
The physymb package∗

David Zaslavsky
diazona@ellipsix.net

January 2, 2015

Abstract
This package is obsolete. The physymb package contains a bunch of

simple macro definitions that may be useful for typesetting physics papers
or other things. All the useful macros are implemented by other packages,
which you should use directly instead of physymb.

It has come to my attention that other packages provide much the same func-
tionality as physymb, so I am marking the package obsolete. Here are some pack-
ages you can use instead of physymb:

physics gives differentials and derivatives, various sorts of paired delimiters in-
cluding absolute value and vector norm, vector calculus operators including
div, grad, and curl, inverse trigonometric functions, Dirac notation and ma-
trix notation

commath gives differentials, derivatives, and various sorts of paired delimiters

braket gives Dirac notation

siunitx gives units and scientific notation

hepnames gives elementary particles

mandi gives inverse trig functions, signum, unit vectors, vector calculus including
div, grad, and curl, and the Griffiths script r. mandi also provides elementary
unit typesetting, but I consider siunitx to be superior for that purpose. It
also provides notation for differentials and derivatives, but the implementa-
tions in commath or physics are probably easier to use.

Many macros in physymb are now implemented in terms of these other packages.
I will leave physymb up on CTAN so old documents can still be compiled.

However, there will be no further updates to this package (unless someone reports
a bug and makes a convincing case that “use other packages” is not an acceptable
workaround).

For the rest of this documentation, when there are a bunch of similar macros
that I explain together, I’ve usually only listed one or two in the left margin. In
these cases, all the macros are given in the text.

∗This document corresponds to physymb v0.3, dated 2014/12/19.

1

1 Options
physymb recognizes the following options, in no particular order.

• arrowvectors causes vectors (specifically, the \vec command) to be ren-
dered with an arrow above the symbol.

• boldvectors causes vectors (again, from \vec) to be rendered by typesetting
the symbol in bold. It’s the alternative to arrowvectors.

• braket pulls in the braket package. (It’s precisely equivalent to \usepackage{braket},
it’s just here for convenience.)

• feynman pulls in the feynmp package. (It’s precisely equivalent to \usepackage{feynmp},
it’s just here for convenience.)

• overridemandi is only relevant if you are using physymb and the mandi
package in the same document, and only if you load physymb after mandi.
If you do, specifying this option causes certain macros in physymb to be
defined in a way that will override the definitions of the same macros from
mandi. Otherwise, the definitions of those commands in physymb will be
skipped, leaving the definitions in mandi to be used. The affected macros
are \evalat, \curl, and \abs. (If you specify this option when mandi has
not been loaded, it has no effect, but a warning will be printed in the log.)

• particle enables all the particle physics macros.

• units pulls in the siunitx package and enables the additional unit macros.

2 Macros

2.1 Trigonometry
The AMS packages only define inverse trigonometric functions using the “arc”\asin

\acos syntax, i.e. they actually prefix “arc” to the name (as in arcsinx). Sometimes
you’d rather write them with a superscript −1 to save space, so those versions are
imported from the mandi package. We have the inverse functions \asin, \acos,
\atan, \asec, \acsc, and \acot.

For some reason, the hyperbolic sine and cosine \sech and \cosh aren’t defined\sech
\cosh in the AMS packages, but they are defined in mandi and those definitions are

incorporated here.
Finally, the inverse hyperbolic trig functions written with the superscript −1\asinh

\acosh are defined just as with the regular inverse trig functions. We have \asinh, \acosh,
\atanh, \asech, \acsch, and \acoth, again all imported from mandi.

2

2.2 Sets
There are certain sets of numbers that are semi-frequently referenced in physics.
Typically they’re used to say something like n ∈ Z. Of course, a macro like
\intset is not necessarily much quicker than writing \mathbb{Z}, but these
macros are intended to have names that relate to their meanings so that you
don’t have to remember which letter goes to which set.

\whlset (Q) denotes the set of whole numbers, which is typically defined to\whlset
include all integers greater than zero, although there are different contradictory
definitions floating around.

\natset (N) denotes the set of natural numbers, which is typically defined to\natset
include all integers greater than or equal to zero. Some people define “natural
numbers” to exclude zero.

\intset (Z) denotes the set of all integers.\intset
\realset (R) denotes the set of all real numbers.\realset
\imagset (I) denotes the set of all imaginary numbers, which is all complex\imagset

numbers with real part equal to zero. This one is infrequently used.
\cpxset (C) denotes the set of all complex numbers.\cpxset

2.3 Calculus
Probably the most useful macros in the package are the derivative operators. Since
it’s so common to write something of the form dy

dx or ∂y
∂x , we have two-character

macros for each:

• \ud{〈top〉}{〈bottom〉} typesets the normal total derivative\ud

• \pd{〈top〉}{〈bottom〉} typesets a partial derivative, which is the same thing\pd
but with a partial derivative symbol instead of the d.

