:

Uhttp://www2.research.att.com/~bs/hopl2.pdf
2See chapter 19 for more information.
3http://en.wikipedia.org/wiki/M4_%28computer_language%29

299

CHAPTER 15. PREPROCESSOR LIBRARIES 300

%$.c : %.4th
4th cgg $< $@
%.c : %.hx

4th lgg $< $@
%.4th : %.4pp
pp4th -o $@ $<

Refer to your system documentation for more information. Finally (and this is very im-
portant), always include preprocessor libraries after including all other libraries. If you
don’t, you risk that your macros are expanded while you’re loading 4tH code that wasn’t
designed for it - which may have adverse effects. You don’t want to chase bugs that were
never there, don’t you?

15.2 Stack instructions

What sets the 4tH preprocessor apart from all other preprocessors is its built-in string stack.
And of course, with a stack comes stack instructions. Some, like @drop, @dup, @nip and
@over are built-in, but some like @swap and @rot are missing. That is exactly what this
library file provides. First of all, you have to include it:

include 4pp/lib/standard.4pp

Don’t forget to use the . 4pp extension or you’ll get an error message, since the preproces-
sor won’t be able to find the file. After that you’ll have a full range of stack instructions at
your disposal to manipulate the string stack. It allows you to do things like this:

include 4pp/lib/standard.4pp
:macro _fac >4> >3> @minus Qadd @sign Q@if @drop
>3> @mul >3> >>> 1 Qadd <3< _fac ;

:macro __fac >>> 1 @swap >>> 1 @add >>> 2 @max
<4< >>> 2 <3< _fac ;

:macro factorial >#> __ fac Q@drop <1< #1# ;

." 10! = " factorial 10 . cr

Which is nothing less than calculating the factorial of 10 at compile time! Now let’s break
this thing down, how does it work?

e factorial puts ’10” on the stack and calls ___fac. After that, it takes the number
from the string stack and prints it;

e __ facputs”1” on the stack, swaps both values and puts 1" on the stack once more.
Then it adds TOS and 20S*, puts 3" on the stack and takes the largest value (like
"MAX’). TOS is stored in register 4 and the value 72" is stored in register 3. Then
__fac is called.

» _ fac puts the contents of register 4 and 3 on the stack, negates TOS and adds TOS
and 20S. If the result of this subtraction is not zero, the contents of register 3 are
thrown on the stack once more and multiplied. Finally, the contents of register 3 are
incremented and a recursive call to _fac is made.

4”TOS” means: “top of stack” and 20S: ”second of stack”. It is a common way to refer to the top two values.

CHAPTER 15. PREPROCESSOR LIBRARIES 301

In short, the text factorial 10 is completely consumed and replaced by the result of
the calculation. That’s cool, isn’t it?

You might ask what’s wrong with registers I and 2. Well, nothing.. But most preprocessor
libraries use at least one register themselves - which is register I by convention. For the
@rot macro this library even uses register I and 2. That means if you have stored a value
there yourself and you use one of these predefined macros, it will get clobbered - which is
very nasty. In this example, we use @swap, which uses just register 1, so register 2, 3 and
4 are free to use.

So, save yourself hours of fruitless debugging and check whether a particular macro in a
library uses a particular register before using it yourself. Finally, note the preprocessor is
powerful enough to calculate the factorial recursively using only the string stack. But that’s
quite complex, you can make your life much easier using @swap, @rot and registers.

15.3 Coroutines

Calling a subroutine in any computer language is much like launching a program on a
single-tasking operating system: you launch it, it takes control and you won’t get it back
until it relinquishes it. That’s quite different from launching a program on a multitasking
operating system. You take the control back, give it back to the running program and so on.

Wouldn’t it be nice if 4tH could do that too? Well, I may seem like magic, but it can. Take
a look at this tiny program:

include 4pp/lib/yield.4pp

: fib 0 1 yield begin dup rot + yield again ;
.fib fib begin dup 100 < while dup . yield repeat drop drop grab ;
.fibs 0 ?do .fib cr loop ;

5 .fibs

So, what happens here? ”.FIB” simply prints all Fibonacci numbers smaller than 100.
” FIBS” does that trick a number of times (5 in this case). Finally, "FIB” calculates the
Fibonacci numbers. That’s all.

It all starts simple enough: ”.FIB” calls "FIB”, which sets up the Fibonacci sequence. And
then it does something peculiar: it yields. Yielding is much like calling EXIT’, but with
one small difference: it isn’t permanent. As a matter of fact, it returns to the calling word
(the caller”), but it remembers where it was when it gave back the control, much like if it
were calling the word.

Ok, we’re now back at ”.FIB” and enter the loop with "BEGIN’, with 0 and 1 at the top of
the stack. Sure, 1 is smaller than 100, so we pass the test and print ”’1””. Now we encounter
another "YIELD”, which yields the control back to "FIB”. We enter the loop there and
calculate the next Fibonacci number - and yield again, back to ”.FIB”.

” FIB” is at '/REPEAT’ now and jumps back to 'BEGIN’, so we test and print the number
before yielding control again. And so on, until we reach the limit and jump to "GRAB”.
We will see why we need "GRAB” when we examine what’s going on.

This is heavy duty stuff. C can’t do it without using every dirty trick in the book. We can
do it in two lines of preprocessor code, so what’s the secret. It’s simple, just take a look at
section 10.14 and the definition of "YIELD”:

:macro yield r> execute ;

CHAPTER 15. PREPROCESSOR LIBRARIES 302

Whenever you yield, you take the return address of the “caller” from the return stack - just
like you would with "EXIT’. "EXECUTE’ jumps to it, but leaves its own return address on
the return stack - like a call would. In fact, the “caller” and the “callee” swap places, or -
to put it in proper perspective - we started out with ”.FIB” calling ”"FIB” and now we end
up with "FIB” calling ”.FIB”.

Now, let’s say ”.FIB” encounters ’EXIT” (which was compiled by ’;’). What do you think
is going to happen? It returns to its caller. Which is now “FIB”.

That’s not what we want. First of all, ’FIB” never ends, so we can wait ’till kingdom come
until it relinquishes control. Second, we want to return to the caller of ”.FIB”, which is
” FIBS”. Note its return address was never changed - it’s just buried beneath the return
address of "FIB”. So we get rid of it and grab control. No surprise that this is the definition
of "GRAB™:

:macro grab r> drop ;

If we had chosen to let ”.FIB” finish “normally” and relinquish control through "EXIT’
instead of "YIELD”, we wouldn’t have needed "GRAB”, of course. And the same goes for
”FIB”, if it had returned to ”.FIB” by "EXIT".

