SIM card technology from A(PDU) to X(RES)

Harald Welte

osmocom.org

Chaos Communication Congress 2019

Harald Welte SIM card technology from A(PDU) to X(RES)

イロト イポト イヨト イヨト

э

- Relevant Specs + Spec Bodies
- Card Interfaces, Protocols
- Card File System
- SIM Evolution from 2G to 5G
- SIM Toolkit
- OTA (Over The Air)

ヘロト ヘヨト ヘヨト ヘヨト

з.

- $\bullet~\mbox{Free Software}$ + OSHW developer for more than 20 years
- Used to work on the Linux kernel from 1999-2009
- working with contact chip cards since 1999, contactless since 2006
- developing FOSS in cellular communications (Osmocom) since 2008
 - developed various SIM card related tools in software an hardware
- Living and working in Berlin, Germany.

• • = • • = •

Relation of SIM card specifications

・ロ・・西・・ヨ・・ヨ・ のへぐ

- ISO (Integrated Circuit[s] Card)
- ITU (Telecom Charge Cards)
- ETSI (where GSM was originally specified)
- 3GPP (where 3G to 5G was specified)
- GlobalPlatform Card Specification
- Sun/Oracle JavaCard API, Runtime, VM
- GSMA

A B K A B K

- probably anyone in the audience has at least one, likely more
- ubiquitous; every device withe cellular connectivity has at least one
- not many people outside the telecom industry ever look at them in much detail
- SIM card hacking (in the security sense) has a tradition at CCC since at least 1998
 - Vodafone Germany SIM card cloning: https://ftp.ccc.de/software/gsm/gsm_hack.tar.gz
 - SIM card simulator in Turbo C (1998): https://ftp.ccc.de/software/gsm/SIM_sim.zip
- meanwhile: SIM technology stack is getting more complex and deep
- let's recap what SIM cards actually are, and what they do

(4月) (4日) (4日)

Classic SIM in early GSM

- Idea of storing subscriber identity predates GSM (e.g. C-Netz since 1988)
- GSM from the very beginning introduces concept of SIM card
- store subscriber identity outside of the phone
- store some network related parameters
 - static (like access control class)
 - dynamic (like TMSI, Kc, ...)
- full credit card size so it can be used in radios installed in (rented, shared company) cars.

- the mother of all smart card spec
- "Integrated circuit(s) cards with contacts"
- 15 parts, most relevant are below:
 - Part 1: Physical characteristics
 - Part 2: Dimensions and location of the contacts
 - Part 3: Electronic signals and transmission protocols
 - Part 4: Interindustry commands for interchange
 - Why not international inter-industry commands for interworking information interchange? Anyone?

Harald Welte SIM card technology from A(PDU) to X(RES)

(日)

э

- Specification of the Subscriber Identity Module Mobile Equipment (SIM-ME) Interface
- repeats (and some times amends) large portions of 7816-1/2/3/4
 - Section 4: physical characteristics
 - Section 5: electronic signals, transmission protocol
- but also specifies what makes the SIM a SIM: Information model, file system, commands
- last, but not least how to execute authentication: RUN GSM ALGORITHM

(日)

Physical Smart Card Interface

- Relevant pins:
 - VCC: Provides supply voltage (5V, 3V or 1.8V)
 - CLK: Provides a clock signal (1 .. 5 MHz default)
 - RST: To reset the card
 - IO: bidirectional serial communications
- Activation sequence triggers card to send ATR (Answer To Reset)

Bit transmission level

- despite the clock, communication is asynchronous!
- baud rate derived from divided clock
- no defined phase relationship between clock and data
- serial data is just like UART/RS232, ... but:
 - $\bullet\,$ one line for both Rx and Tx
 - \bullet direction changes once after every byte (ACK in T=0)
 - direction changes every few bytes (TPDU state machine)
 - timings are actually not very well specified

• • = • • = •

- based on APDU (Application Protocol Data Unit) as per ISO 7816-4
 - CLA (class byte)
 - INS (instruction byte)
 - P1, P2 (parameter bytes)
 - Lc (command length)
 - Command data
 - Le (expected response length)
 - Response data
 - SW (status word)

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

Smart Card Transmission Protocol

- different protocols transceive APDUs from/to cards
- T=0 most commonly used with SIM cards
- T=1 also possible but rarely used in SIM
 - $\bullet\,$ specs require phones to implement both T=0 and T=1
 - SIM card can be either T=0 or T=1
 - $\bullet~T{=}1~more$ used in banking / crypto smart card world
- APDU gets mapped to protocol-specific TPDU (Transmission Protocol Data Unit)
 - : Example Command TPDU: A0 A4 00 00 02 3F 00
 - : Example Response TPDU: 90 00 (just status word)

