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Concept of This Talk

I key experiments will be reviewed
I not historical: make the modern theory plausible using historical experiments, leave

the history be history, modify the experiments to make a point
I quantum mechanics is quite abstract and not “anschaulich” so we will need

mathematics (linear algebra, differential equations)
I we’ll try to find a new, post-classical, “Anschaulichkeit” however in the end the

adage “shut up and calculate” holds
I we’ll include maths crash courses where we need them (mathematicians will suffer,

sorry guys and gals)
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How Scientific Theories Work

I a scientific theory is a net of interdependent propositions
I when extending the theory different propositions are proposed as hypotheses
I the hypotheses that stand the experimental test are added to the theory
I new experimental results are either consistent or inconsistent with the propositions

of the theory
I if they are inconsistent, some of the propositions have been falsified, and the

theory must be amended in the minimal (Occam’s razor) way that makes it
consistent with all experimental results

I new theoretical ideas must explain why the old ones worked
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How It All Began

I time frame: late 19th/early 20th century
I known fundamental theories of physics:

I classical mechanics (F = ma)
I Newtonian gravitation (F = Gm1m2

r1−r2
|r1−r2|3

)
I Maxwellian electrodynamics (∂µFµν = 4πjν , Lorentz force)
I (Maxwell-Boltzmann classical statistical physics)

I several experimental results could not be explained by the classical physical
theories under reasonable assumptions, e.g.

I photoelectric effect (Hertz and Hallwachs 1887)
I discrete spectral lines of atoms (Fraunhofer 1815, Bunsen and Kirchhoff 1858)
I radioactive rays: single spots on photographic plates
I stability of atoms composed of compact, positively charged nuclei (Rutherford 1909)

and negatively charged cathode ray particles (Thomson 1897)

Quantum Mechanics 5/40



Introduction Experiments Theory Application References

Cathode Rays

UH

UA

Figure: Schematic of an
Electron Gun

I to-do list
1. have a heated cathode, a simple electrostatic

accelerator and a pinhole (an “electron gun”)
2. put it in an evacuated tube (if there’s some well

chosen gas left it’ll glow nicely)
3. play around (tips: magnetic fields, electric fields,

fluorescent screens, etc.)

I results: there are negatively charged particles that can
be separated from metal electrodes, hydrogen gas, etc.

I atoms are neutral – conclusion: there is a positively
charged component as well
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Rutherford(-Marsden-Geiger) Experiment

fluorescent screen

microscope

α source

gold foil

Figure: Schematic of the Rutherford
Experiment

I measure the deflection angles of α particles
shot perpendicularly through a thin gold foil

I weird result: some of the α are deflected
strongly

I conclusion from deflection calculations for
different charge/mass distributions: atoms
must contain a small and massive
concentration of mass and charge (the
nucleus)
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Atoms Are Stable!?

I accelerated charges always radiate classically (Maxwell equations)
I to form stable atoms the electrons have to be bound to the nuclei in some orbits

implying accelerated motion
⇒ classical electrodynamics and the above = WAT
I so the simple experimental fact that there are stable atoms nukes classical physics

(plus reasonable assumptions)
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Photoelectric Effect

Figure: Schematic of a
Phototube

I a current flows when light falls on a metal surface in a
vacuum (phototube)

I when biasing the electrodes with a voltage UB no
current flows above some threshold voltage UT

I the threshold voltage is proportional to the wavelength
λ of the light

I for different metals there are different threshold
wavelengths, below which no current flows for UB = 0
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Spectral Lines of Atoms – Experimental Setup
discharge tube

diffraction grating screen

Figure: Schematic of a Discharge Tube and Spectrograph

I discrete emission lines – together with the photon hypothesis: discrete energies!
I characteristic spectra for each atom species
I absorption lines complementary to the emission lines
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Davisson-Germer Experiment

electron gun

monocrystalline surface

Faraday cup

Figure: Schematic: Davisson-Germer
Experiment

I the electrons show a diffraction pattern (that
can be seen by moving the Faraday cup
around)

I we can determing the wavelength of the
matter wave from the diffraction pattern (and
the lattice parameters of the crystal)

I this confirms the de Broglie relation
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Radioactivity and Experiments with Single Particles

I radioactivity is random – you can’t predict when the next decay will happen – this
hints at the intrinsic randomness of subatomic physics

