
Documentation for the egpeirce LATEX package
For version 1.0.0, 20/3 2023

Jukka Nikulainen1

1 I would like to extend my heartfelt
gratitude to Prof. Ahti-Veikko Pietari-
nen for his continued support and
for initiating and leading the projects
that led, among many other interesting
things, to the creation of this package.

I acknowledge with much apprecia-
tion Dr. Marc Champagne for insightful
critical comments on an earlier draft of
this documentation. I’m indebted to
Dr. Minghui Ma (马明辉) for helping
debug many eg commands and to
Prof. Francesco Bellucci for debugging
the commands for the linear notation.

jukka.nikulainen@iki.fi

7→

\usepackage{egpeirce}

...
\let\everygraphhook\Large

\definecolor{pale_red}{rgb}{0.86,0.51,0.42}

\renewcommand{\licolour}{pale_red}

\setlength{\ligaturewidth}{2.2pt}

{\it \color{pale_red} %

%

\ontop{ \strut \hk{x} \\ %

\vscroll{ \hk{y} }{ \hk{y} } \\ %

\strut \hk{z} } %

%

}

\reflexivel{1}{2}

\reflexiver{2}{3}

\reflexivel{3}{4}

\setcounter{rheme}{0} \renewcommand{\licolour}{black}

7→

x
y

y

z

...

7→

\renewcommand{\cutxfillcolour}{lightgray}

{\it \colouredcutstrue

%

\ontopl{%

\ \ \,\hk{man}\strut\\%

\vcut{ \ontopl{ \ \hk{owes} \ \ \ \,\hk{}\\%

\vcut{\hk{will pay} }} }\\%

\ \ \,\hk{man}\strut

}

%

\colouredcutsfalse}

\reflexivel{1}{2}

\li{2}{3}

\reflexiver{3}{4}

\reflexivel{4}{5}

\setcounter{rheme}{0}

7→

man

owes

will pay

man

...

7→

\debugmodetrue \notinlinetrue

{\it \vcut{

%

\hk{m} \ \ \ \hk{} \

\ontop{\hk{r}\strut\\\strut\\\hk{r}\strut} \ \

%

\ontopl{%

\ \ \hk{}\\

\hk{}\\

\ \begin{inline}\cut{\hk{\bullet}}\end{inline}

}

%

}}

\li{1}{2} \upright{2}{3} \downright{2}{4}

\nccurve[linewidth=\ligaturewidth,linecolor=\licolour,angleA=10,angleB=135]{3}{5}

\nccurve[linewidth=\ligaturewidth,linecolor=\licolour,angleA=-10,angleB=225]{4}{7}

\nccurve[linewidth=\ligaturewidth,linecolor=\licolour,angleA=315,angleB=45]{5}{6} =45]{-g}{5}{6}

\nccurve[linewidth=\ligaturewidth,linecolor=\licolour,angleA=225,angleB=45]{6}{4} =45]{g-}{6}{4}

\nccurve[linewidth=\ligaturewidth,linecolor=\licolour,angleA=315,angleB=135]{-b}{3}{6} 135]{3}{6}

\nccurve[linewidth=\ligaturewidth,linecolor=\licolour,angleA=315,angleB=45]{b-}{6}{7} =45]{6}{7}

m

r

r •

B
B7→ m1 2

r3

r
4

5

•7

A song of the rolling earth, and of words according,

Were you thinking that those were the words, those upright lines?

those curves, angles, dots?

No, those are not the words, the substantial words are in the

ground and sea,

They are in the air, they are in you.
...

—Walt Whitman (1856)

Contents

How to read this document 2

Some preliminaries on using the package 3

Introduction to LATEX syntax 4

Some commands used in this document 5

Commands for drawing EGs 5

The α-system and cuts 6

The β-system and ligatures 9

The γ-system . . . 12

Examples of graphs 13

Simple cuts and ligatures 14

Nonstandard scrolls and complex graphs 16

Ugly hacks 19

Some difficult cases and their solutions 21

Mutable parameters of the package 21

Some handy PostScript commands 22

Peirce’s logical symbols 23

Ideas on further development of the package 26

Introduction to LATEX 28

What is it . . . 28

. . . and why use it? 29

Recommended further reading 30

References 30

Keyword & Command Index 30

Visual Index 31

How to read this document

To understand this documentation, no previous knowledge of LATEX2 2 Pronounced ["lA:tEX]/["leıtEX], roughly
‘lay-tekh’. From the Greek word τέχνη.is strictly required. Its syntax is tersely explained in the beginning

and code examples later on are hopefully instructive. It is, however,

tacitly assumed that the reader is familiar with existential graphs. 3 3 Good sources to get up to speed with
egs are Roberts (1973) and Peirce (2023).If you’ve never used LATEX before, I highly suggest you read the

short history from page 28 and consult the recommended further

readings listed on page 30.

The commands the egpeirce package provides are introduced

from page 5 and a few examples are presented. The examples also

introduce general strategies on coping with complex graphs. Unless

you are transcribing graphs from manuscripts, you probably don’t

need to delve into the inner workings of the code (page 16 onward).4

4 Finally, if you are a TEXnician, we need
your help!

Please see e.g. pages 7 and 19 and
help us find better solutions to these
nuisances or problematic cases.

3 egpeirce documentation

Some preliminaries on using the package

egpeirce is a LATEX package intended for drawing existential graphs 5 5 As well as linear logical operators and
logical symbols (see page 23 onvards).that were invented and developed by the philosopher and polymath

Charles S. Peirce (1839–1914).

The current version of egpeirce only supports drawing existential

graphs. Specifically, it does not check or assure that proper syntactic

rules are obeyed (see page 6 for a crude error case).

This is because the package is primarily designed for transcrib-

ing graphs from Peirce’s manuscripts. Many of these graphs have

unusual features and too much automation would have been a hin-

drance. See page 26 for ideas on further development of the package.

The package does enable your document to include graphs without

having to resort to external image files and it does automate many

of the more tedious aspects of vectorizing graphs. The graphs are

described in relatively simple and straightforward code and when

you compile your document, LATEX does the actual drawing for you.

The package depends heavily on PostScript commands and

the PsTricks LATEX package that interfaces them. Therefore the stan-

dard dvi output file is not capable of displaying the graphs, al-

though it does contain all the data. Furthermore most native pdf

compilers—such as pdfLaTeX—cannot directly process the source file. on compatible compilers and

converters, LATEX, X ELATEXCompiling the source file with LATEX requires you to use a con-

verter like DVItoPS on the output file as well (and PStoPDF on the

ensuing .ps file if you want to produce pdf documents). For ex-

ample X ELATEX is able to process the PostScript commands natively

but can be quite slow and generally seems to produce slightly larger

pdf files than the LATEX→ DVItoPS → PStoPDF method.

There are packages that attempt to automatically and on-the-fly

wrap the PostScript commands so compilers like pdfLaTeX could

accept the source. At the time of writing this, these packages are still

experimental or at least quite unreliable or inconsistent.

At the time I began writing the code, pgf/TikZ was considered a on pgf/TikZ

newish, unfinished project and I therefore opted to use the more ma-

ture and stable PostScript backend. Using pgf/TikZ as the draw-

ing backend would lift the restrictions on using e.g. pdfLaTeX men-

tioned above. The code does rely on PsTricks and some Ps-tricks,

refactoring around pgf/TikZ would be possible, though not trivial.

Throughout this document the following typographical con-

Input

Output

An {\it example} graph: \cut{<space>}

An example graph:

ventions are adopted. All verbatim code snippets are typeset in

monospace typewriter text and all placeholder metasyntactic vari-

ables are typeset in <angle bracketed aurical>. The dotted lines point to

examples, the solid lines represent the path from the input to output.

introduction to LATEX syntax 4

Introduction to LATEX syntax

Following is a very concise introduction to the syntax of LATEX. The

aim is to enable someone without prior knowledge about it to follow

and understand this document.

Learning to write LATEX is well beyond the purview of this docu-

mentation. Find a list for further reading to that end on page 30.

In order to distinguish commands from text, LATEX includes reserved special characters

reserved special characters. They are: #, $, %, &, {, }, \, ^, _ and ~. If

you enter these directly as text they will not print and when misused

will stop compilation and give error messages.

The most interesting special character is the backslash: \ . Among

other things it always denotes the start of a command followed by

the command name and possibly some arguments.

The curly brackets serve a double-function either as delimiting the

scope of a command or enclosing its arguments if it uses them. scope of a command

The commands \textit and \it for example italicize text. If a

scope is not specified for \it all text after its invocation will be ef-

fected, whereas \textit{} accepts an argument. The above italiciza-

tion of a single word is done either by scoping, {\it italicize}, or

by using the brackets to define the argument: \textit{italicize}.

It’s important to understand and pay attention to proper scoping

when you draw complexly and multiply nested graph elements.

More complex transformations in LATEX are handled with

environments, and the egpeirce package uses them too. They are

scoped and introduced with \begin{<environmentname>} which must

be matched with a closing \end{<environmentname>}. counters, Boolean switches,
global scopeThe egpeirce package uses also counters and Boolean switches.

Commands set their values. These commands have a global scope in

the sense that (mostly) regardless of when or in which scope they are

set, their value will remain unchanged until they are explicitly reset.

Commands can have multiple, though at most eight, arguments.

The number of arguments a command does have is predefined and

generally cannot be changed, although it may be possible to leave

some of them empty. If an argument can be left empty, this is always

specifically mentioned.

Some commands can accept optional arguments. They are enclosed, optional arguments, starred

commandscomma separated, in square brackets preceding the compulsory ones

and default to a predefined value if not used.

A starred command is another common LATEX mechanism to have

alternative behaviour for a command. The package uses them too so

that the command namespace does not inflate and that understand-

ably named commands can have alternative behaviour. Type in the

asterisk (*) after the command name to use the alternate versions.

Generally speaking, then, a full LATEX command follows the form:

\commandname[<opt. arg1>,<opt. arg2>,. . .]{<arg1>}{<arg2>} . . . {<arg8>}.

5 egpeirce documentation

Some commands used in this document

A few other common LATEX commands are explained below as they

are used extensively in the code examples.

By default LATEX will ignore multiple, consecutive empty spaces

left in the source text. Also the space after a command name won’t

print in the output. Backslash with a space (\) creates the extra

empty space and backslash + comma (\,) a smaller empty space.

Although \ is a font-specific length and you can create longer

stretches of empty space with it (\ \ \ . . .), there are better options

for creating long spaces. \hphantom{<text>} and \vphantom{<text>} extra spaces & alignment of

graph-elementsclear horizontal and vertical empty space, respectively, of the length

and height of the finally typeset dimensions of <text>. They are ex-

tremely handy when you must align graph-elements.