There are variants of these that produce higher-order derivatives; you can add\udd
\uddd
\pdd

\pddd

an order by adding another d, up to a total of three. These are implemented as
wrappers around \od and \pd from the commath package. If you need something
higher than the third derivative, you’re probably best off using the commathmacros
directly, with their optional argument giving the order of the derivative.

The macro \udc gives you the character that represents a differential. It’s\udc
\pdc typically set in roman type to distinguish it from a variable. \pdc is also defined

as the partial derivative character for consistency. There are variants of each with
exponents (up to 3) built in; again, you get them by adding an extra d or two to
the name of the command, \uddc and \udddc and so on.

If you’re using these in an integral, it’s common to want a small space before\uds
\pds the differential, so there are variants of the preceding commands defined that

include this small space for you; they replace the c with an s. They follow the
same pattern of adding additional d’s to get exponents. For example:

\iint e^{i\vec{k}\cdot\vec{x}}\udds\vec{x}
¨

eik·x d2 x

3

2.4 Vector Calculus
\physymb defines \div, \grad, and \curl, to represent the divergence, gradient,\div

\grad
\curl

and curl, in terms of the corresponding macros from mandi.
There is also a macro for the Laplacian operator (divergence of a gradient),

\lapl \lapl, again defined in terms of the macro from mandi.

2.5 Complex Analysis
There is a macro to indicate the conjugate of a number, \conj{〈number〉}. It\conj
puts a superscript star after the number, as in z∗.

The traditional keywords indicating the real and imaginary parts of a com-\realop
\imagop plex number are given macros \realop and \imagop. They typeset Re and Im

respectively.
Why the op? Well, there are alternate versions that will also put curly braces\real

\imag around the following argument, \real and \imag. This is the way Re and Im are
often used. (I’m open to changing the definitions of these based on feedback.)

\real{z}, \imag{z} Re{z}, Im{z}
The macro \abs{〈value〉} surrounds its argument with vertical bars. It is\abs

simply imported from mandi.

2.6 Linear Algebra
There are several assorted macros for linear algebra keywords and concepts.

Vectors can be written using the macro \vec{〈label〉}, which typesets the\vec
\vecvar 〈label〉 either in bold or with an arrow over it, according to which option was

passed to the package (arrowvectors or boldvectors). The default is to use an
arrow, to resemble the builtin definition of \vec (which, by the way, is overridden
by this package). In many cases I prefer bold. \vecvar{〈label〉} is another macro
that does the exact same thing, for consistency with the other kinds of variables.

The macro \tnsvar{〈label〉} is for typesetting tensors. This just makes the\tnsvar
〈label〉 bold, it doesn’t do anything with indices. If you want a way to typeset
tensor indices, look at the tensor package.

\matvar{〈label〉} is intended to designate matrices. It makes the label bold.\matvar
The macro \identitym represents the identity matrix. It typesets a 1 in the\identitym

same style as \matvar (so, bold).
The macro \determinant{〈matrix 〉} uses vertical bars to denote the determi-\determinant

nant of the 〈matrix 〉. It’s an alternative to the keyword operator \det, which just
typesets as det.

The macro \trace just typesets Tr. It’s akin to \det.\trace
This just typesets diag, which is used to represent a matrix with the given\diag

entries on the diagonal. For example, one might write \diag(1,2,3,4).
The norm of a vector can be denoted by double vertical bars. This is imple-\norm

mented by \norm{〈value〉}.
Since it’s so common to refer to unit vectors using hat notation, there are\unitx

\unity
\unitz

a bunch of macros for them using various letters. The package defines \unitd,

4

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tensor

\unite, \uniti, \unitj, \unitk, \unitl (which typesets as l̂, not the normal
l), \unitn, \unitp, \unitq, \unitr, \units, \unitt, \unitu, \unitv, \unitw,
\unitx, \unity, \unitz, and for non-roman characters, \unitphi, \unitrho,
\unittheta, and \unitomega. If you want to use a different letter as a unit\unitvec
vector, it can be done with \unitvec{〈symbol〉}.

\herm{〈operator〉} designates the hermitian conjugate of an operator with a\herm
superscript dagger.

\transpose{〈matrix 〉} sets a superscript T after the matrix to denote the\transpose
transpose.

There are simple macros for the commutator, \commut{〈operator〉}{〈operator〉},\commut
\acommut and the anticommutator, \acommut{〈operator〉}{〈operator〉}. They just put the

appropriate kind of braces around the arguments (and the comma between them,
of course).

2.7 Differential Geometry
The exterior derivative has a macro, \exd, kind of like the macro for differentials\exd
(d) although typeset in bold to distinguish it. This one doesn’t have any variants,
though, because d2 = 0.

