Quantum Mechanics
A Gentle Introduction

Sebastian Riese

27.12.2018

Quantum Mechanics 1/40



Introduction
Experiments
Theory

Application

Quantum Mechanics 2/40



Introduction

Concept of This Talk

> key experiments will be reviewed

» not historical: make the modern theory plausible using historical experiments, leave
the history be history, modify the experiments to make a point

» quantum mechanics is quite abstract and not “anschaulich” so we will need
mathematics (linear algebra, differential equations)

» we'll try to find a new, post-classical, “Anschaulichkeit” however in the end the
adage “shut up and calculate” holds

» we'll include maths crash courses where we need them (mathematicians will suffer,
sorry guys and gals)

Quantum Mechanics 3/40



Introduction

How Scientific Theories Work

» a scientific theory is a net of interdependent propositions
» when extending the theory different propositions are proposed as hypotheses
» the hypotheses that stand the experimental test are added to the theory

» new experimental results are either consistent or inconsistent with the propositions
of the theory

» if they are inconsistent, some of the propositions have been falsified, and the
theory must be amended in the minimal (Occam’s razor) way that makes it
consistent with all experimental results

» new theoretical ideas must explain why the old ones worked
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Experiments

How It All Began

» time frame: late 19t" /early 20" century
» known fundamental theories of physics:

» classical mechanics (F = ma)
» Newtonian gravitation (F = Gmymy

ri—ro )
lri—r2®

Maxwellian electrodynamics (9, F*" = 4mj¥, Lorentz force)
(Maxwell-Boltzmann classical statistical physics)
» several experimental results could not be explained by the classical physical
theories under reasonable assumptions, e.g.
» photoelectric effect (Hertz and Hallwachs 1887)
discrete spectral lines of atoms (Fraunhofer 1815, Bunsen and Kirchhoff 1858)
» radioactive rays: single spots on photographic plates
» stability of atoms composed of compact, positively charged nuclei (Rutherford 1909)
and negatively charged cathode ray particles (Thomson 1897)
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Experiments

Cathode Rays

> to-do list
(L, 1. have a heated cathode, a simple electrostatic
accelerator and a pinhole (an “electron gun”)
2. put it in an evacuated tube (if there's some well
chosen gas left it'll glow nicely)
3. play around (tips: magnetic fields, electric fields,
UHI fluorescent screens, etc.)
» results: there are negatively charged particles that can
be separated from metal electrodes, hydrogen gas, etc.

Figure: Schematic of an » atoms are neutral — conclusion: there is a positively
Electron Gun charged component as well
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Experiments

Rutherford(-Marsden-Geiger) Experiment

fluorescent screen

microscope \ » measure the deflection angles of « particles
AN shot perpendicularly through a thin gold foil

» weird result: some of the o are deflected
« source strongly

» conclusion from deflection calculations for
different charge/mass distributions: atoms
must contain a small and massive
concentration of mass and charge (the
nucleus)

gold foil

Figure: Schematic of the Rutherford
Experiment
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Experiments

Atoms Are Stable!?

> accelerated charges always radiate classically (Maxwell equations)

» to form stable atoms the electrons have to be bound to the nuclei in some orbits
implying accelerated motion

= classical electrodynamics and the above = WAT

> so the simple experimental fact that there are stable atoms nukes classical physics
(plus reasonable assumptions)
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Experiments

Photoelectric Effect

—m——)

v

a current flows when light falls on a metal surface in a
vacuum (phototube)

» when biasing the electrodes with a voltage Ug no
current flows above some threshold voltage Ut

» the threshold voltage is proportional to the wavelength
A of the light

» for different metals there are different threshold
wavelengths, below which no current flows for Ug =0

K\

Figure: Schematic of a
Phototube
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Experiments

Spectral Lines of Atoms — Experimental Setup

discharge tube
diffraction grating screen

Figure: Schematic of a Discharge Tube and Spectrograph

» discrete emission lines — together with the photon hypothesis: discrete energies!
» characteristic spectra for each atom species

» absorption lines complementary to the emission lines
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Experiments

Davisson-Germer Experiment

electron gun
& > the electrons show a diffraction pattern (that
can be seen by moving the Faraday cup
around)
» we can determing the wavelength of the
« Faraday cup matter wave from the diffraction pattern (and
menocrystalline surface the lattice parameters of the crystal)

Figure: Schematic: Davisson-Germer > this confirms the de Broglie relation
Experiment
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Experiments

Radioactivity and Experiments with Single Particles

» radioactivity is random — you can't predict when the next decay will happen — this
hints at the intrinsic randomness of subatomic physics

» we can do interference experiments with single particles, to do so we need a set of
sensitive detectors

> at most one of a set of such sensors detects the electron or photon

» while the particle is extended in transit, it will be forced to a sharp measurement
result on detection!

» if we do a double slit interference experiment and detect which slit the particle
went through, then the interference pattern vanishes!

» if we do the above and then discard the which-way-information in a coherent
manner there will again be interference (quantum eraser)

Quantum Mechanics 12/40



Theory

Crash Course: Complex Numbers

v

C = {a+ bila, b € R}, i? = —1, usual rules of calculation
» can be thought of as phasors in the complex plane

Lz > polar representation: z = p(cos(y) + isin(yp)) = pe'?