Note this is extremely powerful, but also extremely difficult to do right. Whenever control is
yielded, the stack diagram has to be exactly what the other coroutine expects. Furthermore,
you have to know at any given time what is calling what. For two words, that is feasible -
but three or more becomes increasingly difficult. It’s easy to do it wrong, but hard to do it
right.

Technically speaking, ”YIELD” does not implement coroutines, but generators. The differ-
ence between the two is that true coroutines can choose who they yield to, while generators
give you no choice - they’re always bound to one particular word. Finally, Coroutines
are also supported by an “ordinary” 4tH library, but that implementation is slower and the
optimizer may corrupt the return stack if you don’t know what you’re doing.

15.4 Interpretation

By defining just a few macros the preprocessor is capable of interpreting and executing a
sequence of user defined macros at runtime. Let’s say you want to define a constant and do
some calculations e.g.:

include 4pp/lib/interprt.4pp

:macro /line >>> 64 ;
:macro #line >>> 16 ;
:macro @push >#> ;
:macro @x @mul ;
:macro @print @eval ;

[/line Qprint] constant bl_chars
[#line Q@print] constant bl_lines
[#line /line @x @push 8 @x @print] buffer: blocks

Bottom line: everything between the brackets is interpreted. Of course, there are other
(much better) ways to achieve this, but you catch my drift. After you’ve run the preproces-
sor you will find it has expanded the source to:

CHAPTER 15. PREPROCESSOR LIBRARIES 303

64 constant bl_chars
16 constant bl_lines
8192 buffer: blocks

Note you can use built-in macros or phony variables as long as you have wrapped them
into a macro of your own. This library only uses register 1, leaving you plenty of registers
to play with.

15.5 Closures

Yes, you're reading it correctly: use can use the preprocessor to turn an archaic, low level
language like Forth into something very hip and modern. Closures are functions that carry
their own, persistent variables along. Some call them ”a poor mans objects”. Defining a
closure is very simple. It is almost like defining a structure:

include 4pp/lib/closures.4pp

\ counter creation word
:: counter (nl n2 addr --)
vars \ define closure data
var: start \ initial value
var: inc \ increment per call
end-vars { \ only cells may be used!
this -> inc ! this -> start ! \ initialise closure
{: this -> inc @ this -> start dup ? +! ;}
} \ assign default behavior

You can’t use “colon” to define a closure, you have to use the “double colon” notation.
Then you start defining the variables of the closure right away. Note you can only define
cell variables. The rest is quite straight forward: instead of struct, you use vars.
Instead of using end-struct, you use end-vars to finish your data definition.

Then we start with the initalization routine. Note the first parameter of any closure routine
is always its address (just like "DOES>’), which is put on the stack by ”{” and accessible
through "THIS”. Any additional parameters follow after that. In this case, when creating
the closure the initial value of the counter and its increment are set.

Finally, we define the run time behavior - that is the code which is enclosed by ”{:” and
;1. Done. Now let’s define a few closures of the "COUNTER” type:

5 2 sets counter counterl \ make a counter

That’s all? Yes, that’s all you need to do to create and initialize "COUNTER1”. Now let’s
call it:

counterl \ 5
counterl \ 7
counterl \ 9

First it will print ”5”, then 7 and finally ”9”. Now let’s try another "COUNTER:

13 3 sets counter counter2 \ make another counter
counter? \ 13
counter?2 \ 16
counter?2 \ 19

Now that wasn’t too hard, was it? Ok, before you start asking stupid questions, consider
this: wouldn’t you be better off with full fledged object orientation? If you answer this
question with ”yes”, read on. You’re in for a surprise.

CHAPTER 15. PREPROCESSOR LIBRARIES 304
15.6 Object orientation

We already told you that C++ started its life as a mere preprocessor. In 4tH, all that is
required to achieve almost full object orientation is a few humble preprocessor macros. If
you don’t like object orientation, that’s fine. You take the blue pill, the story ends, you
wake up in your bed and believe whatever you want to believe. But if you take the red pill,
you stay in Wonderland, and I show you how deep the rabbit hole really goes.

Object orientation comes with an abstract terminology that is incomprehensible to mere
humans, but scratch away the shiny surface and you’ll understand what it’s all about. Stay
with me.

15.6.1 Encapsulation

Object orientation defines encapsulation as “’a language construct that facilitates the bundling
of data with the methods operating on that data”. So what are we actually talking about.
Let’s start with a structure that holds the data. Now add a few fields that hold execution
tokens and you’re done. That’s your “class” definition.

Building an object is nothing more than allocating storage space for your “’class”. You can
reserve that space in static or dynamic memory. That’s the easy part. The problem is, the
fields for our execution tokens are still empty and when you “instantiate” an object, you
want these execution tokens to be initialized. The dirty trick is, you have to do that secretly
- in true object oriented tradition.

In 4tH you define a class with a class definition. A class consists of three parts, the data
definition, the ’binding” of the “methods” and information hiding, e.g.

:class Account
extends Object \ data definition
ffield: accountBalance
virtual: CheckBalance
end-extends \ data initialization

:new 500 s>f this -> accountBalance f! ;method
:virtual CheckBalance this —-> accountBalance f@ ;method
\ method binding
private{ accountBalance } \ information hiding
;class

You can only use cells in the data definition. Sorry, you have to store your strings some-
where else - we advise you to use dynamic string support®. A data definition is almost
identical to defining a structure, the only thing is you have to do it within the class defi-
nition. Object orientation also requires a thing called open recursion”, which is nothing
more than a "this” or ”self” variable, which just holds the address of the "object”. If you
stay in the realm of the standard FOOS method declaration, this is done automatically for
you.

The “method” defining words® put the address (that is always on the top of stack when an
object is invoked) on the return stack. Yes, you can still use the return stack, just think of
the "THIS” variable as the I’ in a "'DO..LOOP’ and you’ll be fine. But there are a few
pitfalls I might mention.