The macro \hodge just puts a star (not superscript) to represent the Hodge\hodge
dual. Use it as a prefix to the variable, ?dx.

2.8 Classical Mechanics
The Poisson brackets of a pair of variables can be typeset using the macro\pbrac
\pbrac{〈function〉}{〈function〉}. This just surrounds the two arguments with
curly braces, producing {f, g}.

If you want to specify which variables the derivatives in the Poisson brackets\pbracvars
are being taken with respect to, use the variant

\pbracvars{〈function〉}{〈function〉}{〈variable〉}{〈variable〉}

It comes out looking like {f, g}q,p.

2.9 Quantum Mechanics
If the braket option is passed, physymb pulls in the braket package for writing
Dirac notation. See the documentation for that package for details.

Additionally, two semantic macros are provided as alternate names for certain
combinations of bras and kets:

To get an expectation value (an on-diagonal matrix element with the state\expect
left implicit, 〈A〉), use \expect{〈operator〉}. This is just an alternate name for
braket’s \braket{〈operator〉}; the only reason to use it is to make it clear what
you meant to someone reading your source code. (A very good reason, as far as
I’m concerned) You can put an arbitrary expression within \expect, but don’t
use vertical bars because then it’ll look like a matrix element 〈ψAψ〉.

\Expect is the same as \expect except that it scales the angle brackets using\Expect

5

\left and \right.
For a projection operator (outer product between a state and itself), we have\project

the command \project{〈label〉}{〈value〉}, which comes out as |ψ〉x 〈ψ|. To get
a general outer product between two different states, use \bra and \ket,

\ket{〈ket label〉}〈value〉\bra{〈bra label〉}

Again, \Project is just like \project except that it scales the delimiters.\Project

2.10 Units
If the units option is provided to physymb, it automatically includes the siunitx
package and defines some additional units that are often useful in practice. See
the documentation of siunitx for commands provided by that package.

Additional units The siunitx package only includes SI units (as the name
would suggest), but there are certain non-SI units that turn out to be occasionally
useful when dealing with American non-scientists. physymb defines a selection of
them as macros.

Torr, \torr, and millimeters of mercury, \mmHg, are common atmospheric\torr
\mmHg pressure units.

\amu represents the atomic mass unit, defined as 1
12 of the mass of a carbon\amu

12 atom.
\yr represents a year with the symbol yr. There are various definitions of\yr

different kinds of years floating around, but generally the symbol is the same.
\erg represents an erg, the CGS unit of energy, which still finds occasional\erg

use. Its value is 1× 10−7 J.
\gauss is the Gauss, a unit of magnetic field equal to 1× 10−4 T.\gauss
\molar represents a molar, a unit of concentration equal to one mole per liter.\molar

Strictly speaking, this is a chemistry unit, but it occasionally comes up in physics
so it shouldn’t hurt to have the macro around.

The poise is the CGS unit of viscosity, equal to 0.1 Pa s.\poise
The foot is the Imperial unit of length, equal to 30.48 cm.\foot
This is typically (or perhaps almost exclusively) used to measure transportation\mileperhour

speeds: cars, trains, airplanes, etc. It’s equal to about 0.447 m s−1.
The pound is the Imperial unit of either force or mass, depending on who you\pound

\poundforce ask. Technically I believe it is a force, but in many situations I’ve often found it
clearer to treat it as a unit of mass and use lbf (pound of force) as the unit of
force. physymb defines macros for both.

In this sense, a pound is equal to about 453.59 g, and the pound of force is
the weight of that mass under standard Earth surface gravity, which works out to
about 4.448 N.

2.11 Particle Physics
As a particle physicist, I do a lot of work that involves notation for elementary
particles, so it’s become useful to have a set of macros that produce standard

6

written representations for them. The names of the commands are pretty cryptic,
but I’ve found that once you get used to using them, the names aren’t hard
to remember and the effort saved by having short macro names at least feels
worthwhile.

The macros in this package are implemented in terms of the heppennames
macros. heppennames and hepparticles will be loaded if the particles option
is passed to this package.

In general, all the macro names follow the same pattern. Each one ends with
a type code that identifies the type of particle: q for quark, lp for a “regular”
lepton, nu for a neutrino, br for a baryon, m for a meson, and bsn for a boson. At
the beginning is a particle code consisting of one or two letters that identify the
specific particle within that type.

Most of the basic macros consist of just those two parts. Antifermion macros
are constructed by prepending an a to the type code. For vector bosons that occur
in charge triplets, you prepend one of p (plus), z (zero), or m (minus) to indicate
which one of the triplet you want. The same goes for baryons which occur in
“triplets” with the same name (three particles denoted by the same letter, even
though they may not actually be a triplet). Singlet baryons have the z as well for
consistency.