Notice that \hphantom{} has no height and \vphantom{} no length.

Both match the dimensions of their argument exactly: \vphantom{}

differentiates e.g. between the height of descenders and ascenders,

that is, for example between p and d . \strut creates a vertical space

equal to that between two consecutive lines.

Double backslashes \\ end the paragraph and start a new line. linebreaking

As is briefly discussed below in the short history of the language,

LATEX has a very elegant and robust system for hyphenation and line-

breaking. However, it’s often desirable to manually prevent a line-

break in a specific place and force LATEX to find another solution.

Notice that by default LATEX can choose to break the line even

in the middle of a graph. Particularly with inline β-graphs, an un-

planned linebreak will usually result in syntactically and semanti-

cally erroneous graphs.

The tilde character (~) creates a non-breaking space. It will dis-

able a linebreak between two characters or monosyllabic words. If ~ is

used between two polysyllabic words, LATEX may decide to hyphen-

ate and break either of the words. In these cases you may use for ex-

ample the \mbox{} command since it prevents a linebreak in its entire

scope. A sufficiently long argument for \mbox will flood into the margin and beyond the page, so do use it with caution.

The linebreaking algorithm considers entire paragraphs and pages

at a time. Therefore it can be difficult to estimate correctly the cas-

cading effects a change early in a page can have on the subsequent

paragraphs. Although you should enclose large inline graphs in an

mbox as a precaution, leave fine-tuning the hyphenation last.

Commands for drawing EGs

There are relatively few basic commands needed for drawing exis-

tential graphs. Even complex graphs can be constructed using these

elements and there are often multiple ways to create similar results.

I will first cover the syntax and basic usage of the commands

needed for the three systems.

the α-system and cuts 6

By default and for legibility the package gives extra vertical space

to graphs and an equal, smallest height for cuts. There are two ways

to remove these restrictions and blend graphs better inline with text. inline graphs

The inline environment is meant for sporadic use. It has an op-

tional argument for linestretch that defaults to 0.5 so lineheights are

halved unless you set it to another value, e.g. \begin{inline}[0.3]. . .

\end{inline}. You can also declare the Boolean \notinlinefalse for

reduced graph space all around and reset the lineheight if and when

needed with the {{\setstretch{<fraction>}<text>} command.

Large graphs and multiply nested cuts will still look bad inline.

The α-system and cuts

Cuts are made with the \cut{<text>} command. Notice that you
, , A B , A B C , A B C ,

Smoke Fire

should specify space even inside an empty cut: \cut{}, \cut{ \ \ }.

Cuts can be nested arbitrarily many times by simply nesting the com-

mands: \cut{\cut{<text>}}.

Sometimes the cuts in Peirce’s manuscripts are clearly more oval

shaped. To reproduce this effect, the package has a Boolean switch

called ellipsecut. If you declare \ellipsecuttrue, all the cuts made

with the \cut command will appear more ellipse-like (declaring \el

lipsecutfalse reverts the behaviour). Be aware that the elliptical

cuts do have limitations with β-graphs (see page 11) and that they

are generally much harder to successfully blend inline with text.

, A B , A , A B ,

Smoke Fire

Peirce often places elements on top of each other to clarify the

graph or save space. The \ontop{<above>\\<below>} command does
A

B
,

A

B C
,

A

B

C

this. The normal linebreak command specifies the break point.

Arbitrarily many elements can be placed on top of each other.

However if cuts are nested on top of eachother, a new \ontop{} must

be declared at every level. So: \ontop{\cut{A}\\ \cut{B}\\ \cut{C}}

A

B

C

A

B

C

I am

flushed

left

I am

flushed

right

but when nested: \cut{\ontop{A\\ \cut{\ontop{B\\ \cut{C}}}}}

Text or graphs put ontop are horizontally centered with respect to

surrounding text, and the contents of the \ontop command are also

vertically centered. Especially in more complex graphs it is often

convenient to have the contents automatically flushed left or right.

The commands \ontopl{} and \ontopr{} do this.

Cuts in Peirce’s manuscripts are most often circular or ellip-

tically shaped (though boxlike cuts exist too). The arc of a cut is de-

fined as a fraction of its height and width and the \cut{} command
A B

C D
,

A B

C D

attempts to preserve the circularity as much as possible.

Therefore if a cut has a high and wide area, the arcs will be large

too. If such a cut has cuts in it, this can easily cause them to intersect! !

The current version of the package does not know that this is hap-

pening and can’t give you a warning. Be aware of the possibility.

In these cases you can either add space between the cuts using \

or use the otherwise similar \vcut{} and \vvcut{} commands that

have a more conservative arc and thus the more boxlike appearance.

A B

C D
,

A B

C D

7 egpeirce documentation

Self-intersecting cuts do feature in Peirce’s system in the form

of scrolls. The commands needed for them are unfortunately slightly

more complicated than for cuts.

Scrolls can be horizontally or vertically aligned and the intersec-

tion can point up or down and left or right. None of this changes the

interpretation but since they all feature in Peirce’s manuscripts, we’ll

need at least four commands.

A B
A
B

B

A
B A

Scrolls take two arguments but you can leave either one empty.

Remember to specify space for the empty argument. \scroll{A}{B}

draws a small scroll. For the vertically aligned, use: \vscroll{A}{B}.

These are by far the most common ones and therefore considered the

basic shapes. ‘Inverse’ scrolls have their own and similarly behaving

commands: \inversescroll{}{} and \inversevscroll{}{}.

Like cuts, scrolls try to match Peirce’s smooth, circular shape. If

There’s smoke Fire
There’s smoke

Fire

the usual scrolls have lots of text in them, they still try to preserve !
this shape and the results will look awful.

A ‘long’ versions of the scroll, \longscroll{There’s smoke}{Fire}

should be used in these cases. A vertically aligned long version of

scroll exists as well: \longvscroll{Antecedent}{The consequent}.

These scrolls automatically adjust their length depending on the ar-

guments. The ‘long’ scrolls also have ‘inverse’ versions. Following

this convention, there’s e.g. the command \longinversevscroll{}{}.

There’s smoke Fire

Antecedent

The consequent

There’s smoke

Fire
Mortal

Man

Alongside one-placed or unary scrolls, Peirce’s system—and his

nachlaß—has examples of binary, ternary, and more generally n-ary

scrolls too. The \nscroll{} command is used for these. Since it has

to handle an arbitrary number of elements, its syntax is unusual. It

accepts one nonempty argument and the inloops are fed as a comma-

separated list: \nscroll{A,B}, \nscroll{A,B,C}, \nscroll{A,B,C,D}.

A starred version exists and has two arguments \nscroll*{A,B,C}{D}.

A B , A
B

C
, A

B

C

D

. A

B

C

D .

It places the contents of the second argument to the middle.
\nscrolldistance{0.12}

\nscrollwidth{0.08}

\nscroll{„}

A

B

C D \nscrolldistance{0.45}

\nscrollwidth{0.35}

\nscroll{ {{ \cut{A} }}

,{{ \cut{B} }},{{ C D }} }

A
B

C D

\nscroll{A,B,[0.75][0.52]

{ \scroll{C}{D} } }

A
B

√
C

\nscroll{A,B,[0.67][0.42]

{ \sqrt{C} } }

The command distributes the inloops evenly along the circumfer-

ence of the outermost cut, but the lobes are not automatically ad-

justed to accommodate their contents. Commands \nscrollwidth

and \nscrolldistance govern the diameters of the inloops and their

distances from the center. You can also change the dimensions of any

lobe(s) one at a time by adding these values, respectively, as optional

arguments before the element(s).

These dimensions are reset after every nscroll back to their de-

fault values, contained in commands \defaultnscrollwidth and \de

faultnscrolldistance. They are unitless scalars (R+
>0) and you have

to figure out the proper values primarily by trial and error.

Unfortunately, if the list elements contain (1) more than one char-

acter, (2) any commands or (3) math mode code, they must be re-

grouped twice: {{ . . . }} (see the code examples in the margin). This

is a highly frustrating requirement arising from \@ifnextchar and

\pgffor-loop interacting. To any TEXnicians reading this: it would

be great if this regrouping could be avoided, preferably without hav-

ing to change the otherwise simple syntax of the command.

the α-system and cuts 8

By default the first inloop is placed to the leftmost side of the main

cut and the rest are distributed anticlockwise. The initial alignment

can be changed to an arbitrary angle by resetting a counter called

\nscrollangle (the angle values follow those of the mathematical

unit circle). \defaultnscrollangle contains the default setting.

\setcounter{nscrollangle}{<z>}

180°

A B

90°

A

B

-15°

A
B

\defaultnscrollangle{<z>} z∈ Z

Although the name \nscroll suggests that it could accept n ele-

ments such that n ∈ N, this is not strictly speaking true. Firstly \cut

already covers a ‘0scroll’ and although the elements themselves can

be empty, the command does expect to receive a list of such elements.

A ‘1scroll’ is much more efficiently covered by the different \scroll

commands (for example, because of the need for longscrolls).6

6 Secondly, the current code for the com-
mand (due to the way LATEX implements
its counters) imposes a hard limit of 231,
or 2 147 483 647, individual inloops.

Scrolls can be nested or iterated just like cuts. With β-graphs,

iterated scrolls have an unexpected side-effect: see the ‘third point’

on page 11. Slightly more complicated cases for scrolls will be in-

Once
Twice

Nested

Nested

The first
longvscroll

First

Nes-

ted

a

b

c d

troduced when I discuss further intricacies of the β-system (‘second

point’ on page 11). Page 17 and onward contain general solutions for

drawing rarely appearing ‘nonstandard’ scrolls.

Cuts in Peirce’s manuscripts are sometimes defined by coloured

regions. This is supported with a Boolean switch \colouredcutstrue.
, A B C , A B C ,

A

B

C

, A B , A , A B ,

Smoke Fire

First

Nes-

ted

Nes-

ted

First

Nes-

ted

Nes-

ted

A
B
A
B

A

B

A

B

A

C

A

C

B

A

B

C

A

B

C

D

After this declaration every evenly-nested (or non-nested) cut will

be automatically shaded. Declare \colouredcutsfalse to revert the

behaviour. Although the Boolean can be flipped even inside a graph,

forcing shading on any single cut is more easily done with the \cutx{}

commands. See page 21 on changing the colour of the shading.

Notice that no line is drawn between the shaded cuts. Peirce em-

phasized that the idea of a cut should be taken literally. Unlike lines,

cuts have no dimension which is also true of the transition between

contiguous coloured and non-coloured regions.