If you leave a method early by using ’EXIT’ you may get in trouble. We will show you
how to handle that later on. Basically, it is not much different from using "UNLOOP” when

SThe dstringt . 4th libary works pretty well.
6:NEW”, ”:DELETE”, ”:METHOD”, ”:VIRTUAL” and ”:DEFAULT".

CHAPTER 15. PREPROCESSOR LIBRARIES 305

exiting in the middle of a ”’DO..LOOP”. And for obvious reasons "DO..LOOP” doesn’t play
very well in conjuction with the "THIS” variable.

The body of a class definition is actually executed when an object is created. The con-
structor method, defined with the word ”:NEW” is part of those execution semantics, so
the floating point “property” (we call it a field) accountBalance” is set to 500. This is only
some syntactic suger, though - so you can omit that construct if you prefer. Just don’t leave
the constructor early! You’ll regret it if you try, since the actual constructor is the entire
class definition itself.

The colon definition that starts with ”:VIRTUAL” is just a :NONAME’ definition, which
leaves an execution token. ;METHOD” on its turn pokes this execution token into the
equivalent "VIRTUAL.:” field of the “class”.

Note all classes you define are in some respect subclasses from the predefined mother of
all objects, "Object". So if the superclass of a class isn’t a class you defined, it’s always
"Object". That’s it. We’re done, now let’s use it.That’s it. We’re done, now let’s use it.

fvariable myBalance \ define an FP variable
instance Account myAccount \ create an Account object

The "INSTANCE” word creates an object on the heap. Well, not just that; it also secretly
calls "Account”, so the object is properly initialized. It also passes the address of the newly
created object to "Account”, so it knows what to initialize. The curly braces in "Account”
make sure that "THIS” works.

myAccount => CheckBalance myBalance f! \ now pass a message
myBalance f@ f. cr \ and store the result

You pass a message to an object by using the ”=>" operator. You can also use an “adjec-
tive””. E.g. you can write the same piece of code like this if you want:

myAccount -> virtual CheckBalance myBalance f!
myBalance f@ f. cr

If you use *->’ on its own you’ll just end up with the address of the methods field. When “a
message is passed”’, a “method is invoked”. Passing a message” means calling the object
by name and passing all parameters. The object retrieves the reference of the actual method
and executes it: that’s the ”invocation of a method”. In 4tH, "methods” can be ’virtual”,
which means you can store another execution token in that field at any time.

When a "method” is ”invoked”, 4tH secretly passes the address of the object - as a matter
of fact: right on the top of the stack. The “method” defining words take this address and
put it on the return stack. Now it starts making sense:

e The :NEW”, ”:DELETE”, ”:METHOD”, ”:VIRTUAL” or ”:DEFAULT word puts
the object address on the return stack;

e "THIS” retrieves that address, so now “accountBalance” points to the right place;
e The ”;METHOD” word clears the return stack;

¢ The data stack was uncluttered the whole time.

7Yes, I know: normal people would call it a cast, but allow me to introduce another, completely superfluous
concept to the already incomprehesible object orientation vocabulary.

CHAPTER 15. PREPROCESSOR LIBRARIES 306

I told you folks, it’s all smoke and mirrors. 4tH also supports static methods”, which
means you can’t change them later on and they’re automatically passed to all subclasses.
We could rewrite our previous example like this:

:class Account
extends Object \ data definition
ffield: accountBalance
method: CheckBalance
end-extends \ data initialization

:new 500 s>f this -> accountBalance f! ;method
:method CheckBalance this -> accountBalance f@ ;method
\ method binding
private{ accountBalance } \ information hiding
;class

You cannot invoke static methods with the ”=>" operator, you’ll have to use ’->” instead.
Why? Well, a static method” is just an ordinary definition, so when you call it, the address
of the object is consumed immediately. It is not expanded to an address to the “method”
field itself. Worse, static “methods” do not even need a "METHOD:” declaration, since
they’re never changed and consequently don’t require any space. It’s just a little syntactic
sugar that does absolutely nothing.

Note that if you require to call a superclass method from a derived class that you can use a
":DEFAULT" definition. The difference with a ": VIRTUAL" definition is that we can never
refer to the "original" method again once we reassign a virtual method.

With ":DEFAULT" you can®, although you can only do it once: multiple defaults for the
same virtual method are not allowed. As a matter of fact, ”:DEFAULT” secretly defines a
static method and assigns its execution token to the virfual method. So, the "original” static
method still has its own symbol in the symbol table, which you can later refer to using the
”<-” operator.

15.6.2 Subtype polymorphism

”Polymorphism” is the ability of “objects” belonging to different types to respond to “method”
or “property” calls of the same name, each one according to an appropriate type-specific
behavior. Ok, that’s a hard one to swallow. Let’s break it down. We now know that is
class” is nothing more than a structure.

In section 11.15 we already learned we could extend a structure. You may not realize
it, but you can pass a pointer to an extended structure to a word that takes a pointer to
the unextended structure and manipulate any of the fields they share - without problems.
Of course, that includes fields that hold execution tokens. That is the basic principle of
polymorphism.

Let’s investigate that one a but further. Lots of animals create sounds. Let’s make a class”
for them:

:class Animal
extends Object
virtual: Talk
end-extends
;class

8The reason is that 4tH doesn’t have a virtual method table. See:
http://en.wikipedia.org/wiki/Virtual_method_table

CHAPTER 15. PREPROCESSOR LIBRARIES 307

That’s all. A “class” with one “method”, no “’properties’” and no “binding”. You’d probably
call it a “class with uninitialized methods”, but in object orientation it is usually called an
“interface”.