The proton and neutron are named differently because their names are so
common.

Quarks Each of the quark macros is named with three letters. The first two\upq
\dnq letters are the particle code representing the name of the quark, and the third

is the type code q. The macros are \upq, \dnq, \srq, \chq, \btq, and \tpq,
representing the up, down, strange, charm, bottom, and top quarks, respectively.

The corresponding macros for the antiquarks are obtained by prepending a to\upaq
\dnaq the type code q. We have \upaq, \dnaq, \sraq, \chaq, \btaq, and \tpaq.

Leptons Leptons are done a little differently because there are two distinct\elp
\enu types. The macros for the electron, muon, and tau lepton are named with a letter

and lp: we have \elp for the electron, \ulp for the muon, and \tlp for the tau.
Neutrino macros are constructed using the same first letter, but nu instead of lp:
\enu, \unu, and \tnu.

Antileptons are named with an a between the particle code and the type code.\ealp
\eanu So we get \ealp, \ualp, and \talp for the “regular” antileptons and \eanu, \uanu,

and \tanu for the antineutrinos.

Baryons Many of the most commonly referenced baryons in the standard model\lmzbr
\sgpbr
\sgzbr
\sgmbr

have macros defined. Each of these ends with the type code br. Most of them are
built by putting a particle code and a charge letter together: we have \lmzbr for
the lambda baryon; \sgpbr, \sgzbr, \sgmbr for the sigmas, \xizbr and \ximbr
for the xi particles, and \ommbr for the omega of charge −1. The delta macros are
named on the same principle but since there are four of them, we use two charge
letters to indicate the +2 charge: \dlppbr, \dlpbr, \dlzbr, and \dlmbr.

7

In addition, there are macros for the starred (excited) versions of the sigmas\sgspbr
\sgszbr
\sgsmbr

and xis (only), obtained by adding an s before the charge letter: \sgspbr etc.
and \xiszbr etc.

The proton and neutron don’t quite fall into the pattern because their names\prbr
\nebr aren’t used for multiple particles. The proton is \prbr and the neutron is \nebr.

The antiparticles to all these are obtained in almost the usual way, by adding\dlmmabr
a just before the type code br. The one difference is that the charge letters
are updated to reflect the actual charge of the antiparticle, so for example the
antipartcle of the ∆++ (\dlppbr), the ∆−−, is written \dlmmabr, with two m’s
because of its double-minus charge.

Mesons Essentially all the mesons defined in the standard model have macros.\pipm
\pizm
\pimm

The naming can be a bit tricky because some of them are named as charge triplets
while others are named as antiparticles. In the former case, we have the πs, \pipm,
\pizm, and \pimm, and the ρs, \ropm, \rozm, and \romm. (I’m not sure if it’d make
it cleaner to just add the h into the names) The kaons have similar names, \kapm,
\kazm, and \kamm, but there is also the K0, \kazam. Finally, the neutral mesons
are named \etam, \etapm (here the p is for “prime,” not “plus”), and \phim.

Bosons There aren’t that many bosons so the naming is simple: \phbsn for the\phbsn
\Wpbsn
\Wmbsn

photon, \Zzbsn for the neutral Z, and \Wpbsn and \Wmbsn for the Ws. There’s
also \Wbsn, which does not indicate either charge, for when you need to refer to a
generic W boson. The Higgs boson is written \hbsn.

Also, there is a macro \photon which is defined to be the same thing as \phbsn.\photon
It’s included to support some old LaTeX files I wrote and although it will probably
not be removed from the package in the future, I make no guarantees.

2.12 Miscellaneous
\scriptr produces the script r found in Griffiths’ electromagnetism textbook, or\scriptr
at least the closest equivalent in LaTeX, r.

\orderof{〈expression〉} represents the order of an expression, for example the\orderof
error term in a perturbation series. Typical usage would be like

\frac{1}{1 - x} = 1 + x + \orderof{x^2} 1

1− x
= 1 + x+O

(
x2
)

It can also be used to discuss the growth of a function, e.g. “O
(
x3
)
for large

x,” or for similar uses such as big-O notation in computer algorithm analysis.
There is a macro for the sign operator, \sgn, defined as\sgn

sgnx =

1 x > 0

0 x = 0

−1 x < 0

(and yes, this is not really complex analysis)

8

Occasionally it’s useful to have some way to designate rounding a number. The\round
\round macro can be used for that. It comes out as round (x) (I do recommend
the parentheses).

The macro \evalat{〈expression〉}{〈lower limit〉}{〈upper limit〉} is mainly\evalat
useful for when you want to denote the numerical value of a derivative at a spe-
cific point, or when you want to represent the evaluation of an integral at the
endpoints of the range of integration. It produces a vertical bar at the right of
the 〈expression〉, with the 〈lower limit〉 and 〈upper limit〉 typeset at the lower and
upper endpoints of the bar, respectively.