» addition: component wise

» multiplication: z1z) = p1p2e’(¥1%2) — turning angle plus
length

» multiplication in Cartesian components
(a+ bi)(c + di) = (ac — bd) + i(ad + cb)
» complex conjugation (a + bi)* = a — bi, modulus
|z| = Vz*z'
complex numbers make everything cool (e* = cos(x) + isin(x), fundamental theorem
of algebra, function theory, etc.

Figure: Complex Plane
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Theory

Crash Course: Vector Spaces

» vectors x,y € V, scalars o, 8 € S (a field, here only C and R)
» null vector 0

» operations: addition of vectors x + y € V/, additive inverse of a vector —x € V/,
x + (—x) = 0, multiplication by a scalar ax € V

» a(x+y)=ax+ay, (a+ B)x =ax+ By
> o(Bx) = (af)x

> Ix = x

TL;DR: a vector space is a set of objects which can be added and which can be
multiplied by scalars (real or complex numbers) in a compatible way
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Theory

Crash Course: L2 Space (and Analogy to Finite Dimensional Vector Spaces)

» vector space of square integrable functions (insert maths disclaimer here)

I£]|? = /dX 1F(x)]> < 00 x|? = ZX,2 < oo (trivial here)

» the norm ||x|| := 1/(x, x) " is induced by a scalar product (-, -)
(r.g) = [ dxf (x)e(x vy =3 5

= Hilbert space (= complete scalar-product space)

Nice surprise: almost everything works like in the finite dimensional case!

!mathematicians will deny this, but it usually just works with the physicists careful carelessness
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Theory

Modelling the Wave-like Behaviour of Particles

» the Davisson-Germer experiments (1920s) show diffraction of electrons on a
monocrystalline nickel surface — wave-like behaviour

» de Broglie hypothesis: particles have the wavelength A = h/p

> idea: complex wave function ¢ (r) = p(r)e™#(") describing the quantum state of a
single particle

> |(r)]? = ¢(r)y*(r) describes the probability of measuring the particle at r
» the phase is not directly measurable, but makes interference possible

1+ 2f? = [1 | + 2] + 2Re b (r)a(r)

» my stance: denounce the wave-particle dualism — quantum particles are quantum
neither wave nor particle
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Theory

States of Definite Momentum

» follow the de Broglie hypothesis p = hk (k is the wavenumber, k = 27 /)\)

o 1 ik-r
¢k(") - 27Te

» occupies the whole space (!)

» (mathematical catch: this state does not belong to the Hilbert space of valid
normalizable states, neither do the states of definite position)

> we can write any state as superposition of 1, (r) (Fourier transform)

» conclusion: by Fourier transformation? the state ¢(r) can be written in terms of
(k) — both contain all information about the system

2this implies the uncertainty relation Ax - Ak > %; the uncertainty relation is unimportant in the
grand scheme of things
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Theory

Operators

» observables in quantum mechanics are linear operators (“matrices”) on the state
space

» measuring an observable results in one of its eigenvalues

» if the system is in an eigenstate of the operator the measurement result is certain
» non-commuting operators have eigenstates that are not common

» momentum operator: p = —ihV, positions operator: x

» observation: p and x do not commute ([A, B] = AB — BA is called commutator
and quantifies the failure to commute, A and B commute iff [A, B] = 0)

pxip = —ilip — ihxOxtp = xpip — ilap = (xp + [p, x]) ¥
[p.x] = —ih
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Theory

More on Operators

> linear: O(ax + fy) = aOx + SO0y
» multiplication of operators is defined by consecutive application (OU)x = O(Ux)
> a linear operator is defined by its action on any set of vectors spanning the vector
space
> inverse operator: some operators have an inverse operator O~! such that
007! =id
> every operator has an adjoint defined by (p, Ay) = (AT, ) for all 9, o

» there are commonly defined classes of operators

Hermitian A = AT (in terms of the scalar
product (¥, Ap) = (A, ¢))
anti-Hermitian A = —Af
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Theory

Expectation Values

» the expectation value of an operator is defined as
(©0) = [ &ri(r)outr) = (v, 00)

» the expectation values of Hermitian operators are real

(0) = (¥, 0¢) = (0, ¥) = (¢, OY)*

» can be shown to agree with the expectation value of the quantity represented by
the operator when measuring it
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Theory

Crash Course: Eigenvalue Problems

» important question: which vectors are just scaled by a linear operator: Ay = Ay
» remember linear algebra — this is diagonalizing matrices
» if such a ¢ exists it is called eigenvector and M is the corresponding eigenvalue

» the dimension of the space spanned by the eigenvectors can be larger than one
(degeneracy), in this case we can always choose an orthonormal base in the
eigenspace

> we write 1y, for the normalized n" basis vector in
the eigenspace corresponding to A

» Hermitian operators have real eigenvalues (H = HT means A = \* for the
diagonal, so for the eigenvalues in the eigenbasis)
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Theory

Crash Course: Eigenvalue Problems (cont.)

