Development of M odelling Framewor ks and Viewpointswith
Kitalpha

Benoit Langlois
Thales Global Services

Meudon-La-Forét, France
benoit.langlois@thalesgroup.c:

Abstract

A common need in system, software, and hardwarmeagng is

to describe system architectures, especially inashelimg domains
such as aeronautics, defence or telecommunicatiitepha is

an environment to develop and execute MBE (ModeleBa
Engineering) workbenches for description of systeohitecture.
Kitalpha uses the DSL technique in order to devalogh devel-
opment environments accurately, quickly, and saf€his paper
presents the main features of Kitalpha and leskmrsed from a
DSL-based development.

Categoriesand Subject Descriptors

D2.2 [Design Tools and Techniques]: Computer-aided software
engineering (CASE); D2.6 Pfogramming Environments]:
Textual environments; D.3.2Pfogramming Languages]: Lan-
guage Classifications — Very high-level languages.

General Terms: Design, Languages.

Keywords: Architecture Description; Architecture Framework;
DSL; Eclipse; Kitalpha; PolarSys; Viewpoint

1. Introduction

In system, software, hardware engineering, a comnesd dur-
ing the phases of analysis and design is to desthié architec-
ture of a system. Several standards have beerligs&bto define
a shared notation, such as the UML [10], ISO/IEQMP stand-
ards [6], NAF [9] or DoDAF [1]. Different categoseof tools
implement those standards: general purpose toals as UML
tools like Papyrus [11] which address multiple #&estture stand-
ards, specialized tools which address a reducedfss&andards,
and DSL [7][12] (Domain-Specific Language)-basedIgospe-
cialized for architecture description. Kitalpha astool which
belongs to this last category.

Kitalpha is an Eclipse modelling project of the &8lys [13]
Working Group [2]. It is dedicated to implement retichg
frameworks and viewpoints, and this in coherenc¢h vihe
ISO/IEC 42010 standard for description of systemhigéecture.
Kitalpha provides both a development and runtimérenment to
create and execute rich MBE workbenches (e.g.joedivith
diagrams, documentation, import/export, model ti@msation /
analysis / validation) for system / software / heade architects
and engineers in small- to large-scale projects.

Kitalpha was initiated by Thales to develop anda@n€apella
[4], a tool for system engineering. But Kitalphageneric enough
to implement different architecture framework stams (e.g.,

Daniel Exertier
Thales Global Services

Meudon-La-Forét, France
danielexertie @thalesgroup.co

Boubekeur Zendagui
Obeo

Gif-Sur-Yvette, France
boubekeur.zendagui@obe:

TOGAF/MODAF), proprietary method or domain-specifiork-
benches in the MBSE (model-based systems engingeadmtext.
Kitalpha is a foundation tool. Indeed, above theecarchitec-
ture description of a system, the purpose is terites engineer-
ing specialities (e.g., the non-functional conceofissafety and
performance), up to architecture evaluation tolifaté the deci-
sion process of architecture alternatives for cempystems in
domains such aeronautics, communication, or traitespan.

This paper is structured as follows. Section 2 gmesKitalpha
in the context of the ISO/IEC 42010 standard. $ec8 focuses
on the DSL solution adopted by Kitalpha. Sectiqordvides a set
of lessons learned with Kitalpha about DSL. Sec@oncludes.

2. Anenvironment to develop and execute MBE
workbenches

Kitalpha is an environment to develop and execu&EMvork-
benches to describe system architecture. Kitalphzased on the
ISO/IEC 42010 standard. In this standard, an achite frame-
work is composed of viewpoints. Each viewpoint dibss at
least one system concern, such as non-functionatecos (e.g.,
performance, safety, security, cost), for involvekeholders
(e.g., safety engineer).

Conforming to that standard, an MBE workbench isaeshi-
tecture framework which aggregates viewpoints. Eorimple-
mentation, Kitalpha extends the definition of viewg to also
consider it as an engineering extension which comi#sits own

1.7 4 identifies 1 applies to &

Architecture
Description

Architecture
Framework 1 0.