Since scrolls are special types of cuts, also they are subject to the

\colouredcuts Boolean. The mechanism that colours the scrolls is

however quite complex and should still be considered experimental.

A few manuscripts contain γ-graphs that employ tinctures and

heraldic colouring. This, however, is an altogether different idea from

shading discussed above. See page 22. Reproducing a “blot”, an

emptied or blacked out inner cut of a scroll, is discussed on page 20.

So, for the α-system, there are the following basic commands:

\ontop{} \cut{} \scroll{}{} \longscroll{}{}

\ontopl{} \vcut{} \vscroll{}{} \longvscroll{}{}

\ontopr{} \vvcut{} \inversescroll{}{} \longinversescroll{}{}

\inversevscroll{}{} \longinversevscroll{}{}

\cutx{}

\colouredcuts(true|false) \vcutx{} \nscroll*{}{}

\ellipsecut(true|false) \vvcutx{}

\notinline(true|false) \begin[]{inline} ... \end{inline}

9 egpeirce documentation

The β-system and ligatures

Drawing a line-of-identity or ligature is a two-step process.

First you must define two end points, hooks, to the ligature with

the \hk{} command. You can leave the argument empty or put text

in it for a rheme. Each hook is automatically assigned a number (by

default starting from 1) following the order in which they appear in

the code. Ligatures are then drawn using these numbers as reference. This is a graph Man Animal

The \li{}{} command draws a simple straight line. So for exam-

ple the commands \hk{} \ \hk{This is a graph} \li{1}{2} and

\hk{Man} \ \hk{Animal} \li{3}{4} both complete a simple β-graph.

Curved lines are always drawn with the standard \nccurve{}{}

command. Unfortunately it requires always defining—for both end

points—angles at which the line meets them. Doing this would be

tedious and repetitive to the extreme (and explained on page 22).

Thus the package has shorthands for the most usual recurring types.

Consider for example a stacked graph like the one in the margin.

It has two hooks at both ends (a, d) and two hooks (b, c) ontop each

other in the middle: \hk{A} \ontop{\hk{B}\\\hk{C}} \hk{D}.

up

right

A

B

C

D

The ligatures of the example graph are drawn with the commands:

\upright{1}{2}\downright{1}{3}\rightdown{2}{4}\rightup{3}{4}

The mnemonic is that—proceeding from left to right—the ligatures

first travel up or down and then to the right after which they first

point right and then turn up or down.

Other constantly recurring curved ligatures that warrant a short-

hand are the hopefully self-explanatory \sligature{}{}, here drawn

from a to b, \hsligature{}{}, here from c to d and semicircle-

shaped \reflexivel{}{} and \reflexiver{}{} commands (e, f).

B

A

B

A

C

D

C

D

E
F

E

F

Notice that the ligature’s curvature, and its exact path on the sheet

of assertion, depends also on the placement of the hooks. You may

also wonder whether some shorthands are missing. Why isn’t there

e. g. a ‘zligature’ ? It would be superfluous because this shape can

B

A

B

A

be drawn by reversing the order of the arguments for an sligature.7

7 Similar considerations apply e. g. for a
‘downleft’ ligature.Recall that a ligature is always drawn between a pair of hooks.

Thus if a ligature bifurcates, the bifurcation point (or “teridentity” as

Peirce called it) must be assigned its own, empty, hook.
A

B

C
D

More frustratingly, this is also true of most ligatures that have to

evade—or cross—specific cuts on their path. There’s no easy way to

automatically ensure that a ligature stays inside or outside a specific

area. Since the interpretation of the graph is altered if a ligature

accidentally touches or traverses a cut, you must specify the proper

route of the ligature by deploying ‘auxiliary’ empty hooks.
A

B

CI haven’t been able to find an easy way around this requirement

(see page 26 for some ideas). For Peirce, an essential feature of lig-

atures is their continuity but the package handles most ligatures in

a decidedly discontinuous manner. Complex (and bifurcating) liga-

tures must, alas, always be constructed out of discrete line segments.

the β-system and ligatures 10

Ligatures must be able to contain gaps. It is of course possible

to make a ‘gap’ simply by adding more hooks. However, gaps are an

essential part of the transformation rules of β-graphs and frequent in

proofs. Therefore the shorthands accept an optional argument [-g],

[g-] or [g-g] that leaves a small gap before the hook. The placement

of g specifies at which end(s) the gap appears. See the examples in

the margin (marks the exact location of the hook).

\li[-]{1}{2} \li[-]{2}{3}

B \li[-g]{1}{2} \li[-]{2}{3}

B \li[-]{1}{2} \li[g-]{2}{3}

B B \li[-g]{1}{2} \li[g-]{2}{3}

B BB \li[-g]{1}{2} \li[g-g]{2}{3}

A special type of ‘gap’ is the bridge. It is needed when a graph

cannot be drawn without two ligatures traveling across each other.

This can happen in surprisingly simple cases. The last example

graph on the cover page is a very good example. Readers versed in

modern graph theory will recall that somewhat more generally, sim-

ple K5 and the complete bipartite graph K3,3
8 are both also nonplanar.

8 Also known as the ‘ Thompson graph’
or the ‘utility graph’. It shows the
impossibility of connecting two sets of
three vertices, such that every vertex of
the first set is connected to every vertex
of the second set, without at least one
edge overlapping another.

Admittedly in usual egs a bridge can often be avoided.

Nevertheless, this is a routing problem and it must somehow be

made clear that the two ligatures don’t belong together, as it would

alter the interpretation of the graph. Peirce solved this in two ways:

either he left a gap and a bar at ends of the crossing ligature, or

carets to denote the overlap point. The optional arguments [-b]

and [-xb]—which behave otherwise similarly to a gap—draw them.

Often in more complex graphs the numbering and placement

of hooks can become disorientating to the point that it’s hard to draw

the ligatures. To forestall this, the package has a Boolean switch

called \debugmode. When set to true, each hook has next to it, by

default in dark green (redefinable with ‘debugcolour’), the number

that is associated with it. Compile the source with this declaration

\debugmodefalse

(the default)

a

b
c
d
e

g

f

\debugmodetrue

a1 2 3

b4

c5

d6

e7

8 g9

f10

\definecolor{debugcolour}{rgb}{0,0.45,0}

and consult the output when coding the ligatures.

In a few cases the ligatures in Peirce’s manuscripts connect di-

rectly to the rhemes with a tapering line. LATEX can emulate this

effect with a parameter called variableLW that applies to all line and

curve methods available in PSTricks:

w
v

w

v

w

B

B

v

w

w

l v

w

v

w

w

The problem is that the exact position on the glyphs where the liga-

ture end connects to or departs from, differs not only between (most

of) the letters, but is also dependent on the typeface (Computer Mod-

ern 10pt in the example above), the specific font (e.g. upright, italic,

slanted, smallcap) and often even on the point-size in use. For the

italic letter ‘l ’ in CMR10 above, commands that draw a tapered curve

from the letter to the ligature or to the letter from the ligature are:

\newcommand{\litol} {\pscurve[variableLW,startLW=0.1pt,endLW=1.3pt](0.16,0.17)(0.09,0.16)(0.05,0.092)(-0.01,0.075) \ }

\newcommand{\lifroml}{\pscurve[variableLW,startLW=0.1pt,endLW=1.3pt](0.00,0.03)(0.023,0.065)(0.07,0.08)(0.11,0.075) \ }

For the reasons mentioned above, the package does not contain

similar commands for all the letters in different typefaces and fonts.

11 egpeirce documentation

You can, however, use the commands above as templates to create

them. It should also be possible to devise a command that would

automatically append these different to and from commands based

on the contents of the hooks as well. Feel free to contact the author

if you really need something like this.

Cuts and ligatures do not interfere with each other and can be

used together mostly as you’d expect. Save for three observations.

Firstly, ligatures should be able to stop at the boundaries of cuts. a b a b

a

b

a
b

For normal cuts in horizontal alignment, simply put the hook

right next to the cut (or scroll): \hk{}\cut{<text>}. To stop a liga-

ture at the top or bottom of a cut, first use the inline environment to

get rid of extra space that would otherwise show. Then simply place

the hooks in an ontop-construction. You may still have to adjust the

empty hook with a suitable, small, \vphantom{} too, e.g. by using a

glyph (‘.’ in the example) that has an ascender or a descender to have

the ligature reach the boundary of the cut.

Notice also that elliptical cuts cannot (at the moment) be used if

you want ligatures to touch the boundaries of cuts.

\begin{inline}

\ontop {\hk{a} \\ \\

\cut {\ontop{ \hk{\vphantom{.}} \\ \\ \ \ \ \ \ \ \ \ }}\\

\hk{\vphantom{.}}\\ \\

\hk{b}}

\end{inline}

\li{1}{2}\li{3}{4}\setcounter{rheme}{0}

Secondly, you should be able to stop a ligature at any boundary

in a scroll as well. However the inner boundaries are inaccessible in

the usual scrolls. Therefore all the scroll commands have alternative

starred versions that take five arguments to complete.

The arguments define the edges and text places a scroll has, e.g.

\longvscroll∗{<width of top cut>}{<text>}{<width of middle cut>}
{<text>}{<width of bottom cut>}. You must give a suitable amount of

empty space to the arguments that define the cut widths. By placing

a \hk{} in such an argument you can make ligatures stop at the inner

cuts of a scroll as well.

Human

Featherless biped

a

As an unintended side-effect, by giving different amounts of space

for the edges, you can also easily create all kinds of bizarrely shaped

scrolls.

Thirdly, and lastly, an unexpected behaviour arises with the hook

numbers in nested or iterated scrolls. The values are guaranteed

to increase monotonically but in nested scrolls they contain gaps.

Again, \debugmodetrue will reveal the eventual numbers.

As mentioned earlier, hooks are assigned a reference number

automatically. This is done with a LATEX counter called rheme. It is

also automatically reset to 0 at every new page, since there’s very

little advantage in having a unique (and ultimately very large) iden-

tifier for every single hook.

The counter can be manually reset by: \setcounter{rheme}{<z>}.

You can reset it at any time to any Z. See the example on page 18

on how you can use resetting the rheme counter to your advantage

in very complex graphs.

the γ-system . . . 12

A logical scheme for resetting the counter is to set it to 0 at the end

of each graph (so that the first hook of the next graph is always num-

ber 1). This is not done automatically because there are reasonable

uses for different conventions.

It is indeed possible to have multiple similarly numbered hooks on

the same page. When you draw the ligature, LATEX simply references

the last instance of the hook number it can find.