Ok, now we have an animal, let’s define a dog:

:class Dog
extends Animal
end-extends

:virtual Talk ." Woof" cr ;method
;class

The "EXTENDS” word allows you to indicate from which class this type is derived - in
this case an “Animal”. In this case, we don’t add any “properties” or “methods”, but we do
bind the previously defined method ”7alk”. We can do the same thing for a cat:

:class Cat
extends Animal
end-extends

:virtual Talk ." Meow" cr ;method
;class

If we now create a “cat” object and a ”dog” object we can make them talk in their own
perculiar way:

static Cat MyCat
static Dog MyDog

MyCat => Talk
MyDog => Talk

That’s what’s called "dynamic dispatch”: when a method is invoked on an object, the object
itself determines what code gets executed. You can take that a step further by defining e.g.
a figure:

:class figure \ define an empty class figure
extends Object \ with no properties and two
virtual: surface \ uninitialized methods

virtual: outline
end-extends
;class

Yes, that’s an “interface”. Now let’s define a rectangle:

:class rectangle \ define a subtype rectangle
extends figure \ with two specific properties
field: _width \ and a private method

field: _height

method: double
end-extends

\ now initialize surface and outline
:method double 2% ;method
:virtual surface this -> _width @ this -> _height @ * ;method
:virtual outline
this -> _width @ this -> double

CHAPTER 15. PREPROCESSOR LIBRARIES

this -> _height @ this -> double +

;method

308

private{ double } \ make method private

;class

Note the method “double” is private, which is means it can only be used within the class
itself. That’s why we made it a “static” method, because it’s not gonna be redefined any
time soon. And let’s also define a circle while we’re at it:

:class circle
extends figure
field: radius
method: pix
end-extends

:method pix 103993 33102 %/ ;method

-

\

define a subtype circle
with one specific property
and a private method

now initialize surface and outline

:virtual surface this -> radius @ dup * this —-> pix ;method

:virtual outline this -> radius @ 2x

this -> pi* ;method

private{ pix } \ make method private

;class

Both subclasses have very different properties, e.g. “radius” has very little meaning in the
context of a rectangle. However, they do share some methods, so if we instantiate them,
we can “ask” them to calculate their surface - or their outline:

static rectangle MyRectangle
static circle MyCircle

4 MyRectangle -> _width !
5 MyRectangle -> _height !
MyRectangle => surface . cr
MyRectangle => outline . cr

25 MyCircle -> radius !
MyCircle => surface . cr
MyCircle => outline . cr

Nothing to it - if you know what’s under the hood.

15.6.3 Inheritance

make a rectangle instance
make a circle instance

initialize the rectangle

use both methods

initialize the circle
use both methods

The final feature true object orientation requires is inheritance. Inheritance is a way to reuse
code, which means that classes can inherit attributes and behavior from pre-existing classes
called “superclasses”. So, how is this done in 4tH? Let’s define a traffic light, a simple one:

:class two-light
extends Object

field: Red

field: Green
field: State
field: #1lights
field: Description

method: Show

method: Configure

virtual: Switch
end-extends

P g G

create a two light traffic light

red color string

green color string

state of the traffic light
number of lights
description of lights

show the current state
configure a traffic light
change to the next state

CHAPTER 15. PREPROCESSOR LIBRARIES 309

Ok, this is our traffic light, the one you find on pedestrian crossings. It’s got a red light and
a green light - which totals two lights. It’s got a state so we can see what light is on at any
time and a few methods. ”Switch” makes it change from one state to another, ”Configure”
sets it up and ”Show” shows the traffic light.

Now let’s initialize our object:

:new \ set the colors
s" Red" this -> Red dup ds.init ds.place
s" Green" this -> Green dup ds.init ds.place
\ we need a table of descriptions
here [’] Green , [’] Red , here this -> Configure
;method \ now configure it

Here we see a nice example of how we can make dynamic strings work for object orien-
tation with very little trouble. We already concluded that it has two lights, so no surprises
there and we configure it by calling the ”Configure” method. This method manipulates
a pointer named “Description” which points to an unnamed table which we’ll use in the
”Show” method:

:method Show \ show the current color
cells this —> Description @ + @c this + ds.count type cr
;method \ note we use the string offset

On a ”method” level it just takes an integer, representing the “State” of our traffic light.
Next we fetch the item from the table, which is the offset to the appropriate “property”
of the object”. So we add this offset to the current object address and fetch its contents.
Those contents point to a string in dynamic memory, which we can type. Phew! Job done.
The rest is straight forward:

:virtual Switch
this -> State dup @ dup \ get the current state
this -> Show 1+ \ show it, go to next state
this -> #lights @ mod swap ! \ and set it
;method \ assign it to the Switch method
\ free the green and red light
>

:delete this -> Green ds.free this -> Red ds.free ;method

The ”:DELETE” method is a destructor, which frees the memory taken by the "lights” and
finally its own, since that behavior is inherited from the mother of all classes “Object”.
The ”Switch” method not only reads property “State”, it also updates it, so it completely
encapsulates it. Nothing else, but this class alone, has any business to do with “State”, so
we can make it private. BTW, that also goes for "#lights”, ”Description” and ”Show”:

private{ State #lights Description Show }

Now let’s make a heavier duty traffic light:

:class three-light \ create a three light traffic light
extends two-light \ based on the two light traffic light
field: Yellow \ add the color Yellow

end-extends

We only need to add the yellow light, don’t we? Sure, we need to add a string for the yellow
light:

CHAPTER 15. PREPROCESSOR LIBRARIES 310

inew \ set additional color
s" Yellow" this -> Yellow dup ds.init ds.place

The configuration may be a bit different, so we have to make and configure a new one:

\ we need a new table of descriptions
here [’] Green , [’] Yellow , [’] Red , here this -> Configure
;method

But the rest is just about the same, is it? Not quite. If we destroy our traffic light, we don’t
want to leave a yellow light on the sidewalk:

:delete this —-> Yellow ds.free ;method

Yes, we destroy our yellow light first, then the rest of the traffic light (including the traffic
light itself) is destroyed by the superclass destructor, which is called automatically. A two-
light traffic light won’t behave the same as a three-light traffic light. But we only need to
change the bits that are different. The rest is inherited. If it’s a three-light traffic light, it
will behave accordingly. You can see that when you actually use the classes:

instance two-light DontWalk \ define a pedestrian light
." A pedestrian traffic light:" cr cr
DontWalk => Switch \ go to the next state four times

DontWalk => Switch
DontWalk => Switch
DontWalk => Switch

DontWalk delete cr \ now destroy it

instance three-light TrafficLight \ define a normal light

." A normal traffic light:" cr cr

TrafficLight => Switch \ go to the next state four times

TrafficLight => Switch
TrafficLight => Switch
TrafficLight => Switch
TrafficLight delete cr \ now destroy it

Now you think: “how does he do that?” Well, frankly: by cheating! If you expand the
source, you will see what is actually going on:

[7] two-light [’] three-light [’] ~three-light (~~init)

It passes three execution tokens to a secret helper word that invokes the superclass” initial-
ization before invoking the initialization of the “subclass”. If that superclass is a subclass
itself, it will call that superclass initialization and so on. When a superclass has finished
it relinquishes control to the subclass, so it can do its thing. Finally, the original subclass
itself gets the chance to override any “properties” or “methods” it sees fit - and then we’re
done. Hurray, we got an object - initialized and all.

