Leaving legacy behind

Reducing carbon footprint of network services with MirageOS unikernels

Hannes Mehnert, https://hannes.nqgsb.io

36¢3, 27th December 2019, Leipzig

1/37

https://hannes.nqsb.io

~
(Application BinaryJ (Conﬁguration Files

_

(Programming language runtimeJ

(System libraries (Iibc)J (Crypto (IibssI)J

Hardware (CPU, disk, NIC, memory)

Stack

Unix applications depend on
libraries and configuration files.

Kernel isolates processes from
each other using virtual memory.

Compromise is contained to a
single process.

Privilege escalation by flaws in the
system call APl (568 in
sys/syscall.h).

2/37

Hypervisor stack

(Application BinaryJ (Conﬁguraticn FiIesJ

[Programming language runtimeJ

e The hypervisor manages the
(SVS“*"‘ '“”a”es""’c’J (C'V"“"“’SS"J resources, and splits them across

— virtual machines. Hardware is
emulated.

e Scheduling is done by the
hypervisor (VMs) and by each

WS_I virtual machines (processes).

The hypervisor isolates virtual
machines from each other.

Hypervisor vmm.ko
- Resource management
- Scheduling of VMs

Kernel

Hardware (CPU, disk, NIC, memory)

3/37

Code you care
about

Code the 0S
insists you need

Memory corruption issues are the root-cause of 68% of listed CVEs.

Ben Hawkes analysed 108 CVE since start of Google's Project Zero in 2014, 0Oday "In
the Wild" https://googleprojectzero.blogspot.com/p/0day.html (published
2019-05-15)

5/37

https://googleprojectzero.blogspot.com/p/0day.html

Reducing attack vectors (memory safety),
Reducing attack surface,

Reducing run-time complexity,

Reducing the carbon footprint.

Goals

6/37

MirageOS unikernel - library operating system

Each service (i.e. DNS resolver, web server) is a separate MirageOS unikernel
Functional programming language OCaml with automated memory management
Only the libraries needed are compiled into the binary

Libraries are developed independently and reused across unikernels

Cooperative tasks, no interrupts

Single address space, single core, single process

No user management, no process management, no file system, no virtual memory

Executed as virtual machine

7/37

MirageOS Hypervisor integration

App

MirageOS

Virtio hypercall Virtio

8
g
88

e Custom solo5-hvt monitor process in the

KVM/qemu host system

)
—
"

soloS-hth [KVM/qemu

—

e Sets up memory, loads unikernel image,
sets up VCPU

e Boot: jmp 0x100000

- e Hypercalls: main, yield, argv, clock,

console, block device, network interface

Hypervisor
- Resource management vmm.ko
- Scheduling of VMs

Hardware (CPU, disk, NIC, memory)

8 /37

Application code
(TCPIIP)(RNG j
(Iwt j(crypto j(X.509 j
(Ocaml runtime](libgmp J
[nolibc J(solos-bindingsj(libm J
(oo e

MirageOS unikernel in detail

C code in a MirageOS unikernel
o OCaml runtime: 725 kloc
e nolibc: malloc, strcmp,
e solo5-bindings: ~2 kloc
e 1ibm: openlibm 722 kloc

...: 78 kloc

9/37

Solob - sandboxed execution environment for unikernels

Resources (memory, network interface, block devices) are allocated statically
Minimalist hypercall interface (14 functions)

Bindings for various targets (KVM, Genode, Virtio, seccomp)

Sandboxed host system tender where applicable
https://github.com/solo5/s0lob

10/37

https://github.com/solo5/solo5

Solo5 - separation kernel Muen

e Muen is a tiny separation kernel developed in Ada
e Using SPARK to guarantee memory isolation

. ! e Static resource management (communication
channels, memory, devices)

unikernel

13/37

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

Antoine de Saint-Exupery (1900 - 1944)