I we can do interference experiments with single particles, to do so we need a set of
sensitive detectors

I at most one of a set of such sensors detects the electron or photon
I while the particle is extended in transit, it will be forced to a sharp measurement

result on detection!
I if we do a double slit interference experiment and detect which slit the particle

went through, then the interference pattern vanishes!
I if we do the above and then discard the which-way-information in a coherent

manner there will again be interference (quantum eraser)
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Crash Course: Complex Numbers

Re z

Im z

ρ
z

ϕ

Figure: Complex Plane

I C = {a + bi |a, b ∈ R}, i2 = −1, usual rules of calculation
I can be thought of as phasors in the complex plane
I polar representation: z = ρ

(
cos(ϕ) + i sin(ϕ)

)
= ρe iϕ

I addition: component wise
I multiplication: z1z2 = ρ1ρ2e

i(ϕ1+ϕ2) – turning angle plus
length

I multiplication in Cartesian components
(a + bi)(c + di) = (ac − bd) + i(ad + cb)

I complex conjugation (a + bi)∗ = a− bi , modulus
|z | =

√
z∗z

complex numbers make everything cool (e ix = cos(x) + i sin(x), fundamental theorem
of algebra, function theory, etc.)

Quantum Mechanics 13/40



Introduction Experiments Theory Application References

Crash Course: Vector Spaces

I vectors x , y ∈ V , scalars α, β ∈ S (a field, here only C and R)
I null vector 0
I operations: addition of vectors x + y ∈ V , additive inverse of a vector −x ∈ V ,

x + (−x) = 0, multiplication by a scalar αx ∈ V

I α(x + y) = αx + αy , (α + β)x = αx + βy

I α(βx) = (αβ)x

I 1x = x

TL;DR: a vector space is a set of objects which can be added and which can be
multiplied by scalars (real or complex numbers) in a compatible way
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Crash Course: L2 Space (and Analogy to Finite Dimensional Vector Spaces)
I vector space of square integrable functions (insert maths disclaimer here)

‖f ‖2 =

∫
dx |f (x)|2 <∞ |x |2 =

∑
i

x2
i <∞ (trivial here)

I the norm ‖x‖ :=
√

(x , x) is induced by a scalar product (·, ·)

(f , g) =

∫
dx f ∗(x)g(x) 〈x , y〉 =

∑
i

x∗i yi

⇒ Hilbert space (= complete scalar-product space)

Nice surprise: almost everything works like in the finite dimensional case1

1mathematicians will deny this, but it usually just works with the physicists careful carelessness
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Modelling the Wave-like Behaviour of Particles

I the Davisson-Germer experiments (1920s) show diffraction of electrons on a
monocrystalline nickel surface – wave-like behaviour

I de Broglie hypothesis: particles have the wavelength λ = h/p

I idea: complex wave function ψ(r) = ρ(r)e iϕ(r) describing the quantum state of a
single particle

I |ψ(r)|2 = ψ(r)ψ∗(r) describes the probability of measuring the particle at r
I the phase is not directly measurable, but makes interference possible

|ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + 2Reψ∗1(r)ψ2(r)

I my stance: denounce the wave-particle dualism – quantum particles are quantum
neither wave nor particle
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States of Definite Momentum

I follow the de Broglie hypothesis p = hk (k is the wavenumber, k = 2π/λ)

ψk(r) =
1
2π

e ik·r

I occupies the whole space (!)
I (mathematical catch: this state does not belong to the Hilbert space of valid

normalizable states, neither do the states of definite position)
I we can write any state as superposition of ψk(r) (Fourier transform)
I conclusion: by Fourier transformation2 the state ψ(r) can be written in terms of
ψ̃(k) – both contain all information about the system

2this implies the uncertainty relation ∆x ·∆k ≥ 1
2 ; the uncertainty relation is unimportant in the

grand scheme of things
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Operators
I observables in quantum mechanics are linear operators (“matrices”) on the state

space
I measuring an observable results in one of its eigenvalues
I if the system is in an eigenstate of the operator the measurement result is certain
I non-commuting operators have eigenstates that are not common
I momentum operator: p = −i~∇, positions operator: x
I observation: p and x do not commute ([A,B] = AB − BA is called commutator

and quantifies the failure to commute, A and B commute iff [A,B] = 0)

pxψ = −i~ψ − i~x∂xψ = xpψ − i~ψ =:
(
xp + [p, x ]