For the β-system, there are thus the commands:

\hk{} \li{}{}

\setcounter{rheme}{} \upright{}{} \scroll∗{}{}{}{}{}
\downright{}{} \vscroll∗{}{}{}{}{}

\debugmode(true|false) \rightdown{}{} \inversescroll∗{}{}{}{}{}
\rightup{}{} \inversevscroll∗{}{}{}{}{}
\sligature{}{} \longscroll∗{}{}{}{}{}
\hsligature{}{} \longvscroll∗{}{}{}{}{}
\reflexivel{}{} \longinversescroll∗{}{}{}{}{}
\reflexiver{}{} \longinversevscroll∗{}{}{}{}{}

The γ-system . . .

. . . was not fully developed by Peirce. Therefore also this section will

offer only an extremely cursory examination of the subject.

There are relatively few reliably and faithfully recurring γ-graphs

in Peirce’s manuscripts, although there are copious amounts of sepa-

rate ideas about the γ-system.

One of the few recurring types of γ-graph present in the ma-

nuscripts is the dashed or ‘broken’ cut. The ‘g’ (for γ) series of

cut-commands (\gcut{ \ \ }, \gvcut{ \ \ } and \gvvcut{ \ \ })

which otherwise behave similar to the normal \cut s, is assigned to

draw them. In the manuscripts, sometimes the ‘broken’ cuts have

(, and)

clearly different types of dashes or dots producing the perimeter.

Consult page 22 on how to faithfully reproduce the different types

of dashes or dots.

Useful shorthand commands for representing Peirce’s modal-logic

part of γ-graphs are the commands \dbcut{}: , \pcut{}: and

\ncut{}: as these define the modalities of necessity (\ncut{}), pos-

sibility (\pcut{}) and the double broken cuts, with single separate

commands.

Also a special type of hook,\shk{}, (example in the margin) ap-

pears in multiple places in the manuscripts. The command is only

typographically different from a normal hook (that is, the hook in-

cludes the ‘hat’ or “envelope” as Peirce called it).

1 2 3 . . .

13 egpeirce documentation

Most ideas in γ-graphs seem to concern the colouration of cuts

or ligatures. Doing this is discussed in the “Handy PostScript com-

mands” section (page 22).

Another highly interesting idea involves the three-dimensio-

nality of graphs and the sheet of assertion. Peirce provided few

actual examples of such graphs, so specific ideas of representing

this are up for grabs. As food for thought there does exist a pack-

age, pst-3d, that handles actual transformations for projective 3d. It

could easily be employed here too. Please consult The LATEX Graphics

Companion (Goossens, 2008, pp. 388–410).

Γ-graphs thus have only the following separate commands, though

LATEX is certainly able to reproduce the different ideas present in

Peirce’s manuscripts:

\gcut{} \dbcut{} \shk{}

\gvcut{} \pcut{}

\gvvcut{} \ncut{}

Finally, there’s a particular command called \everygraphhook that gets

executed inside every graph-element and every \hk{} command.

By default, the command does nothing and it’s definition is:

\newcommand{\everygraphhook}[1]{#1}

The point is that in the package code, this command or ‘hook’ is au-

tomatically included in every graph-element and you can redefine it

yourself to whatever effect you’d like. If, for example, you would like

to have text inside every graph automatically italicized, you can sim-

ply redefine the \everygraphhook command rather than manually

add {\it . . . } or \textit{ . . . } to every single graph separately.

For simple transformations you can even use the TEX primitive

\let. For example, to italicize all graphs \let\everygraphhook\it

suffices. More complex ones require \renewcommand available in LATEX.

Examples of graphs

Next I’ll consider some example graphs from Peirce’s manuscripts

and their solutions with the package. The examples perhaps better

convey the look and feel of the graphs made by the package.

Although we are yet to come across a graph that the package

would have been unable to draw, some require considerable rumi-

nation to work out. Even complex-looking graphs are solvable with

some imagination and a good working knowledge of standard LATEX

commands.

simple cuts and ligatures 14

Simple cuts and ligatures

The first example contains typical, simple inline α-graphs. The pic-

ture is taken from ms 430. Below it is a rendition of the excerpt by

the package. Only the famil-

iar and simple cut command is

used, but a few things are note-

worthy in this simple example too.

Here is a good example of the

Boolean \notinlinefalse which

is declared for reduced space in-

side the cuts
Notice that the cuts produced

by the package do not and cannot

immediately and exactly resem-

ble those that Peirce drew and

that there is obviously some ideal-

ization going on. The other note-

c in the ovals and then inserting n into the outer of these.

In the second sense, the propositions are

T c r n which is reducible to T c n T r n

T c r n which is reducible to T c T r n

from which the other is at once deducible by inserting w in the

worthy thing is that when there are lots of cuts right next to each

other, they can easily create a distracting moiré-like pattern that is

starting to show in the thrice-cutted graph in the example. Adding

an empty space between the cuts can lessen this effect. This space

T c r n , T c r n , T c r n

\cut{T \cut{c \cut{\cut{r} \cut{n}}}},
\cut{T \cut{c \cut{ \cut{r} \cut{n} }}},
\cut{T \cut{c \cut{ \cut{r} \cut{n} } } }isn’t added automatically since adding it is largely a matter of taste.

Changing the definition of a cut to automatically and always include

such a space would be trivial though.

The second example is of slightly nonstandard inline ligatures also

from ms 430. Apologies for the bad image quality. Also the text in

the output example is forced to

follow the text flow in the picture,

which makes it easier to compare

to the picture but look strange.

All graphs are drawn with

the inline-environment: chang-

ing lineheights is easy with its op-

tional argument. Recall that LATEX

cannot automatically route liga-

tures around obstacles but needs

hooks. Therefore lots of ontop-

constructions are being used.

indifferent. Thus A B and A B will be the

same; but A B will be different. So A B

will be different from A
B

; because different sides of

the letters are joined, but A B and A

B
will be

Consider the second graph in the example where B is encircled.

A1

2

B3

4

↓
A B

↓
A B

Because the rheme just happens to be a single letter long, an alterna-

tive solution using two hooks and reflexive ligatures would suffice.

A smoother curve and a more general solution is defined with

four hooks around the B-rheme. Because there are three hooks ontop

and the graph is inline, \begin{inline}[0.33] is declared—the 0.33

makes lineheights 1/3 of the original. Empty hooks do not have any

intrinsic height or width and this can make them look awkward

when ontop. Therefore hooks number 3 and 5 have a \vphantom{a}

in them. In this example this isn’t strictly speaking necessary, but

15 egpeirce documentation

if it had cuts, you should give the empty hooks an explicit height.

Finally, the second hook is slightly elevated from the baseline with

the standard LATEX command \raisebox{<height>}{<text>}. Without

this the final downright curve would look strange:
A1

2

3

B4

5

6

↓
A B

↓
A B

\begin{inline}[0.33]\hk{A} \ \,\raisebox{2pt}{\hk{}} \ontop{

\hk{\vphantom{a}}\hk{B}\\\hk{\vphantom{a}}} \hk{}\end{inline}

The ligature is drawn with:

\sligature{1}{5}\rightup{5}{6}\rightdown{3}{6}\upright{2}{3}

\downright{2}{4}. Finally \setcounter{rheme}{0} is declared.

The example graph in the margin from ms 493 illustrates yet an-

other common point with ligatures. The ligature needs to be routed

with two additional hooks between the rhemes. You must provide

a suitable amount of empty space, most easily with \hphantom{}.

ontopl takes care of the alignment. Linestretch is set to 0.5.

\ontopl{\hk{Enoch}\\\hk{}\hphantom{Enoch}\hk{}\\\hk{is a man}}

Enoch

is a man

\reflexiver{1}{3}\li{2}{3}\reflexivel{2}{4}

The next graph is from ms 430. It is a stacked graph that has the

boxlike outer cut and two identical ‘subgraphs’ inside it.

This example highlights a difficulty: the code is necessarily linear,

but the graphs are described by a two-dimensional field which in

this case is in vertical alignment. A helpful trick is to arrange the

a
b

a
b

code in logical ‘blocks’ with the reserved character % (see below). % is

used for comments in the code and when compiling the source, LATEX

simply discards everything that follows it—including the linebreak.

Below the code is also indented and colour-coded in a hopefully

helpful way. Notice that you should never use indentations in your

actual code. Although LATEX does ignore multiple consecutive spaces,

it will interpret them as a space which will appear in the output.

a

b

a

b

\vvcut{ \ontop{%

\cut{ \hk{} \cut{ %

\hk{} \ontop{\cut{ \hk{a} }\\ \cut{ \hk{b} }} \hk{}%

}}%

\\%

\cut{ \hk{} \cut{ %

\hk{} \ontop{\cut{ \hk{a} }\\ \cut{ \hk{b} }} \hk{}%

}}%

} \hk{} }

The rightmost ligature goes through a single hook. In this case,

a reflexiver ligature would have sufficed since it’s not at risk of

crossing the cut. In the original, this ligature appears perhaps less

curved: the lone hook could have been replaced with two ontop. &c.

a b

The height difference in the cuts a and b is caused by \notinli

nefalse or by the inline-environment. Removing these forces all

cuts and hooks have an equal minimal—though quite large—height.

Alternatively you could add a \vphantom{b} to the first cut: a b .

nonstandard scrolls and complex graphs 16

There are often multiple ways to create similar results as the

next example from ms 430 shows. The difficulty here is that the lis

meet at right angles and thus the hooks must somehow be aligned.

One could simply place four layers of three hooks ontop each

other. However, because the rhemes in the middle hooks differ in

length, you’d have to estimate the amount of empty space needed to

align the terminating hooks between each layer.

An alternative, slightly more complex solution is offered below.

The hooks are arranged in pairs that are put ontop, so there’s no

need to align them vertically by hand. Putting the two larger cuts

ontopr automatically aligns the rightmost hooks: benefactress of

rejects

flattered by

benefactress of

\vvcut{\,\ontopr{%

\vvcut{\,\ontop{\hk{}\\\hk{}} %

\ \ontop{\hk{benefactress of}\\\hk{rejects}} \ %

\ontop{\hk{}\\\hk{}}\,}\\%

\vvcut{\,\ontop{\hk{}\\\hk{}} %

\ \ontop{\cut{ \hk{flattered by} }\\\hk{benefactress of}} \ %

\ontop{\hk{}\\\hk{}}\,}%

}\,}

The ligatures are drawn in an obvious way. However, if you look

closely, the ends of the rightmost ligatures have a nasty dent. This

is because by default all ligatures end with a straight edge. The

leftmost lis are drawn with an alternative argument [c-], which

creates a c-shaped semicircle to the end that removes the dent.