It’s like you make a painting and paint over it a few times. What you see is the final picture.
You’re unaware of what is hidden under the various layers of paint - but that doesn’t mean
it’s not there or it was never painted. It’s that simple.

CHAPTER 15. PREPROCESSOR LIBRARIES 311

15.6.4 Using curly braces

Early adopters of FOOS may remember that in the past curcly braces were everywhere -
but we’ve got rid of most of them, fortunately. Still, there are some rare situations where
they are indispensable:

* When you want to leave a method early;
* When you want to switch instances within a method;
* When you want to override a virtual method of a single instance;

* When you want to override a virtual method using a token.

So, first: what are curly braces? Curly braces put the object pointer on the return stack -
and take it off. When you define a method, e.g. using ":METHOD” and ”;METHOD”, this
is done automatically for you - so you don’t need to bother. But, if you ever find yourself
in one of these situations, you most certainly will.

15.6.4.1 Leaving a method early

If you exit a method early, you bypass the ”;METHOD” word, so you’ll have to take care
of that object pointer yourself:

:method feed (——)
this -> hunger @ unless ." tama bats the offered food away" cr } ;then
." tama happily devours the offered food" cr
this -> hunger off 5 this -> digestion !

;method

Here, using "UNLESS .. ;THEN”, an early exit is forced - and hence, you have to add a
”}” just before the *; THEN’ in order to take that object pointer from the return stack.

15.6.4.2 Switching instances within a method
Here we have a different situation:

:virtual clone this <- clone } {
this => displayCLON this
;method

This is quite a tricky piece of code. We reimplement a virtual method by calling its own
default method, which essentially clones the current instance. It returns the cloned instance
and we want to continue with that one.

The closing curly brace takes the current object pointer from the return stack. Then the
opening curly bracket takes the cloned object pointer from the data stack and puts it on
the return stack. Hence, the subsequent invocation of ’displayCLON” is performed by the
cloned instance.

CHAPTER 15. PREPROCESSOR LIBRARIES 312

15.6.4.3 Overriding a virtual method of a single instance

Sometimes, you want to change a virtual method on an existing instance. E.g. let’s say you
defined this one:

static button foo \ define a static button

Let’s say you want to change its "TDRAW” method during runtime. Now, how do you do
that. Simple:

bar { :virtual draw reverse this <- draw normal ;method }

How does that work? It’s easy. "BAR” leaves its pointer on the stack - and ”{” puts it on
return stack. The virtual method leaves an execution token on the stack that is applied by
”:METHOD?” to the current object pointer on the return stack - just when initializing an
ordinary instance. So this work - nothing special. The closing curly brace cleans up the
mess. That’s all.

15.6.4.4 Override a virtual method using a token

Now let’s say we want to define an execution token we intend to use on a virtual method
- may be even several virtual methods. Let’s say a cloning method. However, there is no
such thing as a ”:VIRTUALTOKEN” word. So how do we do this. It’s simple: just use
":TOKEN’:

:token {clone} { (al —- a2)
this allocated dup allocate abort" Cannot create object"
tuck this swap rot smove

b

For applying it to a virtual method simply use the "OVERRIDES” word. Let’s say we want
to apply its execution semantics to a virtual "CLONE” method:

{clone} overrides clone

That’s it. Done. Since you don’t use the method words, you have to add this behavior
yourself. There’s no magic here.

15.6.5 Lazy initialization

Lazy initialization is the tactic of delaying the creation of an object, the calculation of a
value, or some other expensive process until the first time it is needed. It is a kind of lazy
evaluation that refers specifically to the instantiation of objects or other resources. You’ll
find these a lot when using singleton or multiton design patterns.

In most OO languages, the name of the class itself serves as a placeholder for the object.
Since that is the name of the actual constructor - and hence is executed - that is not an
option in FOOS. Instead, we have "NOTHING”.

You can use this only in conjunction with static methods - which is fairly obvious, since
there is no way to invoke a virtual method without an actual object. Of course, you can’t
access any properties as well - they 're not there. What do you want?

Note that since the value of "NOTHING” is equal to *(ERROR)’ you can create some pretty
expressive code in combination with methods that use the latter as an error value:

CHAPTER 15. PREPROCESSOR LIBRARIES 313

:method getFruit

2dup types —-> hget Nothing =

if 2dup new Fruit -rot types -> hput else 2drop then
;method

In this case, a new instance is only created, when its value is not in the hashmap. Calling
the static method above is done like this:

s" Apple" Nothing —-> getFruit

Agreed, FOOS is a bit different, but with alternative constructs it allows you to implement
many OO design patterns without sacrificing ease of use or clarity.

15.6.6 Forward declaration of classes
The problem is closely related to "’DEFER’ - where you have to use a word before it can
be declared. Later, when you’ve actually defined the word, you use IS’ to set the deferred

word to the actual execution semantics. The equivalent of "'DEFER’ is "CLASS”, e.g.

class to_be_defined_later

If you need to refer to properties of this class - before its actually defined - it’s a good idea
to define an interface and subclass it later. Now you can allocate instances of this class in
exactly the same way as you normally would.

The next step is to define the class now - but you'll have to use a different name, e.g.:

:class actual_definition
extends Object
method: myMethod
end-extends

(insert your method definitions here)
;class

Right after you’ve defined that class you resolve the forward declaration:
resolve to_be_defined_later actual_definition

That’s all.

15.6.7 Determining the type and size of an object
You can determine the type of an object by simply fetching it, e.g.:

MyCircle type(@

You can compare it to a predetermined class by using the "TYPEOF” word:

typeof circle

You can also determine the superclass of an object:

CHAPTER 15. PREPROCESSOR LIBRARIES 314

MyCircle parent@

And its counterpart on the class side is used like this:

parentof circle

You can compare these values with the *=" word, nothing special. If you want to go really
deep and decide whether some interface was incorporated somewhere down the line, you
can do that too:

MyCircle type@ YourCircle type@ derived?