)
ψ

[p, x ] = −i~
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More on Operators
I linear: O(αx + βy) = αOx + βOy

I multiplication of operators is defined by consecutive application (OU)x = O(Ux)

I a linear operator is defined by its action on any set of vectors spanning the vector
space

I inverse operator: some operators have an inverse operator O−1 such that
OO−1 = id

I every operator has an adjoint defined by (ϕ,Aψ) = (A†ϕ,ψ) for all ψ,ϕ
I there are commonly defined classes of operators

Hermitian A = A† (in terms of the scalar
product (ψ,Aϕ) = (Aψ,ϕ))

anti-Hermitian A = −A†

unitary U† = U−1

projectors P2 = P
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Expectation Values

I the expectation value of an operator is defined as

〈O〉 =

∫
d3r ψ∗(r)Oψ(r) = (ψ,Oψ)

I the expectation values of Hermitian operators are real

〈O〉 = (ψ,Oψ) = (Oψ,ψ) = (ψ,Oψ)∗

I can be shown to agree with the expectation value of the quantity represented by
the operator when measuring it
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Crash Course: Eigenvalue Problems

I important question: which vectors are just scaled by a linear operator: Aψ = λψ

I remember linear algebra – this is diagonalizing matrices
I if such a ψ exists it is called eigenvector and λ is the corresponding eigenvalue
I the dimension of the space spanned by the eigenvectors can be larger than one

(degeneracy), in this case we can always choose an orthonormal base in the
eigenspace

I we write ψλn for the normalized nth basis vector in
the eigenspace corresponding to λ

I Hermitian operators have real eigenvalues (H = H† means λ = λ∗ for the
diagonal, so for the eigenvalues in the eigenbasis)
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Crash Course: Eigenvalue Problems (cont.)

I spectral theorem3: all Hermitian operators have a complete (= spanning the whole
vector space) system of eigenvectors, for any vector ϕ we have

ϕ =
∑

(ψλn, ϕ)ψλn

I eigenvectors ϕ,ψ of a Hermitian operator A for difference eigenvalues λ, κ are
orthogonal, proof:
κ∗(ψ,ϕ) = (ϕ,Aψ)∗ = (ψ,Aϕ) = λ(ψ,ϕ)⇒ (κ∗ − λ)(ψ,ϕ) = 0

3this is a lie if the dimensions are not finite, but the differences are mathematical nitpicking
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Equation of Motion – Requirements

(R1) a sharp (Gaussian) wave packet constructed from momentum states with similar
momenta should follow the classical equation of motion in the limit ~→ 0

(R2) the time evolution must conserve the total probability of finding the particle
(R3) the equation should be first-order in time (otherwise the wave-function contains

insufficient information for the time development)
(R4) the equation should be linear to allow interference effects4

from the requirements (R3) and (R4) we can write (with a linear operator H)

i~∂tψ(r , t) = Hψ(r , t)

4there was some work on non-linear quantum mechanics, but it is non-standard and not supported
by experimental evidence
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Equation of Motion – Conservation of Probability

I require conservation of probability (R2) for all states

0 = ∂t

∫
d3r ψ∗(r , t)ψ(r , t) = − i

~

∫
d3r
((
− H∗ψ∗(r , t)

)
ψ(r , t) + ψ∗(r , t)Hψ(r , t)

)
= − i

~

∫
d3r
(
− ψ∗(r , t)H†ψ(r , t) + ψ∗(r , t)Hψ(r , t)

)
I this implies that H = H† for conservation of probability (mathematical disclaimer:

there are intricacies with the adjoint of operators)
I actually there is even local conservation of probability for local Hamiltonians,

encoded in the continuity equation: ∂tρ+∇ · j = 0
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The Hamiltonian

I begin with the classical Hamiltonian H = p2
2m + V (r)

I replace p and x by their corresponding operators (sometimes called:
correspondence principle – in the classical limit we must retrieve the classical
equations)

I with a magnetic field we get: H =

(
p−A(r)

)2
2m + V (r)
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Consistency with Newtonian Mechanics
I the new theory must explain all previous experimental evidence
I in some limiting case quantum mechanics has to reproduce Newtonian mechanics
I Ehrenfest theorem

I in general

dt
〈
Ô
〉

= dt(ψ,Oψ) =
i

~

〈
[Ĥ, Ô]