Lastly an example of a scroll is included before I venture into

the more difficult cases. The picture is from ms 277. This graph

\vscroll

δ x
y

δ x
y

\vscroll*

δ x
y

δ x
y

is examined in more detail in the next section. \vscroll could al-

most handle it (the inner cut touches the descender of the y-rheme).

\vscroll* does a better job, because empty space in the additional

arguments gives more precise control over the cut.

Luckily the long scrolls usually automatically resemble their drawn

counterparts. Their starred versions are needed only if you must

place a hook on the inner cut.

Nonstandard scrolls and complex graphs

The behaviour of scrolls may seem strange. Explaining the inner

workings perhaps helps. Firstly, there is a mechanism that enables

the four corners and middle points of a text area to be defined as

referenceable coordinates. The five arguments of the starred scrolls

correspond to five such areas that are put ontop. Finally, a curve

drawn through the coordinates in the right order forms the cut.

\DefNodes{A}{Ω}: Ω
A-tl A-tr

A-ml A-mr

A-bl A-br

The \DefNodes{<ref>}{<text>} command does the referencing (the

huge Ω in the margin is an example). <ref> identifies the text area,

and automatically identifies the six points as: <ref>-tl, <ref>-tr,

<ref>-ml, etc. If <text> has no length, the left and right sides coa-

lesce. If it has no height, the top, middle and bottom points coalesce.

If it’s empty, all the coordinates collapse to the same point.

17 egpeirce documentation

Recall the vscroll* example from the previous page. The five

arguments correspond to the five layers ontop each other.

δ x
y

δ x
y

A-tl

B-bl

C-bl
D-bl

\vscroll*{ \ \ \ \ \ \ \ }% A

{ \hk{δ} \ontop{\hk{x}\\\hk{y}} }%

{ \ \ \ \ }% B

{ \hk{δ} \ontop{\hk{x}\\\hk{y}} }% C

{ \ \ \ \ \ \ \ } D

scrolls automatically assign coordinates with DefNodes to four of

the layers, with <ref>s A–D (and a reference for nestedness, see below).

The second layer is exempted since it automatically stays within the

cut. Layers A, B and D—that is—arguments 1, 3 and 5 needn’t any

height but can be assigned some to alter the appearance.

In a simple connect-the-dots kind of way, the cut is drawn with:

\psccurve[curvature=1 0 0](A-tl)(A-tr)(D-br)(C-bl)(B-bl)(B-br)(C-br)(D-bl)

Internally, the nodes also have a reference that tracks the level of

nestedness so that the scrolls can be iterated easily. This reference is

contained in \egatn. If you want to manipulate scrolls created by the

package, remember to add this command to the coordinate points

mentioned above: (A-\egatn-tr)(D\egatn-br) . . . See e.g. page 20.

longvscrolls are drawn with a pspolygon instead of the psccurve

for the more boxlike cut. The non-starred versions of longvscrolls

also automate the drawing somewhat. They first check which line is

longer, the premiss (layer 2 = the first argument) or the consequent

(layer 4 = the second argument) and then make the first and last

layers 6pt longer than the longest argument. This automation gives

the scroll straight edges and explains why the starred versions aren’t

usually needed.

δ x
y

δ x
y

A-tl

B-bl

C-bl
D-bl

\longvscroll{ \hk{δ} \ontop{\hk{x}\\\hk{y}} }%

{ \hk{δ} \ontop{\hk{x}\\\hk{y}} }

After this introduction you are now armed to tackle all kinds

of nonstandard scrolls.

The first example is from ms 670 of a twice self-intersecting cut.

A
B C

A
B C

Taking a cue from the explanations above, it’s not difficult to figure

out how the graph might have been drawn. Although as usual, dif-

ferent and more complex solutions would have been equally possible.

Also, \nscroll*{B,C}{A} would draw a semantically identical graph,

but look a bit different. In this example Defining Nodes for the three

letters suffices. Space inside them allows for some fine-tuning. The

cut is drawn through the most convenient points.

In usual scrolls the point of intersection has no coordinate, which

makes it look very pronounced. In this example doing it would have

required additional noded areas. Instead the curvature-parameter is

altered to make the intersection points more distinct:

A
B C

\ontop{\DefNodes{A}{ \ \ A \ \ }\\\DefNodes{B}{ B } \DefNodes{C}{ C }}

\psccurve[curvature=1 0.5 0.5](A-mr)(C-br)(C-bl)(C-tl)(C-tr)(C-br)

(B-bl)(B-tl)(B-tr)(B-br)(B-bl)(A-ml)

nonstandard scrolls and complex graphs 18

A slightly different looking example of a twice self-intersect-

ing cut from ms 488 is in the margin. The graph may appear simple
w

v
when drawn with a pencil, but writing its code does require some

forethought.

In particular, keeping the leftmost portion of the ligature in the

singly cut area and having the rightmost cut protrude through the

two cuts are not obviously soluble. Defining the areas and align-

ing them is a simple matter of providing sufficient empty space.

Linestretch is set to 0.5, ontopl takes care of initial alignment:

\ontopl{%

\DefNodes{A}{ \ \ \ \ \ \ \ }\\

\ \ \ \DefNodes{B}{ \ \ \ \vphantom{a}}\\

\ \ \ \DefNodes{C}{ \hk{w}\vphantom{pl} } \ \DefNodes{D}{\vphantom{pl}}\\

\ \hk{}\strut\\

\ \ \ \DefNodes{E}{ \ \hk{v} \ \strut}\\

\DefNodes{F}{ \ \ \ \ \ \ \ \ }%

}

Notice the \struts and different \vphantoms. Keeping the empty

hook in the right place, areas A and F are not indented, whereas the

rest have empty space before their introduction. Area D ensures that

the cut can protrude horizontally out of the graph.

The cut is defined by the sequence: (A-bl)(A-br)(E-br)(E-bl)

(B-tl)(B-tr)(C-br)(C-bl)(C-tl)(D-tr)(F-tr)(F-tl). Notice that

this is a general solution and that the cut can be actually drawn

with different lines or curves. In the margin the reference points are

marked and the different lines and curves are superimposed. The

w

v

\pspolygon[linearc=0.18]
\psccurve[curvature=1 0 0]
\psccurve[curvature=0.6 -1 -1]

green curve is already a bit too steep, since the ligature would no

longer reach the singly cut area. Changes in the placement of areas

A, F and B, E could take care of this.

The next example is of a very complex graph from ms 493.

and in line with

and in line with

and in line with

and in line with

and in line with

and in line with

and in line with

and in line with

and in line with

and in line with

Defining and placing each hook in such a complex graph sepa-

rately would be a stupendous task. Instead, a far more effortless

strategy is to take advantage of the repetitive structures and effec-

tively create a matrix of hooks.

A cursory glance of the graph suggests—taking into account all

the bifurcations—that no single line needs more than about fourteen

hooks. Since some ligatures run or bifurcate under the text lines, it is

sensible to double the number of lines. Every other line needs seven

empty hooks, then the words ‘and in line with’ in separate hooks,

and five empty hooks still. In every other line, the words should be

defined as \hphantoms, totaling a matrix of hooks 14×26.

The number of hooks per line, 14, makes it difficult to calculate

their relative positions in the final matrix. It makes sense to declare

e.g. \setcounter{rheme}{100} at the end of the first line, {200} at

the end of the second and so on. Thus the relative position of a hook

and the place of any bifurcation can be figured out easily. Drawing

the ligatures for the graph this way isn’t trivial, but it is a lot easier

than placing each hook individually.

19 egpeirce documentation

PsTricks and thus the egpeirce-package allows one to define

points on the plane with vectors in a polar coordinate system. By
l l

l

l l

l l l l

l

placing hooks in such points, even graphs like the one in the margin

are manageable. Because these kinds of graphs are rare, this method

isn’t described in detail here. Please consult e.g. The LATEX graphics

companion for more details.

Alternatively, the matrix method described previously would work

almost equally well in these situations.

Ugly hacks

In Peirce’s graph-system, there are unfortunately a few cases that

still escape an elegant solution. Drawing lines on paper affords a lot

of freedom. Describing the graphs in code makes them look more

uniform and makes their manipulation much easier. However, this

method is somewhat more limited than hand-drawing and must at

times compromise. Below are two examples of such compromises.

The example in the margin is a γ-graph, a scroll, that is wavy in

the inner cut. Perhaps surprisingly, this is very difficult to solve.

PostScript does have a mechanism for drawing zigzag lines, but

the difficulty here is that the cut is also curved. The zigzag lines can

be bent on the arc of a a circle, but the code does this in an idiosyn-

cratic way that’s hard to generalize to an arbitrary curve. There is

no algebraic solution to calculate a general wavy curve that I would

be aware of. PostScript is an extremely powerful programming lan-

guage and it can even solve (certain types of) differential equations

automatically. I do have a nagging feeling that I must have embar-

rassingly overlooked something really obvious.

Of course—for our purposes—the zigzagging perimeter wouldn’t

have to form an actual continuous line. Merely a visually convincing

semblance would suffice. And this is exactly what’s done here. For

now, the package must resort to a crude approximation.

I use one of the methods that do allow us to put zigzagging elements

on an arbitrary curve. There is, however, a general problem in this

approach with the discrete elements that form the ersatz zigzag-line.

They consists of a ‘zig’ (), a ‘zag’ () or a ‘zigzag’ () repeated one

after another. Thus the line is—for lack of a better word—quantized

on the zigs or zags (& this is one of the reasons why it’s so difficult

to come up with a simple algebraic solution). With this method one

has to always guess or estimate the number of elements needed.

One possibility would be to create a new zigzag arrow and fill a

line with it: . This method applies also to Bézier curves of

arbitrary curvature. PostScript has a method of computing tangents

to a curve at different specified points. The tangents could be used

to compute control points for a Bézier curve approximating the path

of the zigzag segment. This, however, is unnecessarily complex and

would involve also guesstimating the beginning and end points.

ugly hacks 20

The mechanism employed for now uses a command that makes

text follow a curved path. After the normal scroll has been drawn, an

additional line is drawn through the inner part of the cut. This line

has some text in it that draws the ersatz zigzag line. Here, the zigzags

The roads are muddy

It has rained·̂·ˆ·̂·̂·̂ ·̂·̂·̂·̂·̂·̂·̂·̂·̂·̂·̂·̂·̂·̂·̂

T
he

road
s are muddy

It has
rained·̂·̂·̂·̂·̂·̂·ˆ·̂·̂·̂·̂·̂·̂·̂·̂·̂

·̂·ˆ·̂·̂·̂·̂·̂·̂·̂·̂

are repetitions of the caret (ˆ) whose background is filled to hide the

line, that are lowered and kerned so that they can be made to form

a continuous-looking line:·̂·̂·̂·̂·̂·̂·̂·̂·̂·̂·̂. Since this is a complex operation,

there’s a command (\vv) that does precisely that, one caret at a time.