\evalat{x^3 + 3x - 5}{2}{7} x3 + 3x− 5

∣∣∣∣∣
2

7

3 Feedback
This package is always a work in progress, both in terms of adding new macros to
the collection and fixing any errors or inconveniences in the ones that are already
here. Any feedback you may have will be welcome at my email address, given at
the top of the document.

4 Bugs
With certain versions of LaTeX (pdflatex included in TeXLive 2009 comes
to mind), there is a register allocation conflict between this package and the
floatrow and morefloats packages. If you’re using either of those along with
physymb, and you’re getting No room for a new \count errors, you need to add
\usepackage{etex}\reserveinserts{28} to your preamble. See http://tex.
stackexchange.com/questions/38607/no-room-for-a-new-dimen for more in-
formation.

5 Implementation

5.1 Initialization
1 \RequirePackage{ifthen}

This flag is set if the particle option is enabled. It enables definitions of particle
symbol macros.
2 \newboolean{pparticle}

This flag is set if the feynman option is enabled. It pulls in the feynmf package.
3 \newboolean{pfeynman}

This flag is set if the braket option is enabled. It pulls in the braket package.
4 \newboolean{pbraket}

This flag is set if the units option is enabled. It pulls in the siunitx package and
provides additional unit definitions.

9

http://tex.stackexchange.com/questions/38607/no-room-for-a-new-dimen
http://tex.stackexchange.com/questions/38607/no-room-for-a-new-dimen

5 \newboolean{punits}

This flag is set if the boldvectors option is enabled. It causes vectors to be
rendered using a bold font instead of an overset arrow.
6 \newboolean{pboldvectors}

This flag is set if the mandi option is enabled. It pulls in the mandi package.
7 \newboolean{pmandi}

5.2 Option Declarations
These are the option declarations, pretty self-explanatory.
8 \DeclareOption{braket}{\setboolean{pbraket}{true}}
9 \DeclareOption{mandi}{%

10 \setboolean{pmandi}{true}%
11 }
12 \DeclareOption{particle}{\setboolean{pparticle}{true}}
13 \DeclareOption{units}{\setboolean{punits}{true}}
14 \DeclareOption{feynman}{\setboolean{pfeynman}{true}}
15 \DeclareOption{arrowvectors}{\setboolean{pboldvectors}{false}}
16 \DeclareOption{boldvectors}{\setboolean{pboldvectors}{true}}
17 \ProcessOptions\relax

This emits a warning that the package is obsolete:
18 \PackageWarning{physymb}{The physymb package is obsolete! See the documentation.}

5.3 Macro Definitions
Here we bring in the AMS packages for mathematical notation.
19 \RequirePackage{amsbsy}
20 \RequirePackage{amsmath}
21 \RequirePackage{amsfonts}
22 \RequirePackage{amssymb}
23 \allowdisplaybreaks[2]
24 \RequirePackage{accents}

Load the mandi package if requested
25 \ifthenelse{\boolean{pmandi}}{%
26 \RequirePackage{mandi}[2014/12/18]%
27 }{}

Load the hepparticles and heppennames package if particles are requested
28 \ifthenelse{\boolean{pparticle}}{%
29 \RequirePackage{hepparticles}%
30 \RequirePackage{heppennames}%
31 }{}

mandi is the package that includes the script r, r.
32 \AtBeginDocument{
33 \ifthenelse{\isundefined{\scripty}}{%
34 \newcommand{\scriptr}{\PackageError{physymb}{script r requires the mandi package}}%
35 }{%
36 \newcommand{\scriptr}{\scripty{r}}%

10

37 }
38 }

The commath package is used to implement differentials and derivatives.
39 \RequirePackage{commath}

Here we load the braket package if the corresponding option was passed.
40 \ifthenelse{\boolean{pbraket}}
41 {
42 \RequirePackage{braket}

Semantic Dirac notation, implemented on top of braket macros
43 \newcommand{\project}[2]{\ket{#1}#2\bra{#1}}
44 \newcommand{\Project}[2]{\Ket{#1}#2\Bra{#1}}
45 \newcommand{\expect}[1]{\braket{#1}}
46 \newcommand{\Expect}[1]{\Braket{#1}}
47 }
48 {}

Here we load siunitx if the units option was passed.
49 \ifthenelse{\boolean{punits}}
50 {
51 \RequirePackage{siunitx}