4 identifies
has

1.2 1.0 1

System

Concern .
T 4 frames L

i e Correspondence
Viewpoint Rule

L.

Model Kind

Figure 1. Architecture description based on architecture and
viewpoints (ISO/IEC 42010)

metamodels, representations (e.g., diagrams, taldes interfac-
es), rules (e.g., validation, analysis, transforomf services and

tools to address an engineering specialty. Consglgu@an MBE
workbench is the result of a flexible assembly afecviewpoints
extended by new ones which are, in the contexbefrmjineering,
appropriate and valuable for specialty engineeng. et of all the
viewpoints provide a solution for the complete diggion of a
system.

Figure 2 depicts an MBE Workbench composed of ve-
points which define the common language, repretentaand
services to describe a system. In co-engineerimgfofmance,
Safety, and Cost viewpoints extend here this comseinWhen
viewpoint algorithms are too complex, computatians delegated
to an external tool. A bridge enables a bidirecloexchange of
viewpoint data. The complete description of a gysie based on
the union of all the viewpoints (i.e., the core adengineering
viewpoints). At the workbench level, bridges ensadernal
communications with other MBE Workbenches or foiisrak,
such as UML or other DSLs.

Complete system description

System descriptionf Co-engineering

| Coupled
« Core » ! Viewpoints | Decouplea Viewp

// MBE Workbench

Abstraction Level 1
viewpolnt

Upstream
Waorkbench

{e.g. UML DSLs, etc.
Downstream
Engineering
‘Workbench

Transition bridge.

Code.

Figure2. A MBE Workbench for architecture description

(MBE Runtime Environment)

To develop MBE workbenches, a lesson learned ate$ha
that designers must be autonomous in creating amdtaming
their own viewpoints, without coding. Developers earich them
afterward, for instance to implement algorithms. meet this
requirement, Kitalpha offers a development envirentrmade of
DSLs to assist designers and developers in theieldement
activities of architecture frameworks and viewpsinfor in-
stance, textual editors enable to declare viewpoiatamodels,
user interfaces, diagrams, or services. From tibles, genera-
tors build all the architecture framework and viewp artefacts.
For instance, the declaration of diagrams with @orepriate DSL
is translated in Sirius [14] diagrams. Figure 3 idgpthe two
parallel processes of architecture framework aewpboint devel-
opment decomposed in the activities of edition vVid®Ls, gener-
ation and packaging to create and extend an MBE<@éorch.

Kitalpha provides both development and runtime isesrto
define, use and manage architecture frameworkvigmgoints.

The main services at development time are:

¢ For Architecture Framework (AF): i) definition ohaF by
DSL, ii) generation of AF artifacts, iii) packagireg AF arti-
facts with the viewpoints it aggregates.

¢ For Viewpoint: i) definition of a viewpoint by DSLi) genera-
tion of viewpoint artifacts, iii) packaging of vigwint arte-
facts.

The main services at runtime are:

« Core services: i) system architecture descripti@h an archi-
tecture framework and its viewpoints, ii) viewpom@anage-
ment in order to monitor viewpoints, iii) activatid deactiva-
tion of a viewpoint, iv) detachment / attachmentgwpoint
data, v), migration of a viewpoint.

< Additional services, out of the scope of Kitalplharsioning,
collaborative work, reporting, architecture assesstesting,
simulation.

Archil F k

Description

MBE Workbench

Packaging
-

Generation

N) N
AF DSL [| AFGeneration [

Viewpoint Development

Description Generation Customization

Viewpoint | —

Additional
Generation |V

Development

. T

models User Interface Diagram

N
Viewpointpst [

Figure 3. DSL-based development of MBE Workbenches

3. DSL Structurein Kitalpha

The two Kitalpha DSLs, for the definition of arakiture frame-
work and viewpoints of an MBE Workbench, follow tkame

structure. An abstract syntax defines the languagedescribe
architecture frameworks and viewpoints. A concratetax ena-
bles the designers and developers to describetectinies frame-
works and viewpoints. At this stage, only a textaphtax with

Xtext [16] is supported, even if the foundations able to accept
other kinds of representations (e.g., graphicahbular). A mech-
anism of synchronisation translates concrete syirttx abstract
syntax and vice versa.