This will leave a’TRUE’ flag if "MyCircle” was derived from the class of the object ”Your-
Circle”. Usually you may want to check against a predefined class, like this:

MyCircle type@ kindof circle =

The value all these words return is actually an execution token of the class, so you can use
it when you e.g. want to clone objects. It is secretly stored in a hidden field of the class.
Of course, what’s missing there is the size of a class. You can determine that one with the
”SIZEOF” word, e.g.

sizeof circle

If you’ve allocated objects on the heap, getting their sizes isn’t rocket science either:

MyCircle allocated

For static objects there is no way to determine their sizes (in true 4tH fashion), but that will
not be a problem, because you won’t be allocating them in a userdefined word.

15.6.8 Namespace pollution

Since 4tH has only one namespace, it can get a bit tight when using FOOS. So, these are
the rules to avoid namespace clashes:

1. Don’t use any 4tH predefined names;
2. Don’t use any names which are claimed by libraries you imported;
3. Don’t use any FOOS predefined names;

4. Don’t start your names with a slash, underscore or tilde. These are used for name
mangling®;

5. Don’t think you can use names up to the full length 4tH allows. Name mangling,
remember?

You can reuse private names, though, and you can - of course - reimplement virtual meth-
ods.

“https://en.wikipedia.org/wiki/Name_mangling

CHAPTER 15. PREPROCESSOR LIBRARIES 315

15.7 This is the end

This is the end of it. If you mastered all we have written about 4tH, you may be just as
proficient as we are. Or even better. In the meanwhile you may even have acquired a taste
for this strange, but elegant language. If you do, it may be time to step up to Forth, since
4tH does have it limitations. This is in no way an obligation. If you feel comfortable with
4tH, please do stick with it!

If you need any help, you can contact us by sending an email to:

the.beez.speaks@gmail.com

Note that we do appreciate any input, so if you’ve written a state of the art application in
4tH, used 4tH in some special way or do have any comments or suggestions on 4tH, we’d
like to hear from you! We do also have a web-site:

http://thebeez.home.xs4all.nl/4tH/

You will find there lots of documentation and news on 4tH. We’d like to thank you for
putting so much effort in 4tH. We tried to be of assistance and we hope we did it well!

Part 111

Reference guide

316

Chapter 16

Glossary

This glossary contains all of the word definitions used in version 3.64 of 4tH. The defini-
tions are presented in order of their ASCII sort. Availability of the word in the appropriate
ANS-Forth wordset is listed. This does not mean any conformance to the ANS-Forth defi-
nition.

PRONUNCIATION: Natural-language pronunciation if it differs from English.

INCLUDE: Following library file provides this word.

COMPILES TO: Describes the transformation of the word to token(s) without peephole
optimization. Compiler directives will lack this section.

SYNTAX: Describes definition characteristics if non-conformance should lead to
a compilation error.

<char> | Character

<string> | String constant, delimited by spaces
<literal> | Expression which compiles to LITERAL (n)
<name> | String of characters, stored in the symboltable
<space> | Space character

<word> | Any valid 4tH word.

COMPILER: Describes special actions the compiler takes when compiling this word.

STACK EFFECTS: Describes the action of the tokens on the parameter stack at runtime.
The symbols indicate the order in which input parameters have been
placed on the stack. Two dashes indicate the execution point. Any
parameters left on the stack are listed. In this notation, the top of the
stack is to the right.

n 32 bits signed number
c 8 bits character

f boolean flag

fam | file access method

h file handle (stream)

d double number (2 cells)

sp stack pointer Stack Area

X address of a cell Variable Area
addr | address of a character Character Segment
Xt execution token Code Segment

317

CHAPTER 16. GLOSSARY 318

FLOATING: Describes the action of floating point words on the floating point stack
at runtime. The symbols' indicate the order in which input parameters
have been placed on the stack. Two dashes indicate the execution
point. Any parameters left on the floating point stack are listed. In this
notation, the top of the stack is to the right.

FORTH: Describes the deviation of 4tH from ANS-Forth and gives suggestions
for porting Forth programs.

'y stands for real number.

CHAPTER 16. GLOSSARY 319

! CORE
PRONUNCIATION: store
COMPILES TO: 1(0)

STACK EFFECTS: nx —

Stores n in the variable at address x.

CORE

PRONUNCIATION: number-sign

COMPILES TO: #(0)

STACK EFFECTS: nl —n2

FORTH: In Forth a double number is required.

Generate from nl the next ASCII character which is placed in an output string, stored in

PAD. Result n2 is the quotient after the division by BASE, and is remained for further
processing. Used between <# and #>.

#! 4TH
SYNTAX: #!<space><string>

The remainder of the line is discarded. This word is used to start a 4tH source program
from a Unix type shell. An alias for \.

#> CORE

PRONUNCIATION: number-sign-greater

COMPILES TO: #> (0)

STACK EFFECTS: nl — addr n2

FORTH: In Forth a double number is required.

Terminates numeric output conversion by dropping nl, leaving the address in PAD and
character count n2 suitable for TYPE.

#S CORE
PRONUNCIATION: number-sign-s
COMPILES TO: #S (0)

STACK EFFECTS: nl —n2

FORTH: In Forth a double number is required.

CHAPTER 16. GLOSSARY 320

Generates ASCII text in PAD by the use of # until a zero number n2 results. Used between
<# and #>.

#TIB CORE EXT
PRONUNCIATION: number-t-i-b
INCLUDE: obsolete.4th
STACK EFFECTS: —X

X is the address of a cell containing the number of characters in the terminal input buffer
(see /TIB).

’ CORE

PRONUNCIATION: tick

COMPILES TO: LITERAL (<argument of symbol>)

SYNTAX: ’<space><name>

STACK EFFECTS: —XxIxtln

FORTH: In Forth you can determine the address of variables, constants, etc.

In 4tH the contents of the symboltable entry is returned. Of course
the token addresses of built-in primitives cannot be determined either.
E.g. use

— 14 J—
instead of
[t

Compile the value contents of the symboltable entry identified as symbol <name> as a
literal.

(CORE FILE
PRONUNCIATION: paren

SYNTAX: (<space><string>)

Ignore a comment that will be delimited by a right parenthesis. May occur inside or outside
a colon-definition. A blank after the leading parenthesis is required.

(ERROR) 4TH
COMPILES TO: LITERAL (<largest negative integer>)

STACK EFFECTS: —n

CHAPTER 16. GLOSSARY 321

Returns 4tHs internal error-flag. This number cannot be printed. Usually -2/31.