These are some useful non-SI units
52 \DeclareSIUnit{\torr}{torr}
53 \DeclareSIUnit{\mmhg}{mmHg}
54 \DeclareSIUnit{\amu}{amu}
55 \DeclareSIUnit{\yr}{yr}
56 \DeclareSIUnit{\erg}{erg}
57 \DeclareSIUnit{\gauss}{Ga}
58 \DeclareSIUnit{\molar}{\textsc{M}} % this follows the style set up in the siunitx manual
59 \DeclareSIUnit{\poise}{P}
60 \DeclareSIUnit{\foot}{ft}
61 \DeclareSIUnit{\mileperhour}{mph}
62 \DeclareSIUnit{\pound}{lb}
63 \DeclareSIUnit{\poundforce}{lbf}
64 }
65 {}

Now we come to assorted functions and keywords.
First the inverse trig functions. These are defined in the mandi package, but

for backward compatibility I would like to give an informative error message if
anyone tries to use them without loading mandi. The solution used here is to
defer defining the functions until the end of the preamble, after all packages have
been loaded.
66 \AtBeginDocument{%

At this point, if mandi has been loaded (or if some other package has defined these
commands), the following \providecommands will do nothing.
67 \providecommand{\asin}{\PackageError{physymb}{inverse trig functions require the mandi package}}
68 \providecommand{\acos}{\PackageError{physymb}{inverse trig functions require the mandi package}}

11

69 \providecommand{\atan}{\PackageError{physymb}{inverse trig functions require the mandi package}}
70 \providecommand{\asec}{\PackageError{physymb}{inverse trig functions require the mandi package}}
71 \providecommand{\acsc}{\PackageError{physymb}{inverse trig functions require the mandi package}}
72 \providecommand{\acot}{\PackageError{physymb}{inverse trig functions require the mandi package}}

Same for hyperbolic trig functions:
73 \providecommand{\sech}{\PackageError{physymb}{hyperbolic trig functions require the mandi package}}
74 \providecommand{\csch}{\PackageError{physymb}{hyperbolic trig functions require the mandi package}}
75 \providecommand{\asinh}{\PackageError{physymb}{hyperbolic trig functions require the mandi package}}
76 \providecommand{\acosh}{\PackageError{physymb}{hyperbolic trig functions require the mandi package}}
77 \providecommand{\atanh}{\PackageError{physymb}{hyperbolic trig functions require the mandi package}}
78 \providecommand{\asech}{\PackageError{physymb}{hyperbolic trig functions require the mandi package}}
79 \providecommand{\acsch}{\PackageError{physymb}{hyperbolic trig functions require the mandi package}}
80 \providecommand{\acoth}{\PackageError{physymb}{hyperbolic trig functions require the mandi package}}
81 }

Next are some linear algebra keywords.
82 \DeclareMathOperator{\diag}{diag}
83 \DeclareMathOperator{\realop}{Re}
84 \DeclareMathOperator{\imagop}{Im}
85 \newcommand{\real}[1]{\realop\{#1\}}
86 \newcommand{\imag}[1]{\imagop\{#1\}}

The absolute value and norm notations are implemented by commath so there is
nothing to do for them here.

Evaluation at endpoints is implemented by either commath or mandi. As with
the trig functions, we want to wait until the end of the preamble so that if mandi
is loaded later, its definition of \evalat will remain. Otherwise, we implement it
in terms of commath’s \eval.
87 \AtBeginDocument{%
88 \providecommand{\evalat}[3]{\eval{#1}_{#2}^{#3}}%
89 }

If mandi is loaded, we can use its implementation of \sgn.
90 \AtBeginDocument{%
91 \providecommand{\sgn}{\PackageError{physymb}{signum requires the mandi package}}
92 }

Same goes for \orderof.
93 \AtBeginDocument{
94 \providecommand{\orderof}{\PackageError{physymb}{orderof requires the mandi package}}
95 }

Poisson brackets are just braces
96 \newcommand{\pbrac}[2]{\left\{#1,#2\right\}}
97 \newcommand{\pbracvars}[4]{\left\{#1,#2\right\}_{#3,#4}}

This handles the redefinition of \vec. If the boldvectors option was passed,
a vector is denoted by bolding the argument. If arrowvectors was passed, the
vector is denoted by putting an arrow over the argument. Some people use an
undertilde, which will probably be added in the future.
98 \ifthenelse{\boolean{pboldvectors}}%

12

99 {\renewcommand{\vec}[1]{\mathbf{#1}}}%
100 {\renewcommand{\vec}[1]{\accentset{\rightharpoonup}{#1}}}

\vecvar is just a synonym for \vec
101 \newcommand{\vecvar}[1]{\vec{#1}}

\tnsvar always uses bold. Some people use undertildes, which will be added.
102 \newcommand{\tnsvar}[1]{\mathbf{#1}}