〉
+ 〈∂tO〉

I for position and momentum with the Schrödinger Hamiltonian H = p2

2m + V (r)

∂t 〈p̂〉 = −
〈
∇V̂

〉
∂t 〈r̂〉 = 〈p̂〉 /m

I can almost be brought to the form of the Newtonian equation of motion

m∂2
t 〈r̂〉 = −

〈
∇V̂

〉
=
〈
F̂
〉
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Solving the Schrödinger Equation
I ansatz: separation of variables – Ψ(x , t) = Φ(t)ψ(x)

i~Φ̇(t)ψ(x) = Φ(t)Hψ(x),

i~
Φ̇(t)

Φ(t)
=

Hψ(x)

ψ(x)
= const := E .

I this gives the two equations5

Φ̇(t) = − iE

~
Φ(t), Hψn(x) = Enψn(x).

I general solution of the time-dependent Schrödinger equation

Ψ(x , t) =
∑
n

e−iEnt/~(ψn,Ψ(·, 0)
)
ψn(x).

5the second one is an eigenvalue problem
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Measurement or How I measured my cat and now it’s dead
I given a system in state ψ and an operator A

I the possible outcomes for A are given by its eigenvalues an
I the probability of measuring an is 〈ψ|Pn|ψ〉, where Pn projects to the eigenspace

corresponding to an
I (idealized measurement) after having measured A the state is projected to the

eigenspace of the measured value (and normalized)
I this is weird, indeterministic and apparently non-unitary and completely different

from the nice deterministic equation for ψ (possible solution: decoherence with the
environment)

TL;DR:
quantum measurement is probabilistic and

inherently changes the system’s state
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Crash Course: Tensor Product

I there are different products of (vector) spaces
I fundamental: Cartesian product X × Y , the set-of tuples of elements from X and

Y
I clever: the tensor product X ⊗ Y over vector spaces over the same field preserves

the full vector space structure6
I compatible with multiplication by scalars (αx)⊗ y = x ⊗ (αy) =: α(x ⊗ y)
I compatible with addition in the constituent vector spaces

(x + y)⊗ z = (x ⊗ z) + (y ⊗ z)
I for vectors that also defined a multiplication (e.g. linear operators)

(A⊗ B)(C ⊗ D) = (AC )⊗ (BD)

6formal construction by factoring the Cartesian product by an equivalence relation

Quantum Mechanics 29/40



Introduction Experiments Theory Application References

Multiple Particles

I the Hilbert space for a compound system H = H1 ⊗ · · · ⊗ Hn (tensor product)
I one-particle operator acting on the nth particle: Ô = 1⊗ · · · ⊗ Ô1 ⊗ · · · ⊗ 1
I two-particle operator: Ô = Ô1 ⊗ Ô2
I Caveat: Identical Particles

I experimental result: there are two kinds of particles – bosons and fermions
I different behaviour as T → 0: additional pressure or lowered pressure compared to

the hypothetical ideal gas
I using the formula above leads to paradoxical results
I identical fermions have anti-symmetrized, identical bosons have symmetrized

wave-functions
I H = H

⊗nS±
1
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Summary: The Axioms of Quantum Mechanics
(A1) All information about a quantum system is carried in a L2 function ψ : R → C.
(A2) Each observable is given by a Hermitian operator A.
(A3) The possible measurement values are given by the eigenvalues von A.
(A4) The eigenvectors must be orthonormalized.
(A5) The probability for of measuring a is given by (where ν is the degeneracy index).

P(a, t) =
∑
ν

∣∣∣∣∫ dx ψ∗aν(x)ψ(x , t)

∣∣∣∣2 .
(A6) The equation of motion of ψ is the Schrödinger equations

i~∂tψ = Hψ

(A7) Pauli principle (where the two signs are for bosons resp. fermions):

ψ(1, 2, . . .) = ±ψ(2, 1, . . .)
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How not to Be Afraid of the Dirac (or Bra-Ket-) Notation
I the wave-function ψ(r) can be thought of as a the position-basis components of

an abstract wave-function vector |ψ〉 (read: ket psi)
I 〈ψ| · · · =

∫
d3r ψ∗(r) · · · (read: bra psi) is the adjoint linear functional of |ψ〉 so

that 〈ψ|ϕ〉 =
∫
d3r ψ∗(r)ϕ(r) is the L2 inner product7

I |ψ〉 =
∫
d3r ψ(r) |r〉 just like a = axex + ayey + azez

I now we can develop the coefficients in different bases
I especially common (since it makes the time evolution easy): the energy eigenstates
|ψ〉 =