14 /37

Programming language OCam|

Multi-paradigm programming language initially released in 1996
Declarative code is the goal

Focus on the problem, do not distract with boilerplate
Abstractions (variables, functions, higher order functions)
Expressive static type system spots violations at build time
Type inference allows concise code

Types are erased during compilation

Compiles to native machine code

15 /37

OCaml module system

Each value is defined in a module (e.g. filename or explicit module)
Each module has an interface, its signature

Functors are compile-time functions from module to module, and allow
parametrization, i.e. Map.Make (String)

In MirageOS, each resource (network interface) has a signature, and target-specific
(virtio, xen, spt) implementations

16 /37

MirageOS OCaml style

Using immutable data whenever sensible

Value passing style: state and data in, state and reply out

Errors are explicitly declared in the API, and have to be handled by the caller
Concurrent programming with promises

Ability to express strong invariants (read-only buffer) in the type system

17 /37

Case study Bitcoin Pifiata

You have reached the BTC
Pinata.

BTC Pifiata knows the private key to the bitcoin address 183XuXTTgnfYfKcHbI4sZeF46adoFnihdh. If
you break the Pifiata, you get to keep what's insid

Here are the rules of the game
« You can connect to port 10098 using TLS. Pifiata will send the key and hang up

« You can connect to port 10901 using TCP. Pifiata will immediately close the connection
and connect back over TLS to port 49991 on the initiating host, send the key, and hang
wp

* You can connect to port 10002 using TCP. Pifiata will initiate a TLS handshake over that
channel serving as a client, send the key over TLS, and hang up

And heres the icker: in both the client and server rales, Pifats requires the other end to
present a certificate. Authentication is perforned using standard path validation wit
single certificate as the trust anchor. And no, you can't have the certificate key.

It follows that it should be impossible to successfully establish a TLS connection as long as
Pinata is working properly. To get the spoils, you have fo smash it

Before you ask: yes, Pifiata will talk to itself and you can enjoy watching it do so.

BIC Pifiata is a Mirage0s unikernel using not quite so broken soffware. It is written in OCanl,
runs directly on Xen, and is using native OCaml TLS and X.509 implementations

The full List of installed software and a toy unikernel without secrets are available. There
is no need to use the old automated tools on Piiata - roll your own instead. This challenge
runs until the above address no longer contains the 10 bitcoins it started with, or until we
Tose interest

Why are we doing this? At the beginning of 2014 we started to develop a not quite so broken
TLS implenentation from scratch. You can read more about it on https://ngsb.io or watch our
31c3 talk about it. Now, we want fo boost our confidence in the TLS implementation we've
developed and show that robust systems software can be written in a functional language. We
recapitulated the first five months of the Pinata

ve are well aware that bounties can only disprove the security of a system, and never prove
it. We won't take home the message that we are ‘unbreakable', 'correct’, and especially not

18 /37

Marketing of our from-scratch TLS
implementation

Transparent and self-serving security bait

Web server which contains a private key for
a Bitcoin wallet

If a peer authenticates (using TLS and
client certificates), it sends the private key
Online since February 2015 with 10 BTC
until March 2018

The Pifiata was not hacked, the BTC were
only borrowed and reused in other projects

See http://ownme.ipredator.se

count

600000

500000

400000

300000

200000

100000

Case study Bitcoin Pifiata

Cumulative Pinata accesses

HTTP
TLS ===

2015-07 2016-01 2016-07 2017-01 2017-07 2018-01
date

19 /37

http://ownme.ipredator.se

Size of Bitcoin Pifiata unikernel vs openssl on Linux

@amirme

SMALL!

8.2MB ~200MB
102 kloc 2560 kloc

No extra stuff!