• • = • • = •

- most smart cards contain file system abstraction
- cannot be mounted (not exposed like a block device / USB drive!)
- access based on file-level commands (analogy: more like MTP/PTP)
- some similarities to general-purpose (computer) OS file systems:
 - MF: Master File (root directory)
 - DF: Dedicated File (subdirectory)
 - EF: Elementary File (data file)
- However, much more comprehensive than computer OS file systems, e.g.
 - transparent EF: opaque stream of data, like PC
 - *linear fixed EF*: fixed-size records, seekable
 - cyclic fixed EF: ring buffer of records, seekable
 - *incrementable*: for monotonically incrementing counters
- Each file has Access Control Conditions (ACC)
 - read/write/update only after PIN1/PIN2/ADM-PIN

(4月) (4日) (4日)

э

Key SIM Card Commands

- SELECT (file)
- READ RECORD / UPDATE RECORD
 - for record-oriented EF
- READ BINARY / UPDATE BINARY
 - for transparent EF
- CHANGE CHV / DISABLE CHV / ENABLE CHV
 - CHV: Card Holder Verification (PIN)
- RUN GSM ALGORITHM
 - ask SIM to execute authentication algorithm in card

(4)

SIM card filesystem hierarchy

э.

イロト イヨト イヨト

- The GSM SIM was fully specified by ETSI in TS 11.11
- As GSM specs moved from ETSI to 3GPP, card specs were split:
 - ETSI UICC (Universal Integrated Circuit Card)
 - like a *base class* abstracting out those parts that are not cellular related, or at very least not 3GPP network related
 - 3GPP USIM Application on top of UICC
 - specifies those parts specifically relevant to 3GPP networks
 - implemented in ADF_USIM (Application Dedicated File)
 - ADF can be entered via SELECT, similar to classic DF

・ロト ・日ト ・日ト ・日ト

- 3G/LTE reuses the existing 3G Authentication (UMTS AKA)
- $\bullet~4G/LTE$ simply reuses existing USIM
- some new optional files were introduced in ADF_USIM
- IMS (IP Multimedia System used for not only VoLTE) specifies ISIM application
 - stores additional IMS related parameters like SIP server / user identity
 - presence of ISIM not required for IMS to work
 - if present, ISIM application present next to USIM (and possibly SIM)

- $\bullet~5G$ reuses existing 3G/4G USIM
- \bullet some new optional files were introduced in ADF_USIM
- SUCI (Subscriber Concealed Identifier) can optionally be computed by SIM
 - $\bullet\,$ this is the only feature requiring different card / apps on card

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

3

- processor core
 - many different vendors and architectures, from 8-bit 8051 to 32bit ARM
 - today quite often ARM SCxxx "Secure Core" family
 - documentation on hardware, often even simple one-page data sheets not public
- built-in RAM
- built-in ROM (at least boot loader, possibly also OS)
- built-in flash (file system storage, possibly also OS, applications)
- contrary to expensive crypto smart cards, SIM card chip mostly selected purely by low cost
 - blame pre-paid cards for that

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Every Smart Card has a Card Operating System (COS)
- Cards without COS are simple memory cards (like I2C EEPROM), insufficient for SIM
- Card OS for Crypto Smart Cards (banking, access control) often publicly known
- SIM Card OS are rarely known / publicly documented or even named
- Example: ARM not only offers SIM card CPU core designs, but also OS (Kigen OS)
- SIM Card OS is *implementation detail*, almost everything relevant is standardized across OS vendors

・ロット (雪) () () () ()

- Early SIM cards were (likely) monolithic,
 - no separation between OS and SIM application
- Today, SIM cards software is modular
 - Core OS
 - Applications (SIM, USIM, ISIM, ...)
- traditionally, OS very chip/hardware dependent, non-portable
- traditionally, applications very OS dependent, non-portable

• • = • • = •

- independent of SIM cards, Java Smart Cards have been developed
- based on Java Card Platform specifications by Sun (now Oracle)
- first cards in 1996 by Schlumberger (now Gemalto)
- independent of SIM cards, Java Smart Cards have been developed in 1996 by Schlumberger
- most cards implement GlobalPlatform specifications for vendor-independent management
 - super constrained, weird subset of Java
 - special on-card VM (not normal JVM)
 - special CAP format (not normal JAR)
 - Idea: Portability of Cardlets (card applications)