" MBE Runtime Environment

MBE Workbench

1
1
1
1
|
I R
1
1
1
1

‘ m Viewpoint BSE

MBE Development Environment

%/7
/
Diagram

L sirius

. Services

Configurati
. | Build

Figure4. DSLs to define and represent data and services

The viewpoint DSL is however more complex than dnehi-
tecture framework DSL. As show in Figure 4, the DSldecom-
posed by aspects: i) Data for the definition ofansddel, ii) User
interface for the data representation by user faxtes, iii) Dia-
gram for the graphical representation of data,Sgyvices for the

definition of business rules, services, and pararsetv) Build to
automatically generate continuous integration $grimnd v)
Configuration to tune the generation parametersrohitecture
framework and viewpoint artefacts. The abstractesyis exten-
sible. Thus, other aspects could be supported, asche defini-
tion of constraints. At the concrete syntax lexelmain textual
grammar of viewpoint aggregates textual grammargiepoint
aspects as depicted in the following picture.

Vi ewpoi nt Qual i tyAssessnment {
nanme: "QualityAssessnent”
Data QualityAssessnent. data
U QualityAssessnent. ui
Di agrans Qual i tyAssessnent . di agram
Services QualityAssessnent. services
Bui |l d QualityAssessnent. build
Configuration QualityAssessnent. conf

Figure5. Example of main editor of a viewpoint

The following figure exemplifies another editor fibre defini-
tion of viewpoint metamodel. All the common featute describe
a metamodel are covered. The words “ecore” andeltapdenti-
fies external metamodels, respectively the EclifsF and Ca-
pella metamodels. The “extends” section means ttigtcurrent
metaclass extends the definition of identified rokeisses (e.g., a
Logical Component is enriched by a QualityAssessnmeeta-
class).

Qual i tyAssessnent . data {

Cl ass QualityAssessnment {
description: "Quality Assessnent”
icon: "QualityAssessnent.gif"
extends fa. Abstract Functi on,

pa. Physi cal Conponent

Attributes:

maturitylLevel type ecore.EString

confidenceLevel enum ConfidenceLevel

assessed type ecore. EBool ean
Associ ations:

basedOn refers [0,*] QualityAssessnent

context refers [0, *] external capella. NanedEl enent

neasures contains [0,*] QualityMeasure

| a. Logi cal Conponent,

}
Class QualityMeasure {
icon: "QualityMeasure.gif"
Attributes:
criterion type ecore.EString
nmeasur eVal ue type ecore. El nt

Enuner ati on ConfidenceLevel {
"Not Assessed" , Low , Medium,
}
}

Hi gh

Figure 6. Example of Dat editor of a viewpoir

A generation function produces artefacts from theplete set
of descriptions which conform to the abstract syratad stored in
the form of Eclipse EMF models. This mapping islizeal by
software factories [5] with EGF [3] to mass produan¢efacts,
such as code, but also models, diagrams or Ecfipggns. The
software factories are selected according to aetaagplication
which declares all the parameters and resourcesdet a specific
platform (e.g., a targeted DSL, or UML; a toolinigtform; col-
laborative work or not).

4. Lessonslearned

Kitalpha incubated at Thales for several yearstedb@ing recent-
ly open sourced in the framework of the PolarSysking group.
At this stage, it is the appropriate time to prédessons learned
about DSL in this development context.