Performance analysis of ngsb-TLS (2015, on a laptop)

e Throughput

350

300

Thoughput (MB/s)
- N N
o o [0
[=] o [=}

v
o

e—e OpenSSL
e e PolarSSL
e—e nqgsb-tis

,_‘
%
o

o

=

¢ Handshakes (number per second)

ngsb OpenSSL Polar

16 64 256
Block size (bytes)

1024

8192

RSA 698 723 672
DHE-RSA 601 515 367

21/37

Case study CalDAV server

Developed in 2018 with a grant from Prototypefund

Interoperable with widely used clients (Android, Linux, macOS)

Stores data in a remote git repository

Image size "10MB (HTTP server, WebDAV, CalDAV, ics, git, IP stack)
CalDavZAP integration, a calendar in JavaScript

Demo server at https://calendar.robur.coop (data repository
https://git.robur.io/?p=calendar-data.git)

Source https://github.com/roburio/caldav

22/37

https://calendar.robur.coop
https://git.robur.io/?p=calendar-data.git
https://github.com/roburio/caldav

Resource consumption

58 status -

kel roburc

Panel Tile

robur calendar June 2019

cpu usage (stme,utme, vputoks) memary.

. J’A\:'L'Ju

mexts

19.2 min 98.9 MB 241 MB 1.981 Tri

CPU consumption

Case study authoritative DNS server

Domain Name System, used for translating hostnames into Internet addresses
Authoritative server replies to DNS requests

Data (zone) is kept in memory, no block device

Storage in a git remote in zone file format

Configuration (ip address, git remote, syslog, ..) via boot arguments

25 /37

https://hannes.nqsb.io/Posts/DnsServer

Case study authoritative DNS server

Domain Name System, used for translating hostnames into Internet addresses
Authoritative server replies to DNS requests

Data (zone) is kept in memory, no block device

Storage in a git remote in zone file format

Configuration (ip address, git remote, syslog, ..) via boot arguments

Modification via git commit and push, sending a notify (RFC 1996) to server
Or DNS update (RFC 2136), authenticated with DNS-TSIG (RFC 2845)
Successful nsupdate will git push by the server to the repository

Other servers are notified on update, and start zone transfer (AXFR RFC 5936,
incremental IXFR RFC 1995)

26 /37

https://hannes.nqsb.io/Posts/DnsServer

Case study authoritative DNS server

Domain Name System, used for translating hostnames into Internet addresses
Authoritative server replies to DNS requests

Data (zone) is kept in memory, no block device

Storage in a git remote in zone file format

Configuration (ip address, git remote, syslog, ..) via boot arguments

Modification via git commit and push, sending a notify (RFC 1996) to server
Or DNS update (RFC 2136), authenticated with DNS-TSIG (RFC 2845)
Successful nsupdate will git push by the server to the repository

Other servers are notified on update, and start zone transfer (AXFR RFC 5936,
incremental IXFR RFC 1995)

Image size “9MB (IP stack, DNS, git, ssh)
Let's encrypt integration, signing requests and certificates stored in DNS
https://hannes.nqsb.io/Posts/DnsServer

27 /37

https://hannes.nqsb.io/Posts/DnsServer

Case study QubesOS firewall

QubesOS is a "reasonable secure operating system"

Uses Xen for isolation of workspaces and applications (i.e. pdf
reader)

Qubes-Mirage-firewall is a small replacement for the
Linux-based firewall in OCaml

Instead of 300MB, only consumes 32MB resident memory
Support for dynamic rules for Qubes 4.0 is under review

https://github.com/mirage/qubes-mirage-firewall

28 /37

https://github.com/mirage/qubes-mirage-firewall

MirageOS libraries

TLS .
ADNS ﬂ\/ © it

EEEEEEEEEEEEEEEEEE ()IDGETIF)(;F)
Kl Let’s Encrypt

Q-Prometheus
> _
ssHe SE =Pe

syslog sﬁiv]r

e https://github.com/mirage
e https://github.com/roburio

20/37

https://github.com/mirage
https://github.com/roburio

More MirageOS unikernels

A picture viewer https://github.com/cfcs/eye-of-mirage
ssh-agent for Qubes https://github.com/reynir/qubes-mirage-ssh-agent
Web sites: https://mirage.io, https://ngsb.io