\matvar always uses bold.
103 \newcommand{\matvar}[1]{\mathbf{#1}}

\identitym is a bold 1

104 \newcommand{\identitym}{\mathbf{1}}

\determinant uses vertical bars.
105 \newcommand{\determinant}[1]{\envert{#1}}

\trace uses capital Tr.
106 \DeclareMathOperator{\trace}{Tr}

Now we get to unit vectors. This is just a wrapper for \dirvect from mandi.
107 \AtBeginDocument{
108 \ifthenelse{\isundefined{\dirvect}}{%
109 \newcommand{\unitvec}[1]{\PackageError{physymb}{unit vectors require the mandi package}}
110 }{%
111 \newcommand{\unitvec}[1]{\dirvect{#1}}
112 }
113 }%

And these are a bunch of predefined unit vectors. Note that \unitl now uses
a regular lowercase l, rather than the scripe ` as in previous versions. The new
command \unitell will give you a unit `.

114 \newcommand{\unitd}{\unitvec{d}}
115 \newcommand{\unite}{\unitvec{e}}
116 \newcommand{\uniti}{\unitvec{\imath}}
117 \newcommand{\unitj}{\unitvec{\jmath}}
118 \newcommand{\unitk}{\unitvec{k}}
119 \newcommand{\unitl}{\unitvec{l}}
120 \newcommand{\unitell}{\unitvec{\ell}}
121 \newcommand{\unitn}{\unitvec{n}}
122 \newcommand{\unitp}{\unitvec{p}}
123 \newcommand{\unitq}{\unitvec{q}}
124 \newcommand{\unitr}{\unitvec{r}}
125 \newcommand{\units}{\unitvec{s}}
126 \newcommand{\unitt}{\unitvec{t}}
127 \newcommand{\unitu}{\unitvec{u}}
128 \newcommand{\unitv}{\unitvec{v}}
129 \newcommand{\unitw}{\unitvec{w}}
130 \newcommand{\unitx}{\unitvec{x}}
131 \newcommand{\unity}{\unitvec{y}}
132 \newcommand{\unitz}{\unitvec{z}}
133 \newcommand{\unitphi}{\unitvec{\phi}}

13

134 \newcommand{\unitrho}{\unitvec{\rho}}
135 \newcommand{\unittheta}{\unitvec{\theta}}
136 \newcommand{\unitomega}{\unitvec{\omega}}

\udc is just an upright (roman) d, and similarly for higher-order differentials,
implemented in terms of \dif from commath.

137 \newcommand{\udc}{\dif}
138 \newcommand{\uddc}{\dif^2}
139 \newcommand{\udddc}{\dif^3}

\pdc is just \partial, defined for similarity with \udc.
140 \newcommand{\pdc}{\partial}
141 \newcommand{\pddc}{\partial^2}
142 \newcommand{\pdddc}{\partial^3}

\uds is just like \udc but it includes a small space in front.
143 \newcommand{\uds}{\,\dif}
144 \newcommand{\udds}{\,\dif^2}
145 \newcommand{\uddds}{\,\dif^3}

\pds is also defined for similarity as just \partial with a space in front, although
I’m not sure this one is really useful.

146 \newcommand{\pds}{\,\partial}
147 \newcommand{\pdds}{\,\partial^2}
148 \newcommand{\pddds}{\,\partial^3}

\ud typesets a derivative using \udc. Similarly for second and third derivatives.
149 \let\ud\od
150 \newcommand{\udd}[2]{\od[2]{#1}{#2}}
151 \newcommand{\uddd}[2]{\od[3]{#1}{#2}}

\pd (defined in commath) does the same for partial derivatives with \pdc.
152 \newcommand{\pdd}[2]{\pd[2]{#1}{#2}}
153 \newcommand{\pddd}[2]{\pd[3]{#1}{#2}}

All of \div, \grad, and \curl come from mandi.
154 \AtBeginDocument{
155 \@ifpackageloaded{mandi}{%
156 \let\grad\gradient
157 \let\div\divergence
158 \let\lapl\laplacian
159 }{%
160 \providecommand{\grad}{\PackageError{physymb}{gradient requires the mandi package}}
161 % use renew instead of provide because \div is defined in plain latex
162 \renewcommand{\div}{\PackageError{physymb}{divergence requires the mandi package}}
163 \providecommand{\curl}{\PackageError{physymb}{curl requires the mandi package}}
164 \providecommand{\lapl}{\PackageError{physymb}{laplacian requires the mandi package}}
165 }
166 }

\conj just puts a superscript star
167 \newcommand{\conj}[1]{{#1 ^{*}}}

14

\herm is the same thing but for operators or matrices, so with a dagger
168 \newcommand{\herm}[1]{{#1 ^{\dagger}}}