Productivity and quality The combination of DSL and gen-
eration has dramatically improved productivity b&tdevelopers
to implement viewpoints. Days become hours of dgwelent.
For instance, for a development of a metamodeks;, iderface,
diagrams, structure services, and continuous iatiegr scripts,
before it took about 8-10 days, and now about B8 Worse
before, there was not a systematic practice ofitoots integra-
tion, and sometimes it remained manual. With tleglfack from
user teams, a central team has set up all the &iond, automat-
ed code production, solved code issues, and definddtectural
rules of the produced artefacts. Boring activit@sch as writing
code of user interfaces, scripts for continuouggrdtion, or
definition of the Eclipse plugin dependencies achieved with
very few tuning. At this stage, the designers/depets are very
satisfied by a textual syntax for its efficiencygiewith highlight-
ed text, assistance, validation rules, but alsgfecise and accu-
rate descriptions) and they are not on demand athan concrete
syntax (e.g., graphical). About maintenance, theeggtors were
designed to support incrementally. For instancettfe user inter-
face description by DSL, there is a Java code meaigeng the
translation phase in order to preserve the manadk;csome
artefacts, such as a build model to produce théragous integra-
tion scripts, are replaced. The issue of migratwinen viewpoint
metadata evolve, has not been solved. Migratior ¢®dnhanually
maintained, which is a lack. Kitalpha is based afipSe and tries
to use the best tools for each aspect of developrReninstance,
for diagrams, Sirius dramatically reduces the caxipy of GMF
and there is a direct translation from the diagi2®b. to a Sirius
model. For the user interface aspect, the exigoigtion is based
on a home-solution; the next step will be the adopbf PMF
[12] which is a more powerful solution, with a reald rich met-
amodel, and with the ability, for evolution, to dat multiple
platforms (e.g., X\WT, Web).

-+-
=z Capella
[
IS PR AN
Viewpoint Viewpoint Viewpoint
Data Rules Representations

Validation
Transformation...

D(SL Set of

metamodels

User interface
Graphical...

G Kitalpha

Figure 7. Enrichment of Capella with viewpoints

Homogeneity with DSL-based workbenches The primary
need of Kitalpha was to develop viewpoints for Glapgrevious-
ly named Melody Advance in its non-open source igarsin
order to extend Capella with new kinds of dataresentations
and rules, as depicted in Figure 7. Capella is mptex MBE
workbench to describe architecture in system erging. Capella
is based on the DSL technique in order to accyratetiress and
represent this domain for demanding system enginddre first

interest of the homogeneity between Kitalpha angeta is to
share common development foundations, what enabl@somies
of scales. The second interest is that the enriohrok Capella
with viewpoints developed with Kitalpha is seamless

Achievement of the concrete syntax The combination of
DSL and generation encapsulates complexity thatsugenerally
ignore. Concrete syntax is the top of the iceberd) must be as
perfect as possible. The syntax, textual here, iestlear, light,
with clear messages, completion, especially wigdpfined piec-
es of code adapted to the context of work. Funatlpnthe syntax
to describe an aspect, for instance metamodelgagrains, must
be complete else there is a risk of complete riejedbecause it
will be judged as a general lack of the tool. Hinat appears that
obtaining a mature textual syntax is time-consumimgat must
not be underestimated.

Dynamic grammar extensibility One requirement was to
have a dynamic extensibility of the textual syntAkthe abstract
syntax level, it is very well managed. At the carersyntax level,
if it is possible to contextually adapt the textaghtax built with
Xtext [16], the flexibility to extend it is not easecause the
syntax and editors are compiled.

Separation of description by aspects Historically, the sepa-
ration by aspects was born for a scalability reasormomplete
viewpoint could not be described in one editoreothise it would
have been too long with heterogeneous informafltms separa-
tion enables to separate the different concerng@hdve a mod-
ular organization of the abstract and concreteasyrthis separa-
tion by aspects is made possible by the extentilafi grammar.
A main grammar is enriched by contribution of graansn(e.g.,
availability of new aspects, enrichment of the exstor concrete
syntax with new assistants and validation rules).

I mpacts of decoupling by architecture framework and view-

points The conformance to the ISO/IEC 42010 standard is

structuring for the development practices, i) a tholing level
with dedicated DSL editors, generators, and packpgonfigura-
tions, ii) for the architects, designers and devete when they
describe a system. Finally, it appears that atteadil modelling
development would correspond to one architectuaenéwork
with a big viewpoint. Separation of concerns becoraebest
practice to decouple the development activitiesibwpoints.