)

COMPILES TO:

STACK EFFECTS:

FORTH:

4TH

EQO (0)

OBRANCH (<address of THROW>)
LITERAL (<M4ASSERT>)
THROW (0)

f—

Similar constructions are available in GForth and Win32Forth.

If flag f is FALSE, the program will terminate with an error. Its compilation is dependant
on the presence of [ASSERT] (see: [ASSERT] and ASSERT().

&

PRONUNCIATION:
COMPILES TO:

STACK EFFECTS:

CORE
star

*(0)

nl n2 —n3

Leave the product n3 of two numbers nl and n2.

*/
PRONUNCIATION:

COMPILES TO:

STACK EFFECTS:

CORE
star-slash

>R (0)

*(0)

R> (0)

/(0)

nl n2n3 —n4

Leave the ratio n4 = n1*n2/n3.

*MOD

PRONUNCIATION:

COMPILES TO:

CORE
star-slash-mod
>R (0)

*(0)

R>(0)

CHAPTER 16. GLOSSARY 322

/MOD (0)

STACK EFFECTS: nl n2n3 —n4n5

Leave the quotient n5 and remainder n4 of the operation n1*n2/n3.

*CONSTANT 4TH

SYNTAX: <literal><space>*CONSTANT<space><name>

COMPILER: The previously compiled literal is taken as an argument for *CON-
STANT. The instruction pointer is decremented, actually deleting the
literal.

A defining word used to create word <name>. When <name> is later executed, it will
multiply the top of the stack with the value of <literal>.

+ CORE
PRONUNCIATION: plus
COMPILES TO: +(0)

STACK EFFECTS: nl n2—n3

Leave the sum n3 of n1+n2.

+! CORE
PRONUNCIATION: plus-store
COMPILES TO: +! (0)

STACK EFFECTS: nX—

Add n to the value in variable at address x.

+CONSTANT 4TH

SYNTAX: <literal><space>+CONSTANT<space><name>

COMPILER: The previously compiled literal is taken as an argument for +CON-
STANT. The instruction pointer is decremented, actually deleting the
literal.

A defining word used to create word <name>. When <name> is later executed, it will add
the value of <literal> on the top of the stack.

+FIELD FACILITY EXT

CHAPTER 16. GLOSSARY 323

SYNTAX: STRUCT<space><literal><space>+FIELD<space><name><space>END-
STRUCT<space><name>
COMPILER: Take two previous compiled literals. The last literal is added to the

first and recompiled. The first literal is the value of a named +CON-
STANT. The instruction pointer does not change.

FORTH: This is a Forth-2012 word.

Create a field for STRUCTURE implementations. The created fieldname is an +CON-
STANT that memorizes the current offset (see: +FIELD, /FIELD, STRUCT, END-STRUCT).

+LOOP CORE

PRONUNCIATION: plus-loop

COMPILES TO: +LOOP (<address of matching DO token>)
SYNTAX: DO<space>..<space>+LOOP

STACK EFFECTS: n—

Used in the form DO .. n1 +LOOP. At runtime, +LOOP selectively controls branching back
to the corresponding DO based on n1, the loop index and the loop limit. The increment nl
is added to the index and the total compared to the limit. The branch back to DO occurs
until the new index is equal to or greater than the limit (n > 0), or until the new index is less
than the limit (n < 0). Upon exiting the loop, the parameters are discarded and execution
continues ahead.

+PLACE COMUS

COMPILES TO: COUNT (0)
+(0)
PLACE (0)

STACK EFFECTS: addrl n addr2 —

Copies the string at address addr1 with count n to address addr2.

+TO 4TH

COMPILES TO: VARIABLE (<address of value>)
+! (0)

STACK EFFECTS: n—

SYNTAX: +TO<space><name>

Add n to the value.

CHAPTER 16. GLOSSARY 324

+X/STRING XCHAR EXT
INCLUDE: xchar.4th

STACK EFFECTS: addrl nl — addr2 n2
FORTH: This is a Forth-2012 word.

Step forward by one xchar in the buffer defined by addrl nl. addr2 n2 is the remaining
buffer after stepping over the first xchar in the buffer.

) CORE

PRONUNCIATION: comma

COMPILES TO: , (<literal>)

SYNTAX: <literal><space>,

COMPILER: The previously compiled literal is changed into a NOOP instruction.

The instruction pointer is not incremented.

FORTH: Forth pops a value from the stack. This is not possible in 4tH. Instead
the previously compiled literal has its codefield changed to NOOP.

Store the literal into the next available location.

. COMUS

COMPILES TO: ," (<address of string constant>)

SYNTAX: ,"<space><string>"

FORTH: Compilation characteristics are quite different. 4tH compiles only the

address, Forth compiles the entire string.

Compile the string, delimited by " in the String Segment and leave the offset as the address
of a string constant (see: @C).

,"H 4TH

COMPILES TO: ," (<address of null string constant>)

Compile a null string in the String Segment and leave the offset as the address of a string
constant (see: @C).

ol 4TH
COMPILES TO: ," (<address of string constant>)

SYNTAX: JI<space><string>|

CHAPTER 16. GLOSSARY 325

Compile the string, delimited by | in the String Segment and leave the offset as the address
of a string constant (see: @C).

- CORE
PRONUNCIATION: minus
COMPILES TO: -(0)

STACK EFFECTS: nln2-—n3

Leave the difference of nl - n2 in n3.

-> 4TH
COMPILER: The instruction pointer is not incremented. In fact, -> is a dummy.
SYNTAX: <name><space>-><space><name>

Separation between a structure and its member.

-ROT COMUS
COMPILES TO: ROT (0)
ROT (0)

STACK EFFECTS: nl n2n3 —n3nl n2

Rotate top stack item below the next two items.

-TRAILING STRING
PRONUNCIATION: dash-trailing
COMPILES TO: -TRAILING (0)
STACK EFFECTS: addr nl — addr n2

Adjusts the character count nl of a string beginning address to suppress the output of
trailing blanks, i.e. the characters from addr+n1 to addr+n?2 are blanks.

-TRAILING-GARBAGE XCHAR EXT
INCLUDE: anstools.4th
STACK EFFECTS: addr nl — addr n2

FORTH: This is a Forth-2012 word.