\transpose does the same with a T
169 \newcommand{\transpose}[1]{{#1 ^{T}}}

These set notations are mostly done with \mathbb
170 \newcommand{\natset}{\mathbb{N}}
171 \newcommand{\intset}{\mathbb{Z}}
172 \newcommand{\cpxset}{\mathbb{C}}
173 \newcommand{\whlset}{\mathbb{Q}}
174 \newcommand{\realset}{\mathbb{R}}
175 \newcommand{\imagset}{\mathbb{I}}

Commutators and anticommutators are done in the obvious way
176 \newcommand{\commut}[2]{\left[#1, #2 \right]}
177 \newcommand{\acommut}[2]{\left\{ #1, #2 \right\}}

The \round operator just typesets the word “round”
178 \DeclareMathOperator{\round}{round}

The exterior derivative is typeset in bold, in contrast to the differential dwhich is
just a plain roman font

179 \DeclareMathOperator{\exd}{\mathbf{d}}

The Hodge dual uses a star, but not superscript like \conj.
180 \newcommand{\hodge}{\star}

These are short macros to typeset the symbols for the elementary (and com-
mon non-elementary) particles. They are defined in terms of commands from
heppennames, but only if the particle option was passed.

181 \ifthenelse{\boolean{pparticle}}
182 {
183 \let\upq\Pqu
184 \let\dnq\Pqd
185 \let\srq\Pqs
186 \let\chq\Pqc
187 \let\btq\Pqb
188 \let\tpq\Pqt
189 \let\upaq\Paqu
190 \let\dnaq\Paqd
191 \let\sraq\Paqs
192 \let\chaq\Paqc
193 \let\btaq\Paqb
194 \let\tpaq\Paqt
195 \let\elp\Pem
196 \let\enu\Pgne
197 \let\ulp\Pgmm
198 \let\unu\Pgngm
199 \let\tlp\Pgtm
200 \let\tnu\Pgngt
201 \let\ealp\Pep

15

202 \let\eanu\Pagne
203 \let\ualp\Pgmp
204 \let\uanu\Pagngm
205 \let\talp\Pgtp
206 \let\tanu\Pagngt
207 \let\prbr\Pp
208 \let\nebr\Pn
209 \let\lmzbr\PgL
210 \let\sgpbr\PgSp
211 \let\sgzbr\PgSz
212 \let\sgmbr\PgSm
213 \newcommand\dlppbr{\HepParticle{\Delta}{}{++}}
214 \newcommand\dlpbr{\HepParticle{\Delta}{}{+}}
215 \newcommand\dlzbr{\HepParticle{\Delta}{}{0}}
216 \newcommand\dlmbr{\HepParticle{\Delta}{}{-}}
217 \let\xizbr\PgXz
218 \let\ximbr\PgXm
219 \let\ommbr\PgOm
220 \newcommand\sgspbr{\HepParticle{\Sigma}{}{*+}}
221 \newcommand\sgszbr{\HepParticle{\Sigma}{}{*0}}
222 \newcommand\sgsmbr{\HepParticle{\Sigma}{}{*-}}
223 \newcommand\xiszbr{\HepParticle{\Xi}{}{*0}}
224 \newcommand\xismbr{\HepParticle{\Xi}{}{*-}}
225 \let\prabr\Pap
226 \let\neabr\Pan
227 \newcommand\dlpabr{\HepAntiParticle{\Delta}{}{+}}
228 \newcommand\dlzabr{\HepAntiParticle{\Delta}{}{0}}
229 \newcommand\dlmabr{\HepAntiParticle{\Delta}{}{-}}
230 \newcommand\dlmmabr{\HepAntiParticle{\Delta}{}{--}}
231 \let\pipm\Pgpm
232 \let\pizm\Pgpz
233 \let\pimm\Pgpp
234 \let\kapm\PKp
235 \let\kazm\PKz
236 \let\kazam\PaKz
237 \let\kamm\PKm
238 \let\ropm\Pgrp
239 \let\rozm\Pgrz
240 \let\romm\Pgrm
241 \let\etam\Pgh
242 \let\etapm\Pghpr
243 \newcommand\kaspm{\HepParticle{K}{}{*+}}
244 \newcommand\kaszm{\HepParticle{K}{}{*0}}
245 \newcommand\kaszam{\HepAntiParticle{K}{}{*0}}
246 \newcommand\kasmm{\HepParticle{K}{}{*-}}
247 \let\omm\Pgo
248 \let\phim\Pgf
249 \let\phbsn\Pgg
250 \let\Wbsn\PW
251 \let\Wpbsn\PWp

16

252 \let\Wmbsn\PWm
253 \let\Zzbsn\PZ
254 \let\hbsn\Ph
255 \let\photon\Pgg
256 }
257 {}

The feynman option is implemented by just loading the package feynmp.
258 \ifthenelse{\boolean{pfeynman}}%
259 {\RequirePackage{feynmp}}%
260 {}

17