Question about a textual syntax for Sirius Sirius [14] is an
Eclipse component for model representations, eafhggjraphical
with diagrams. The question is why there is anradtéve to the
Sirius tree editor to design diagrams. Firstly, thetual descrip-
tion of diagrams is needed for the integration wtih other as-
pects described in a textual form. Secondly, thelgha editor
simplifies some parts in comparison with Sirius afiérs accel-
erators during textual completion. Thirdly, a tesftinotation
enables to have a complete view of a diagram digfimiat a
glance.

Tool-independence of the syntax The syntax to describe di-
agram is independent of Sirius but it is close.uadly, it is un-
easy to be tool-independent and map directly infgeneous
metamodels of a same aspect, for instance diagtaisghe same
for the other aspects, for instance user interfazesontinuous
integration. However, regarding the data aspedés, &ncouraging
that either DSL or UML could be mapped. Moreover,dontinu-
ous integration, scripts are not directly generdtedh the DSL
description but from an intermediary model whichuldoevolve
over the time in order to target other continucusgration envi-
ronments.

Separation of the development tasks of abstract and concrete
syntax In terms of team organization, the developmerkstas
the abstract and concrete syntax have been assigned differ-
ent persons in order to take equally care of ed¢hem. Valida-
tion has been assigned to a third person in oallee impartial.

5. Conclusion

Kitalpha is an environment to develop and execuEMvork-

benches for system architecture description. Thisep has pre-
sented the real advantage to use the DSL technauwevelop
accurately, quickly, and safely such MBE workbers;hend to
realize economies of scales. The DSL technique brasight

autonomy and efficiency to designers and developesder to
develop and maintain their own viewpoints. Kitaldhis the gap
in Eclipse with an integrated and pure DSL envirentm and
avoid using a multitude of tools, with glue betweerhich is a
risk for new projects or without experimented piceg. In the
development context of co-engineering, Kitalpharisenabler for
architects and speciality engineers to seamlesdbnd an archi-
tecture framework for a complete description ofteys architec-
ture in system, software and hardware engineering.

Acknowledgments

We thank Stéphane Bonnet, Matthieu Helleboid, TroBaiu,
and Faycal Abka for their collaboration. This iaftve is support-
ed by Sys2Soft, a French research project, andta@rgsEurope-
an project.

References

[1] Departement of DefenseThe DoDAF Architecture Framework
Version 2.02August 2010

[2] Eclipse Working Groups, http://www.eclipse.argg/workinggroups/

[3] EGF, Eclipse Generation Factories, http://ediprg/egf

[4] Exertier, D., Bonnet, SArcadia / Capella, a field-proven modeling
solution for system and software architecture eegiing
eclipsecon France 2014

[5] Greenfield, J., Short, K., Cook, S., and Kehit,Software Factories,
Assembling applications with Patterns, Models, Feamrk, and
Tools Wiley, 2004

[6] ISO/IEC/IEEE 42010Systems and software engineering — Archi-
tecture descriptionFirst edition, 2011-09-15

[7]1 Kelly, S., Tolvanen, J.-PDomain-Specific ModelinglEEE Com-
puter Society, Wiley-Interscience Publication, 2008

[8] Kitalpha,https://www.polarsys.org/projects/polarsys .kitalpha
[9] NATO Architecture v4.0 Documentation,
http://nafdocs.org/

[10] OMG Unified Modeling Languagé" (OMG UML), Version 2.5
FTF — Beta 1, ptc/2012-10-24

[11] Papyrushttps://www.eclipse.org/papyrus/

[12] PMF, Presentation Modeling
https://wiki.eclipse.org/Pmf

Framework

Framework,

[13] PolarSys, https://www.polarsys.org

[14] Sirius, http://eclipse.org/sirius/

[15] Voelter, M.,DSL Engineeringdslbook.org, 2013
[16] Xtext, http://www.eclipse.org/Xtext/