Canopy serves markdown content from a git repository as website,
https://github.com/Engil/Canopy

DHCP server https://github.com/mirage/charrua

OpenVPN client and server https://github.com/roburio/openvpn
Pastebin clone https://github.com/dinosaure/pasteur

Pong game https://github.com/cfcs/Pong0S

Z machine (Zork) via telnet https://github.com/mato/flathead
https://github.com/roburio/unikernels

30/37

https://github.com/cfcs/eye-of-mirage
https://github.com/reynir/qubes-mirage-ssh-agent
https://mirage.io
https://nqsb.io
https://github.com/Engil/Canopy
https://github.com/mirage/charrua
https://github.com/roburio/openvpn
https://github.com/dinosaure/pasteur
https://github.com/cfcs/PongOS
https://github.com/mato/flathead
https://github.com/roburio/unikernels

Goal: compile the source multiple times should produce
bit-wise identical output

Temporary files names, timestamps, etc. may cause
issues

Our tested MirageOS unikernels are reproducible now
And we have tooling to check reproducibility
https://hannes.ngsb.io/Posts/Reproducible0PAM

Reproducible builds

31/37

https://hannes.nqsb.io/Posts/ReproducibleOPAM

Supply chain security (wip)

OCaml package authors should sign their releases

A quorum of repository maintainers can delegate a package to

authors

Key compromise impact is contained to the delegated packages g%a%‘b%:
of the author \ ' *
Rollback, mix-and-match attacks mitigated by snapshot service

Freeze, slow retrieval attacks mitigated by timestamp service ﬁJ

Using update framework (Cappos NYU) with augmentation
proposal TAPS8

See https://github.com/hannesm/jackline-opam

32/37

https://github.com/hannesm/jackline-opam

Conventional orchestration systems

e Lack decent integration of
MirageOS

e mirage generates a 1libvirt.xml
for each unikernel

e Also .x1 and .xe for Xen
unikernels

Deployment

Albatross

e Minimal orchestration system for
MirageOS unikernels, with optional
remote deployment

e Metrics, console access, multi-tenant
supported (resource policies in CA chain)

e A unikernel image stored in a TLS client
certificate can be deployed remotely

e https://hannes.nqgsb.io/Posts/VMM

33/37

https://hannes.nqsb.io/Posts/VMM

Research at University of Cambridge since
2008 (ongoing student projects, etc.)

Bi-annual hack retreats
http://retreat.mirage.io
Dogfooding our unikernels (DHCP, DNS)

Open source contributors from all over the
world

Docker for Mac and Docker for Windows
use MirageOS libraries

Community

34/37

http://retreat.mirage.io

Rome ne s'est pas faite en un jour (Rome wasn't built in a day)

Li Proverbe au Vilain, around 1190

35/37

Radical approach to operating system development

Security from the ground up (25x - 100x less code)

Drastically reduced carbon footprint (10x less CPU, 25x less memory)
Reasonable performance, boots in milliseconds

Thanks to everybody involved working on this technology stack :D
We at https://robur.coop develop full-stack MirageOS unikernels

Conclusion

36 /37

https://robur.coop

Selected related talks

e At radical networks 2019 about QubesQS firewall by Stefanie Schirmer
https://livestream.com/internetsociety/radnets19/videos/197991963

e At FOSDEM 2019 about Solo5 by Martin Lucina
https://fosdem.org/2019/schedule/event/solo5_unikernels/

e At Lambda World 2018 by Romain Calascibetta
https://www.youtube.com/watch?v=urG5BjvjWi8

37/37

https://livestream.com/internetsociety/radnets19/videos/197991963
https://fosdem.org/2019/schedule/event/solo5_unikernels/
https://www.youtube.com/watch?v=urG5BjvjW18