The command for the zigzag curve in the longscroll is:

\pstextpath[c](0,0){\psline[linearc=.18,linestyle=none]

(A\egatn-tr)(D\egatn-br)(C\egatn-bl)(B\egatn-ml)(B\egatn-mr)

(C\egatn-br)(D\egatn-bl)(A\egatn-tl)}{\vv\vv\vv\vv\vv\vv . . . }

For the normal scroll, replace the \psline with a \pscurve[curvatu

re=1 0 0,arcsep=10pt,linestyle=none].

This places the carets onto the line defined by the usual scroll

sequence. Only the inner cut should be zigzagged. Since the inter-

section point doesn’t have a referenceable coordinate, the carets are

made to emanate from the middle of the line (with the [c] option).

By drawing just enough carets, they will stop at the intersection.

This is an ugly hack: it does the trick, albeit not very elegantly.

Peirce’s manuscripts include scrolls and cuts that have an

emptied or blackened inner cut (“blot” as Peirce called it). This ex-

presses the pseudograph and is thus entirely and fundamentally dif-

ferent idea from shaded cuts made with \colouredcuts (page 8).

There are two special fillrules in PostScript, oefill and eofill

that fill evenly or oddly self-intersecting areas. Introducing these

through \psset{} allows you to fill the inner cut of any scroll.

\vscroll{A}{B}

A
B

{\psset{fillstyle=eofill,fillcolor=black}

\vscroll{A}{B}}

A
B

{\psset{fillstyle=oefill,fillcolor=black}

\vscroll{A}{B}}

A
B

Notice that any content in the singly cut area is painted over in

this method and would have to be reinserted through other means.

An alternative way to fill the inner cut of a scroll exists that does not

fill the singly cut area. Here you specify a solid fillstyle and make it

traverse only the inner cut. This is a rather hacky way to achieve the

desired effect though, since you have to figure out the intersection

point manually by trial and error.

Recall that the points \DefNodes creates are internally simply ref-

erences to a pair of coordinate points. You can try to find the inter-

section using raw coordinates. In the first scroll below, this happens

to be at -0.26,-0.32, so \psccurve[curvature=1 0 0,linewidth=.2

pt,fillstyle=solid,fillcolor=black](-0.26,-0.32)(C\egatn-bl)

(B\egatn-ml)(B\egatn-mr)(C\egatn-br)(-0.26,-0.32) fills the cut:

A

B
A A A A .

21 egpeirce documentation

Some difficult cases and their solutions

Next I will discuss a few recurring general types of problematic cases

that arise when transcribing graphs from manuscripts. Some of these

problems can be solved by changing mutable parameters of the pack-

age. Others require slightly more involved methods.

More specific cases of difficult graphs and their solutions are dealt

with in the examples.

Mutable parameters of the package

The egpeirce-package includes many predefined parameters and

dimensions that can be reset if needed. Change parameters with

\renewcommand{\<parametername>}{<value>}. Dimensions are reset by

\setlength{\<dimensionname>}{<value>}. You must specify all dimen-

sions with a unit. Parameters can be integers, fractions or strings.

These changes have a global scope and must be explicitly reset

even to get the default values back. You can of course change them

for only a small period, even inside or in the middle of a graph.

Below, the initial default value of the parameter or dimension is

written in the margin for easy and fast reference.

In most of Peirce’s manuscripts, the cuts are drawn with a very

fine black line (with a pointed nib or the narrow side) and the liga-

tures with a distinctly heavier pen or wider nib. This is emulated by

the package. Dimensions called cutwidth and ligaturewidth are in

charge of the width of the cut and ligature.

\setlength{\cutwidth}{0.2pt}

\setlength{\ligaturewidth}{1.2pt}

The colour of a coloured cut is defined with a parameter called

cutxfillcolour. As was mentioned earlier, when cuts are delimited \renewcommand{\cutxfillcolour}{gray}

with a coloured region by declaring \colouredcutstrue, there is no

line drawn to distinguish them. Sometimes, especially in γ-graphs

there are however heavy lines around a coloured region to specify

a cut. To ease the use of this, you can increase the value of the

cutxwidth-dimension and set the cutxcolour parameter to a suitable

colour.

\setlength{\cutxwidth}{0.01pt}

\renewcommand{\cutxcolour}{white}

It is also possible to fill a cut with a pattern instead of a solid

colour. This is defined with the xfillstyle parameter. See the next \renewcommand{\xfillstyle}{solid}

section for more details.

Sometimes Peirce drew the cuts with a dark blue ink. Ligatures

are also drawn in colours other than black, at least bright red and

brown ones exist too. The colour of a cut is defined with a parameter

called cutcolour and the colour of ligatures with licolour.
\renewcommand{\cutcolour}{black}

\renewcommand{\licolour}{black}

Finally, all vertical scrolls have reduced lineheight. Since all verti-

cal scrolls have five layers, a logical choice would be 0.2. For æsthetic \renewcommand{\scrollstretch}{0.3}

reasons the default is slightly higher. Very much smaller values will

look bad and can create problems with the arcs.

some handy postscript commands 22

Some handy PostScript commands

Some γ-graphs have cuts whose lines are not solid or whose areas

are coloured. Since these cases are rare and not very consistent in ap-

pearance, there isn’t a single parameter that governs this behaviour.

Whenever you want to draw a nonsolid cut, you must first declare

\psset{linestyle=dashed,dash=<x>pt} before the cut. The value

of <x> determines the length of the dashes. Changing the linestyle

parameter to dotted draws dots instead of dashes.

Declare \psset{linestyle=solid} to get solid lines back in the

middle of a graph. Values of cutwidth and cutcolour hold for the

dashed or dotted cuts also.

To draw coloured cuts you just need to change the cutxfillcolour

parameter to a different colour and remember to draw all the cuts

with the \cutx{} command. To fill a cut with a pattern, change

the xfillstyle-parameter to a suitable option and give a value to

options of hatchwidth, hatchsep and hatchangle with \psset{}. See

the PSTricks-documentation for more options and examples.

Notice that unlike the parameters discussed in the previous sec-

tion, \psset{} is sensitive to scoping, so you can also limit all the

effects by enclosing it in curly brackets.

As was mentioned earlier, PostScript does handle drawing

arbitrarily curved lines but requires that the end angles be always

defined. The \nccurve[]{}{} command does this.

nccurve accepts line properties as optional arguments, so give them

comma separated inside the square brackets. Specify linewidth and

colour as linewidth=\ligaturewidth,linecolor=\licolour so that

changes in these parameters also effect these ligatures. The entry

and exit angles are defined as angleA=<degrees> and angleB=<degrees>.

Angle directions follow those of the normal mathematical unit circle.

45°135°

225° 315°

0°/360°

90°

180°

270°That is, to the ‘right’ it is 0° or 360°, for ‘up’ it’s 90° and so on. The

destination hook numbers are given in the usual way.

One situation where you may have to use nccurve is if the lines of

bridges do not meet at right angles. The example ligature in the mar- 1

2

3

4

5

↓

↓

gin exemplifies this. The graph has five hooks. Using the shorthands

makes the crossing looks strange, since they force it to be perpen-

dicular. nccurve enables the crossing to be effectively rotated by 45°.

The bridged parts of the example are drawn with the commands:

\nccurve[linewidth=\ligaturewidth,linecolor=\licolour,

angleA=0,angleB=225]{-b}{2}{3}

\nccurve[linewidth=\ligaturewidth,linecolor=\licolour,

angleA=45,angleB=180]{b-}{3}{4}

The entry and exit angles (225 and 45) define a smooth curve through

the center hook. Notice that when you use nccurve, the bridge (or

the gap) declaration must be in curly brackets instead of square ones.

23 egpeirce documentation

Peirce’s logical symbols

The package includes commands that print symbols Peirce devel-

oped for his logical system. Peirce was fastidious about the details

and appearance of these symbols and signs, and every effort has

been made to make the glyphs appear as close as possible to Peirce’s

descriptions and examples. When needed, alternative variants of

symbols are also provided.

These symbols are not included in the package as new fonts but

rather as vectorized pictures. This substantially decreases work need-

ed to define them and also means that you don’t need to separately

install a new typeface to use them. All the symbols are contained

within the package.

This technique does have two setbacks, however.

First, a separate mechanism for scaling the symbols had to be cre-

ated. The symbols respond to the sizing commands (\tiny . . . \Huge)

and they also scale whenever your .cls file tells LATEX to change font

sizes (e.g. inside footnotes and headers). If the symbols appear to

be overall too small or too large compared to the typeface you use,

you can change their size relative to it by redefining a command

called commoncoefficient. Internally, the scaling mechanism tracks \renewcommand{

\commoncoefficient}{<r>} r∈ R
+
>0

As the name suggests, it is a scal-
ing coefficient common for all the sizes.
The default is, obviously, 1.

the \f@size macro, which should be a reliable source for size infor-

mation. If it nevertheless causes problems, you can turn the scaling

off by setting the Boolean flag \scaledsymbols to false. This won’t

effect the commoncoefficient command, so you can use it to scale

the symbols independently.

Secondly, you might get error messages when you use the symbol

commands e.g. in places where LATEX needs to use external files, such

as in the sectioning commands (which write to the .toc file) and

indexing commands (that use the .idx files). If this happens, you can \part{Part text

\protect\<symbolname>}

\section{Section text

\protect\<symbolname>}

\index{\protect\<symbolname>}

easily solve these errors simply by preceding the symbol commands

with the standard LATEX command \protect. This is fundamentally

due to the symbol commands being ‘fragile’ and LATEX forcing their

expansion too early. The concepts of command expansion, execution,

and ‘fragility’ are too complex and low-level to be dealt with here. Be

aware that early expansion—whenever it happens—will invariably

result in copious amounts of errors grave enough to stop compilation.

Use e.g. the \protect or \expandafter commands when needed.

˘ ¯ A ˆ B â b a ←− b ∏
∈ i

︷ ︸︸ ︷
a b c · · · k l m

Symbols that need to—at least in principle—interact with standard

mathematical compositioning and typesetting commands available

in LATEX (\hat{}, \bar{}, \overline{}, etc.), do play nice with them.

Next, lists of the symbol commands and symbols are presented.

The lists do not give the definitions, semantics or explanations for

the symbols. References to manuscripts are provided to that end. As

was mentioned in the beginning, this documentation tacitly assumes

that the reader is familiar with existential graphs and Peirce’s logic.

peirce’s logical symbols 24

Some of these references are unique, but most symbols (and even

their definitions) exist in multiple manuscripts. Further notes about

some symbols are presented in footnotes.