∑
n cn |n〉, H |n〉 = En |n〉

I matrix elements of operators:

O |ψ〉 =
∑
nm

|n〉 〈n|O|m〉 〈m|ψ〉 = |n〉Onmψm

7mathematical pedants define states to be continuous linear functionals and thereby solve the
position eigenstate problem.
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A Quantum Eraser at Home

light source collimator double slit
screen

polarization
filter

vertical

polarization
filter

horizontal

polarization
filter

diagonal

filter

Figure: Setup

disclaimer: this can be explained classically as well, but the photon-wise quantum
interpretation is totally valid (and the classical result can be explained in terms of it)
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Harmonic Oscillator

H =
p2

2m
+

1
2
mω2x2 = ~ω

(
a†a +

1
2

)
, a =

√
ωm

2~
x +

ip√
2~ωm

, [a, a†] = 1

I if there is a state such that a |0〉 = 0 it will be an eigenstate of H with the energy
1
2~ω

I induction: assume a state |n〉 with a†a |n〉 = n |n〉, then we have
a†aa† |0〉 = a†(a†a + 1) |n〉 = (n + 1)a† |n〉 := (n + 1)N |n + 1〉

I normalization: 〈n| aa† |n〉 = |n + 1〉N ∗N |n + 1〉, so N =
√
n

I therefore, there is an eigenstate for each natural number n with a†a |n〉 = n |n〉 and
energies En = ~ω

(
n + 1

2

)
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Harmonic Oscillator (cont.)
I the eigenvalue equation a |0〉 = 0 in the position representation ψ(x) = 〈x |0〉 reads

∂xψ(x) = −ωm
~

xψ(x)

I we guess a solution

ψ(x) = N exp

(
−ωmx2

2~

)
I since the differential equation is linear and homogeneous, this must be the solution

I normalization |N |2 =
√

~
πωm (from

∫
dx e−x

2
=
√
π and substitution)

I all eigenfunctions of a†a (and therefore H) can now be obtained by repeatedly
applying a†
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Tunnelling

x

V

x

|ψ|

Figure: Scattering
Eigenstate of a Tunnelling
Problem

I in quantum mechanics particles can move through
barriers of higher energy than their own

I the wave function decays exponentially in barriers but
does not vanish immediately

I Myth: tunnelling makes a particle travel
instantaneously from a to b

I Busted: states of particles are extended, only when
measuring its position does a particle get a definite
position (also: nothing disallows faster than light
movement in non-relativistic quantum mechanics, the
Schrödinger equation is not Lorentz invariant but
Galilei invariant)
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Entanglement

I consider a two-particle system, measurement of one of the particles projects the
total state to the respective subspace

I now we have a state with two particles∣∣Φ+
〉

=
1√
2

(
|0〉 |0〉+ |1〉 |1〉

)
I measure the first particle, depending on the result of this measurement, the second

particle will be in the same state
I this means that measurements of the two single particles in this state will be

perfectly correlated!
I Einstein called this “spooky action at distance”
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Entanglement – Remarks

I there are no hidden variables – the result is not intrinsically determined before
measurement

I utterly weird but experimentally proven with so called Bell tests
I Myth: Entanglement allows to transfer information between two sites

instantaneously
I Busted: no communication theorem: you can’t exchange information faster than

light via entangled particle pairs (but you can generate correlated noise)
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Quantum Information
I a qubit is a quantum system with two states |0〉 and |1〉
I quantum computers

I really bad for most computing tasks – binary-on-silicon folks don’t fear for your job
I can compute some things faster than a classical computer (e.g. factoring primes and

similar problems – this would nuke our public-key crypto)
I use linear superposition to construct a weird kind of parallelism using superpositions

(we can compute something simultaneously for the 2N basis states)
I quantum cryptography

I solves the same problem as DH exchange
I we can generate a shared key and can check that there was no eavesdropper
I we can’t detect a man in the middle without having a shared secret or PKI

(quantum particles don’t know who’s on the other side)
I essentially useless as there are classical quantum computer safe key-exchanges
I commercial implementations: susceptible to side channel attacks
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