CHAPTER 16. GLOSSARY 326

Examine the last xchar in the string addr n1 - if the encoding is correct and it represents a
full xchar, n2 equals n1, otherwise, n2 represents the string without the last (garbled) xchar.
-TRAILING-GARBAGE does not change this garbled xchar.

. CORE
PRONUNCIATION: dot
COMPILES TO: .(0)

STACK EFFECTS: n—

Print a number to the current output device, converted according to the numeric BASE. A
trailing blank follows.

M CORE

PRONUNCIATION: dot-quote

COMPILES TO: ." (<address of string constant>)
SYNTAX: "<space><string>"

Compiles string in the String Segment with an execution procedure to transmit the string to
the selected output device.

o CORE EXT
PRONUNCIATION: dot-paren

COMPILES TO: ." (<address of string constant>)
SYNTAX: .(<space><string>)

Compiles string in the String Segment with an execution procedure to transmit the string to
the selected output device. An alias for .".

.R CORE EXT
PRONUNCIATION: dot-r
COMPILES TO: .R(0)

STACK EFFECTS: nln2—

Print the number n1 right aligned in a field whose width is n2 to the current output device.
No following blank is printed.

S TOOLS

PRONUNCIATION: dot-s

CHAPTER 16. GLOSSARY 327

INCLUDE: anstools.4th

STACK EFFECTS: —

Copy and display the values currently on the data stack.

R 4TH
COMPILES TO: ." (<address of string constant>)
SYNTAX: I<space><string>|

Compiles string in the String Segment with an execution procedure to transmit the string to
the selected output device.

/ CORE
PRONUNCIATION: slash
COMPILES TO: /(0)

STACK EFFECTS: nl n2—n3

Leaves the quotient n3 of n1/n2.

/CELL COMUS
COMPILES TO: LITERAL (<size of a cell>)
STACK EFFECTS: —n

Returns the size of a cell in address units.

/CHAR COMUS
COMPILES TO: LITERAL (<size of char>)

STACK EFFECTS: —n

Returns the size of a character in address units.

/CONSTANT 4TH
SYNTAX: <literal><space>/CONSTANT<space><name>

COMPILER: The previously compiled literal is taken as an argument for /CON-
STANT. The instruction pointer is decremented, actually deleting the
literal.

CHAPTER 16. GLOSSARY 328

A defining word used to create word <name>. When <name> is later executed, it will
divide the top of the stack by the value of <literal>.

/FIELD 4TH
SYNTAX: STRUCT<space><literal><space>/FIELD<space>END-STRUCT<space><name>
COMPILER: Take two previous compiled literals. The last literal is compared to

the first and the larger one of the two is recompiled. The instruction
pointer does not change.

Create a field for UNION implementations (see: +FIELD, /FIELD, STRUCT, END-STRUCT).

/MOD CORE

PRONUNCIATION: slash-mod
COMPILES TO: /MOD (0)

STACK EFFECTS: nln2—n3n4

Leave the remainder n3 and quotient n4 of n1/n2.

/PAD 4TH

COMPILES TO: LITERAL (<size of PAD>)
STACK EFFECTS: —n

FORTH: Equivalent to:

/PAD S" /PAD" ENVIRONMENT? DROP ;

Returns the size of PAD.

/STRING STRING
PRONUNCIATION: slash-string
COMPILES TO: SWAP (0)
OVER (0)
-(0)
>R (0)
+(0)
R> (0)

STACK EFFECTS: addrl nl n2 — addr2 n3

CHAPTER 16. GLOSSARY 329

Adjust the character string at addr1 by n2 characters. The resulting character string, speci-
fied by addr2 n3 , begins at addr1 plus n2 characters and is nl minus n characters long.

/TIB 4TH
COMPILES TO: LITERAL (<size of TIB>)

STACK EFFECTS: —n

Returns the size of the terminal input buffer.

0< CORE
PRONUNCIATION: zero-less
COMPILES TO: 0< (0)
STACK EFFECTS: n—f

Leave a TRUE flag if number n is less than zero (negative), otherwise leave a FALSE flag
in f.

0<> CORE EXT
PRONUNCIATION: zero-not-equals
COMPILES TO: 0<> (0)

STACK EFFECTS: n—f

Leave a TRUE flag if number n is not equal to zero, otherwise leave a FALSE flag in f.

0= CORE
PRONUNCIATION: zero-equals
COMPILES TO: 0= (0)

STACK EFFECTS: n—f

Leave a TRUE flag if number n is equal to zero, otherwise leave a FALSE flag in f.

0> CORE EXT
PRONUNCIATION: zero-greater
COMPILES TO: 0> (0)

STACK EFFECTS: n—f

CHAPTER 16. GLOSSARY

Leave a TRUE flag if number n is greater than zero (positive), otherwise leave a FALSE

flagin f.

1+
PRONUNCIATION:
COMPILES TO:

STACK EFFECTS:

Increment n by 1.

1-
PRONUNCIATION:
COMPILES TO:

STACK EFFECTS:

Decrement n by 1.

2!
PRONUNCIATION:
INCLUDE:

STACK EFFECTS:

Store the cell pair nl n2 at x, with n2 at x and n2 at the next consecutive cell.

2%
PRONUNCIATION:
COMPILES TO:

STACK EFFECTS:

CORE
one-plus
+LITERAL (1)

n—n+l

CORE
one-minus
+LITERAL (-1)

n—n-1

CORE
two-store
anscore.4th

nln2x —

CORE

two-star
*LITERAL (2)

n—n*2

Multiply n by 2. Performs a left shift.

2/
PRONUNCIATION:
COMPILES TO:

STACK EFFECTS:

CORE
two-slash
2/ (0)
n—n/2

CHAPTER 16. GLOSSARY 331

Divide n by 2. Performs a right shift.

2>R CORE EXT
PRONUNCIATION: two-to-r
COMPILES TO: >R (0)

>R (0)

STACK EFFECTS: nln2—

FORTH: Forth swaps both values before transfering them to the return stack.

Transfer cell pair nl n2 to the return stack.

2@ CORE
PRONUNCIATION: two-fetch
INCLUDE: anscore.4th

STACK EFFECTS: X—nln2

Fetch the cell pair nl n2 stored at x. n2 is stored at x and n1 at the next consecutive cell.

2DROP CORE

PRONUNCIATION: two-drop

COMPILES T