First, a list of simple symbol commands for the linear notation:

9 This variant exists only for use in the
\agoverline{} commands below, and
does not appear in Peirce’s manuscripts
as such.

10 The capital ‘P’ in the command
names denotes Peirce’s variant of an
already existing LATEX command.

This is Peirce’s preferred version for
the constellation symbol of Aries.

11 This is merely a typographical
variant of the \implicates command.
Peirce’s description for it (from a letter
to Paul Carus in Oct. 1898) was: “The
character [. . .] ought to have a some-
what Chinese effect. I have drawn the
longer line pointed at both ends. But
I don’t know but it would look better
blunt at the left. If so cut that edge
must not be vertical but slanting”, and
a hand-drawn sketch of this variant is
also provided.

In almost all manuscripts though,
the symbol resembles more the ‘non-
cursive’ variant.

12 These symbols are Peirce’s own
modifications on his father’s notation,
for the mathematical constants e and π

respectively (found e.g. in the Century
Dictionary under the entry ‘Notation’).

The identity = (–1)–
√

–1 holds.

Command name Symbol From manuscript

\aggregate ms 293

\varaggregate 9

\Paries 10 ms 530

\dragonhead ms 501

\reversedragonhead ms 501

\flatinfty ms 530

\fsymbol ms l 224

\implicates ms 430

\cursiveimplicates 11 ms l 387

\varinclusion ms 530

\Ppropto ms 530

\Pinversepropto ms 530

\varwedge ms 530

\weirdone ms 530

\weirdtwo ms 530

\weirdthree ms 530

\weirdfour ms 530

\napierianbase 12

\Pratiocircdia 12

Peirce also studied and used in his manuscripts and correspon-

dence a system of binary connectives that Max Fisch coined the

“Box-X” notation. It consists of the ‘X’, or center cross () to which
\boxxoperator{}

\boxxoperator{t,b,l,r}

A B C D

a kind of ‘box’ is constructed—piecemeal—with lines spanning the

top and/or bottom (,) & the left and/or right sides (,) ultimately

giving the sixteen unique operators in the margin.

Having 16 new unique commands for such a simple system would

in my opinion be excessive. A single command, \boxxoperator{},

suffices that accepts the lines as a comma-separated list: t for the top

line, b for the bottom, r and l for the right and left sides.

Unlike with \nscroll, you can leave the argument empty. In this

case, only the central cross is drawn and this is a syntactically correct

connective, though semantically quite strange (Peirce, 2023, Vol. 1,

pp. 427–432). Notice that the order of the list elements doesn’t matter.

For example \boxxoperator{t,l} equals \boxxoperator{l,t} &c.

25 egpeirce documentation

In a letter to T. J. McCormack, Assistant Editor at Open Court,

Peirce advised that instead of Π and Σ (\Pi and \Sigma)—which he

uses copiously e.g. for quantifiers—simpler typefaces that he encoun-

tered in European mathematical journals, should be used.
13 Peirce’s ‘ ’ and the usual, modern,

sans-serif ‘Π’ differ also. In Peirce’s
description and in his handwriting the
‘bar’ always extends beyond the ‘legs’.

14 Internally, these symbols clear space
equal to Π and Σ, so the commands
\let\Pi\PPi and \let\Sigma\PSigma

should be safe to use. Though in math-
ematical equations, even Peirce would
have suggested that the normal sym-
bols be used to denote product and
summation.

Peirce writes in the letter: “They should be upright, all of one

thickness, and devoid of the little finishing lines (whose name I for-

got.)” ms r s-64, referring to sans-serif typefaces.13 These have been

created as symbols:

Command name Symbol

\PPi 14

\PSigma 14

In the ‘Logic Notebook’ (ms 339), Peirce introduced binary &

ternary symbols for existential graphs. These symbols differ from

the ones above in that they must directly interact with ligatures.

These symbols thus have hooks in preconfigured places. In the

third row they are highlighted with a and enumerated by setting

\debugmode to true. The last four symbols have arguments which

can be left empty.

X

Y

Z

Command name Symbol

\heartright
1 2

\heartleft
1 2

\heartleftnofill
1 2

15 This command name (as many oth-
ers) is descriptive of the shape of the
symbol rather than its function.

This name especially reflects the quite
remarkable coincidence that this sym-
bol very closely resembles the modern
logical nor gate symbol. Entitative
graphs implement a kind of nor logic
and existential graphs, a nand logic.

Peirce was aware of the fundamental

importance—also in this respect—of his
discovery. In 1886 he wrote to Allan
Marquand that his logic would permit
relatively simple machines to be con-
structed that could solve even complex
mathematical problems piecemeal, and
furthermore suggested that electricity
be employed for the signalling.

\heartdown

1

2

\heartup

1

2

\norlike 15 1

2

3

\inversenorlike 15

1

2

3

\whiskers{}{}{}
1

2
3

\inversewhiskers{}{}{}

1

2

3

\whiskersdot{}{}{}
1

2

3

\inversewhiskersdot{}{}{}

1

2

3

These symbols (unlike all the others) are not subject to the automatic

scaling, since they belong to graph symbols and interact only indi-

rectly with text.

ideas on further development 26

In ‘Qualitative Logic’ (ms 736), Peirce introduced three new

notations for illation. A line or vinculum indicates the scope.

abc

abc def

abc def ghi j

abcdef

abc def

abc

abc

abc def

abcdef

abc def

abc

Commands \agoverline{}, \croverline{} and \cuoverline pro-

duce them. The \inlineagoverline{} variant blends better inline

with text. All the commands have a ‘reverse’ variant. All have one

argument which can be left empty, and they can be nested.

Command name Symbol

\agoverline{},\reverseagoverline{} ,

\inlineagoverline{},\reverseinlineagoverline{} ,

\croverline{},\reversecroverline{} ,

\cuoverline{},\reversecuoverline{} ,

These symbols—and the argument—are automatically scaled. If the

argument contains text, it is typeset in \normalsize and also scaled

with the ad hoc method created for the symbols. Because many type-

faces do have slightly different appearances for fonts in different

point sizes, scaled text inside the argument may look ever so slightly

different from any surrounding text.

Ideas on further development of the package

As was mentioned in the beginning, the current version of the pack-

age is designed for drawing existential (and entitative!) graphs from

Peirce’s manuscripts. Many of these graphs have highly unusual and

inconsistent features. The package is designed to cope with these

kinds of graphs as well and thus it doesn’t make a lot of assump-

tions on the structure of the graphs. It is up to the coder to provide

them with the necessary structure.

It could be possible to develop the package with much more au-

tomation. Below is some food for thought on these possibilities.

Perhaps the easiest case for automation would be John Sowa’s

egif, which is a linear notation (or an ‘interchange format’) for ex-

istential graphs. The problem is that graphs actually drawn on the

sheet of assertion have no intrinsic (linear) structure. An algorithm

for drawing the graphs based on egif could still be devised. The

algorithm could even draw the ligatures in β-graphs automatically!

However, the fundamental problem persists. Again—excepting

the simplest cases—there exists a multitude of possible permutations

for drawing the graph-elements described by the egif notation. The

algorithm would always have to choose arbitrary rules for the compo-

sition as the graphs wouldn’t readily resemble the user’s wishes. The

algorithm could be fed with compositional hints or the user could

perhaps e.g. choose from a set of the most common ‘normal forms’.

In our setting of transcribing graphs from manuscripts, this would

in my opinion be a fundamentally bad idea. It would hide compo-

27 egpeirce documentation

sitional principles behind layers of abstraction and thus most of the

advantage of having any automation in the first place, would be lost.

You’d be fighting against a fairly opaque algorithm. Though the cur-

rent scheme can be laborious at times, it does preserve a relatively

close homeomorphism between the code and the ensuing graph (as

the example on page 15 shows).

On the other hand, for a package that would need to just draw

monotonically similar existential graphs without needing to adhere

at all to their counterparts in e.g. manuscripts or to the vagaries of the

user, something like the egif approach would make a lot of sense!

There are some packages for LATEX, e.g. XyMTeX and ChemFig,

that can draw complex structural formulas of chemical compounds

and molecules. These packages can handle skeletal formulas and

even stereochemistry with an elegant and simple syntax, even for

horribly complex molecules in organic chemistry. The question arises,

whether something similar could be done for existential graphs too.

However, the laws of nature that govern chemical bonding already

contain lots of structure and their usual representations include lots

of conventions on how to draw these structures out. Again, the lack

of obvious intrinsic structure in existential graphs thwarts most pos-

sibilities for an elegant syntax for egs.

Taking a cue from XyMTeX, there are some ideas that could be de-

veloped further for graphs too. At least, it could be possible to create

an easier syntax especially for α-graphs.

We could devise a command, say, \graph{} that would re-interpret

some normal characters as control characters. The most obvious can-

didates would be ‘(’ for the beginning of a cut and ‘)’ for the end.

Since the normal space character could take care of alignment and

positioning, and the linebreak character for linebreaks, the syntax

would be considerably simpler and also quite natural and intuitive.

So:
\graph{ ((A)

(B)) }
would be interpreted as \cut{\ontop{\cut{ A }\\\cut{ B }}}, or

A

B
.

Clearly a simpler syntax than the current one.

Unfortunately, simplifying the drawing of ligatures in a similar

way still eludes a solution. It would not be a problem to create a

new control character to the \graph command for the end points of

ligatures but routing and drawing them would still need to be done

in the current, piecemeal, way.

introduction to LATEX 28

Introduction to LATEX

What is it . . .

LATEX is a programming language for typesetting documents and

books. It is based on the TEX language created by Donald Knuth

in the late 1970s.

LATEX uses highly portable and standardized file types. It pro-

duces high-quality publication ready materials that have outstanding

dimensional accuracy and excellent consistency.

Because LATEX is fundamentally a programming language, its use

may seem abstruse at first sight. This may especially be the case

if you are accustomed to What-You-See-Is-What-You-Get programs

such as Microsoft Word or the like. This obscurity soon dissolves

when few fundamental concepts are introduced and explained.

Like all programming languages LATEX relies on a source file.

It contains the text and its typesetting instructions called commands.

A program then compiles this source file and produces some output. source files, compilers and

outputsThe source file is invariably a plaintext file whose commands must

adhere to a specific syntax. If they fail to do so the compilation will

also fail and the program won’t be able to produce any output.

There are quite a few programs that can compile and process LATEX

files and the outputs range from structured plaintext files and html

documents to a variety of vector and raster graphics formats. Most

commonly though LATEX is used to produce a wholly self-contained

PostScript or pdf file that is ready for printing, such as this one.