・ロト ・日ト ・日ト ・日ト

э

- \bullet There is no functional requirement for a SIM/USIM/ISIM to be a java card
- In reality, most SIM cards probably are Java Cards these days
- Portability is the main driver here
- Operators want to share same applications over multiple vendors/generations of cards
- 3GPP and ETSI specify Java APIs / packages available specifically on Java SIM cards

・ロット (雪) () () () ()

- Ability by card to offer applications with UI/menu on the phone
- New APDUs/Instructions
 - TERMINAL PROFILE
 - ENVELOPE
 - FETCH
 - TERMINAL RESPONSE

イロト イポト イヨト イヨト

- SIM cards are "slave" in the 7816 interface
- All actions are triggered by the phone, card can only respond
- Proactive SIM works around this restriction
- Piggy-backs proactive commands to card responses
- Phone can be requested to poll the SIM if it has some proactive commands pending
- Phone can be requested to provide event notifications

• • = • • = •

- Ability for operator to transparently communicate with SIM card in the field
- Based on Proactive SIM
- Can use different transport channels, such as
 - SMS-PP (normal SMS as you know it)
 - SMS-CB (bulk update of cards via cell broadcast)
 - USSD (Release 7)
 - BIP (via CSD, GPRS): ETSI TS 102 223 / TS 102 127
 - now also HTTPS (Release 9)
- Cryptographic security mechanisms specified, but detailed use up to operator
 - Message Authentication (optional)
 - Message Encryption (optional)
 - Replay Protection (optional)

・ロット (雪) () () () ()

3

- Introduced in Release 6
- Common use case of OTA
- Allows remote read / update of files in file system
- Example: Change of preferred/forbidden roaming operator list
- Example (ancient): Backup of phonebook at operator

• • = • • = •

- Introduced in Release 6
- Common use case of OTA
- Allows remote installation / removal of applications on card
- Example: New multi-IMSI application (MVNOs)
- Example: New STK applications

・ 同下 ・ ヨト ・ ヨト

э

- 4G and beyond don't natively support SMS-PP, USSD, ...
- In Release 9, OTA over HTTPs is first introduced
- References to GlobalPlatform 2.2 Amd B + ETSI TS 102 226
- Uses HTTP as per RFC 2616
- Uses PSK-TLS as per RFC4279, RFC4785, RFC5487
 - TLS 1.0 / 1.1: TLS_PSK_WITH_3DES_EDE_CBC_SHA
 - TLS 1.0 / 1.1: TLS_PSK_WITH_AES_128_CBC_SHA
 - TLS 1.0 / 1.1: TLS_PSK_WITH_NULL_SHA (RFC4785)
 - TLS 1.2: TLS_PSK_WITH_AES_128_CBC_SHA256 (RFC5487)
 - TLS 1.2: TLS_PSK_WITH_NULL_SHA256 (RFC5487)
- IP and TCP socket terminated in phone, only TCP payload handled by card

(4)

- Card acts as HTTP client performing HTTP POST
- TLS payload is remote APDU format of ETSI TS 102 226
- additional HTTP headers
 - X-Admin-Targeted-Application
 - X-Admin-Next-URI
 - X-Admin-Protocol: globalplatform-remote-admin/1.0
 - X-Admin-From
 - X-Admin-Script-Status
 - X-Admin-Resume

イロト イボト イヨト イヨト

- a strange beast specified outside of ETSI/3GPP
- allows SIM toolkit applications without writing Java or native applications
- special byte code format interpreted by S@T browser
- to me, one of those WTF? technologies

・ロット (雪) () () () ()

- system for remote provisioning of *profiles* to SIM
- allows change of operator / identity without replacement of physical card
- main use case is non-removable / soldered SIM chip (MFF2)
- also available from some operators in classic smart card size
- main relevant spec is GSMA SGP.22
- based around PKI between operators, all parties approved by GSMA

・ 戸 ト ・ ヨ ト ・ ヨ ト

The CCC event SIM cards

- are Java SIM + USIM cards
- support OTA, RAM, RFM (via SMS-PP and maybe BIP, not HTTPS)
- you can get the ADM PIN and OTA keys from the event GSM team
- a "hello world" Java applet and tools for installation are provided (thanks to shadytel + Dieter Spaar)
- identities and key data can be modified using Osmocom pySim software

- SIM alliance stepping stones
- SIMtrace2 wiki
- Simjacker vulnerability
- SRLabs SIMtester
- for historians
 - CCC SIM simulator in Turbo C
 - CCC sim clone / D2 Pirat

・ 戸 ト ・ ヨ ト ・ ヨ ト

ъ

Thanks for your attention. You have a General Public License to ask questions now :)

・ロト ・回ト ・ヨト ・ヨト