There are various Integrated Development Environments desig-

ned for LATEX that automate or help with many of the tedious tasks

of codewriting and compilation. Some ides even come close to re-

sembling wysiwyg programs.

There are however fundamental differences between the two. The

most important being a strict separation of form and content. separation of form and con-
tentA decent analogy is a web-page. The browser, though, is both

the compiler and the output viewer for the html source file. The

Hypertext Markup Language also uses its commands to describe the

logical content of the page and the browser does the formatting.

Much like html’s Document Type Declaration defines a gram-

mar and vocabulary, in LATEX a class file gives the structuring com-

mands. So-called package files introduce new commands or override

old ones—not entirely unlike what css modules do with html.

Often when using wysiwyg programs the author is constantly

distracted by appearances and formatting issues. When writing LATEX,

the key point is to write and describe the content of the document

in a logical manner and let the program do all the formatting. It is

especially important to understand this mindset when writing exis-

tential graphs with the egpeirce package. The graphs are described

in text, and LATEX then takes care of actually drawing them.

29 egpeirce documentation

. . . and why use it?

Even though TEX was created in the 1970s, LATEX is still actively de-

veloped and new technologies are added to it. It is widely used in

academia and the publishing industry.

One of Donald Knuths original reasons for creating TEX was the For a challenge, try typesetting these
formulæ with anything other than TEX:

A =
∞

∏
k=2

⌊
φk

k− 1

⌋

∫ +1

−1

f (x)√
1− x2

dx ≈ π

n

n

∑
i=1

f
(

cos
(

2i−1
2n

))
abysmal state of mathematics typesetting. LATEX is still unparalleled

in this respect.

Another singular feature in LATEX is its versatile and eloquent line-

breaking system. A good introduction to its manipulation and use

is e.g. in Knuth (1984), and a detailed account of its development

is presented in Knuth (1999, ch. 3). LATEX searches through all possi-

ble linebreaking places. A simple but ingenious algorithm chooses a

combination of them that creates the least inter-word space stretches

and hyphenations one paragraph at a time for the entire page.

Some people may view the fact that LATEX is a programming lan-

guage as a hindrance. Arguably it does create a small learning curve.

But it is this very background that also sets LATEX apart from other

desktop publishing systems in many positive ways.

Firstly, LATEX documents are extremely portable because they are portability

simple plaintext files. Practically any computer can be used to edit

them and the files are human readable as such. This is in contrast to

the binary or xml files that most document editors use.

As mentioned earlier, compilation is not dependent on a single

program and nearly all compilers are free and open source software.

They are ported to practically all operating systems.

LATEX also has an excellent track record on backwards compatibil- backwards compatibility

ity. The first version of TEX was made available in 1977. By 1982 the

typesetting features were changed so that reproducibility across dif-

ferent hardware was guaranteed. The language features were frozen

in 1989 when a few seldom used commands were deprecated.

Most TEX documents that were written in 1977 will compile fine

even today. Any documents written after 1982 will even hyphenate

and look exactly the same. Not many other typesetting systems can

claim to be able to reliably process and reproduce, at the time of

writing this, almost four decades old documents.

Lastly, the unit that ties LATEX dimensions and lengths to real-life dimensional accuracy

measurements is the TEX point (pt). It is defined to be 1/72.27 inches

or about 0,3515 millimeters. The fundamental smallest unit in TEX

is called a scaled point (sp) and all other length types are internally

represented as integer multiples of it. TEX uses 16 bits to represent

the fractional part of a point, so 1 sp = 1/216 pt. This is a staggeringly

small quantity—roughly a hundredth of the average wavelength of

visible light. LATEX dimensions are thus two orders of magnitude

more accurate than any normal physical manifestations of them.

Because only so many bits can be reserved for multiples of sp, the

biggest single page an unadulterated version of LATEX can handle is

about 5 m2 in size. Well within the needs of ordinary typesetting.

references 30

Recommended further reading

This introduction has hardly scratched the surface to TEX and LATEX.

The internet is full of guides to LATEX. The not so Short Introduction

to LATEX2ε by Tobias Oetiker et alii (originally from 1995 and updated

continuously) is considered a classic. The Wikibook for LATEX is also
Click me ↓

The not so short. . . as a PDF file at CTAN

well organized, quite thorough on basic commands and perhaps also

a good place to start. It’s very handy as a quick-’n-dirty reference. http://en.wikibooks.org/wiki/LaTeX

The quintessential tome is The TEXbook by Donald Knuth himself.

Although required reading for any TEXnician, it is also quite arcane

and as the name suggests, deals exclusively with TEX. A famous

reference book is The LATEX companion by Mittelbach et al. (2004). It

isn’t (and cannot be) a complete listing of all packages for LATEX but

offers a decent idea of the kinds of things it is capable of.

Lastly, The LATEX graphics companion Goossens (2008) is definitely a

very important reference, especially chapters 5 and 6 on PostScript.

References

Goossens, M. (2008). The LATEX Graphics Companion. Addison-

Wesley series on tools and techniques for computer typesetting.

Addison-Wesley.

Knuth, D. E. (1984). The TEXbook. Addison-Wesley, 1 edition.

Knuth, D. E. (1999). Digital typography. clsi lecture notes. Stanford,

Calif. clsi Publ. cop.

Mittelbach, F., Goossens, M., Braams, J., Carlisle, D., and Rowley, C.

(2004). The LATEX Companion. Pearson Education.

Oetiker, T. (2021). The Not So Short Introduction to LATEX2ε.

Peirce, C. S. (2019–2023). Logic of the Future, volume 1–3 of Peirceana.

De Gruyter, Berlin.

Roberts, D. D. (1973). The Existential Graphs of Charles S. Peirce. De

Gruyter Mouton, Berlin, Boston.

https://www.ctan.org/tex-archive/info/lshort/english/
http://en.wikibooks.org/wiki/LaTeX

Keyword & Command Index

Page numbers typeset in bold contain the command definition or its introduction. Entires marked with ‘(boolean)’

indicate a Boolean switch that can be set true or false. Entries with ‘(counter)’ receive integers: Z. ‘(rational)’ receive

rational numbers greater than zero: R+
>0. ‘(dim)’ receive R

+
>0 with a valid unit. Entries with ‘(param)’ valid strings.

%, 1, 4, 15, 16, 17

\\, 5, 6

\aggregate, 24

\agoverline, 26

bifurcation, 9, 18

blot, 8, 20

\boxxoperator, 24

bridge, 1, 10, 22

\colouredcuts (boolean), 1, 8

\commoncoefficient (rational),

23

\croverline, 26

\cuoverline, 26

\cursiveimplicates, 24

\cut, 1, 6, 7–9, 11, 14, 18, 27

and ligatures, 9, 11

\cutcolour (param), 21

\cutwidth (dim), 21

\cutxfillcolour (param), 1, 8,

21

\dbcut, 12

\debugmode (boolean), 1, 10, 11,

14, 22, 25

defaultnscrollangle (counter),

8

\DefNodes, 16–18, 20, see also

\egatn

\downright, 1, 9

\dragonhead, 24

\egatn, 17, 20

egif, 26, 27

\ellipsecut (boolean), 6, 11

\everygraphhook, 1, 13

\flatinfty, 24

\fsymbol, 24

gap, 1, 10

\gcut, 12

\graph, 27

\gvcut, 12

\gvvcut, 12

\heartdown, 25

\heartleft, 25

\heartleftnofill, 25

\heartright, 25

\heartup, 25

\hk, 1, 9, 10–12, see also

\debugmode

\hphantom, 5, 15, 18

\hsligature, 9

\implicates, 24

inline (environment), 1, 6, 11,

14, 15, see also \notinline

\inlineagoverline, 26

\inversenorlike, 25

\inversescroll, 7

\inversevscroll, 7

\inversewhiskers, 25

\inversewhiskersdot, 25

\li, 1, 9, 16

\licolour (param), 1, 21

\ligaturewidth (dim), 1, 21

\longinversescroll, 7

\longinversevscroll, 7

\longscroll, 7

\longvscroll, 7, 17

\mbox, 5

\napierianbase, 24

\nccurve, 1, 9, 22

\ncut, 12

\norlike, 25

\notinline (boolean), 6, 14, 15,

see also inline

\nscroll, 7, 17

nscrollangle (counter), 8

\nscrolldistance (rational), 7

\nscrollwidth (rational), 7

\ontop, 1, 6, 9, 15, 27

\ontopl, 1, 6, 15

\ontopr, 6, 16

\Paries, 24

\pcut, 12

\Pinversepropto, 24

\PPi, 25

\Ppropto, 24

\Pratiocircdia, 24

\protect, 23

\PSigma, 25

\reflexivel, 1, 9

\reflexiver, 1, 9, 14, 15

\reverseagoverline, 26

\reversecroverline, 26

\reversecuoverline, 26

\reversedragonhead, 24

\reverseinlineagoverline, 26

rheme (counter), 1, 11, 18

\rightdown, 9

\rightup, 9

\scaledsymbols (boolean), 23

\scroll, 7, 16

\scrollstretch (rational), 21

\setstretch (rational), 6, 15

\shk, 12

\sligature, 9

\strut, 1, 5, 8, 15

\upright, 1, 9

\varinclusion, 24

\varwedge, 24

\vcut, 1, 6

\vphantom, 5, 11, 14, 15

\vscroll, 1, 7, 16, 17, 19

\vv, 20

\vvcut, 6, 15, 16

\weirdfour, 24

\weirdone, 24

\weirdthree, 24

\weirdtwo, 24

\whiskers, 25

\whiskersdot, 25

\xfillstyle (param), 21

Visual index

The visual (or graphical) index contains a visual reference of the most important types of existential graphs and all the

logical symbols. Refer to the the Keyword and Command Index above for all the commands the package provides.

. . . , 6

. , 6

. . . , 12

. . . , 6

, 7

, 7

. . . , 7

. , 8

, 20

·ˆ·̂·̂·ˆ·̂·̂·̂·ˆ·̂·̂·ˆ·̂ , 20

. . . , 9

, 9

B , 10

, 10

, 10

1 , 12

, 24

, 24

, 24

, 24

, 24

, 24

, 24

, 24

, 25

, 24

, 24

, 24

. . . , 24

, 26

, 25

, 25

, 25

	How to read this document
	Some preliminaries on using the package
	Commands for drawing EGs
	Examples of graphs
	Some difficult cases and their solutions
	Peirce's logical symbols
	Ideas on further development of the package
	Introduction to LaTeX
	References
	Keyword & Command Index
	Visual Index