» spectral theorem3: all Hermitian operators have a complete (=spanning the whole
vector space) system of eigenvectors, for any vector ¢ we have

=Y (¥xn P)¥rn

> eigenvectors , 1) of a Hermitian operator A for difference eigenvalues \, k are
orthogonal, proof:

(Y, 0) = (0, AY)" = (¥, Ap) = A, ) = (K" = A) (¥, ) =0

3this is a lie if the dimensions are not finite, but the differences are mathematical nitpicking

Quantum Mechanics 22/40



Theory

Equation of Motion — Requirements

(R1) a sharp (Gaussian) wave packet constructed from momentum states with similar
momenta should follow the classical equation of motion in the limit &z — 0

(R2) the time evolution must conserve the total probability of finding the particle

(R3) the equation should be first-order in time (otherwise the wave-function contains
insufficient information for the time development)

(R4) the equation should be linear to allow interference effects*

from the requirements (R3) and (R4) we can write (with a linear operator H)

ihde(r, t) = HY(r, t)

“there was some work on non-linear quantum mechanics, but it is non-standard and not supported
by experimental evidence
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Theory

Equation of Motion — Conservation of Probability

» require conservation of probability (R2) for all states

0= 8t/d3r1/1*(r, t)(r,t) = —% / d3r(( — H**(r, t))0(r, t) +¢*(r, t)HY(r, t))

= / d3r< — *(r, t)HTw(r, t) +*(r, t)HY(r, t))

» this implies that H = HT for conservation of probability (mathematical disclaimer:
there are intricacies with the adjoint of operators)

» actually there is even local conservation of probability for local Hamiltonians,
encoded in the continuity equation: 9;p+V -j =0

Quantum Mechanics 24/40



Theory

The Hamiltonian

. . . . . 2

> begin with the classical Hamiltonian H = £+ V/(r)

» replace p and x by their corresponding operators (sometimes called:
correspondence principle — in the classical limit we must retrieve the classical
equations)

2

(p—A(r))

> with a magnetic field we get: H = ~——_—~ + V/(r)
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Theory

Consistency with Newtonian Mechanics

» the new theory must explain all previous experimental evidence

» in some limiting case quantum mechanics has to reproduce Newtonian mechanics
» Ehrenfest theorem
> in general

6. (0) = du(w, 0v) = 1 ([4,0]) + (0.0)

» for position and momentum with the Schrédinger Hamiltonian H = 2oy V(r)

o By =~ (VV)
d; (7) = (p) /m

» can almost be brought to the form of the Newtonian equation of motion

md? (7) = — <V\7> - <F>
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Theory

Solving the Schrodinger Equation

» ansatz: separation of variables — W(x, t) = ®(t)y(x)
i (t)y(x) = S(t)Hy(x),
L O(t)  HY(x) .
Ihq>(t) o) const := E.
» this gives the two equations®
. E
d(t) = = (t), HYbn(x) = Enthn(x).

» general solution of the time-dependent Schrédinger equation

= 3 e (1, (-, 0)) ().

Sthe second one is an eigenvalue problem
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Theory

Measurement or How | measured my cat and now it's dead

> given a system in state ¢) and an operator A
» the possible outcomes for A are given by its eigenvalues a,
» the probability of measuring a, is (1)|Pn|1), where P, projects to the eigenspace
corresponding to a,
» (idealized measurement) after having measured A the state is projected to the
eigenspace of the measured value (and normalized)
» this is weird, indeterministic and apparently non-unitary and completely different
from the nice deterministic equation for ¢ (possible solution: decoherence with the
environment)

TL:DR:
quantum measurement is probabilistic and
inherently changes the system’s state
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Theory

Crash Course: Tensor Product

» there are different products of (vector) spaces

» fundamental: Cartesian product X x Y, the set-of tuples of elements from X and
Y

» clever: the tensor product X ® Y over vector spaces over the same field preserves
the full vector space structure®
» compatible with multiplication by scalars (ax) @ y = x ® (ay) =: a(x ® y)
» compatible with addition in the constituent vector spaces
(xt+y)ez=Kx®2)+(y©2)
» for vectors that also defined a multiplication (e.g. linear operators)
(A® B)(C ® D) = (AC) ® (BD)

®formal construction by factoring the Cartesian product by an equivalence relation
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Theory

Multiple Particles

» the Hilbert space for a compound system H = H; ® - - - ® H,, (tensor product)
» one-particle operator acting on the nt particle: 0 =19 -0, ®---®1
» two-particle operator: 0=>0 0,
» Caveat: ldentical Particles
» experimental result: there are two kinds of particles — bosons and fermions
» different behaviour as T — 0: additional pressure or lowered pressure compared to
the hypothetical ideal gas
» using the formula above leads to paradoxical results
» identical fermions have anti-symmetrized, identical bosons have symmetrized

wave—funcstions
| 4 H g Hfbn +
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Theory

Summary: The Axioms of Quantum Mechanics

(A1) All information about a quantum system is carried in a L? function 1 : R — C.
(A2) Each observable is given by a Hermitian operator A.

(A3) The possible measurement values are given by the eigenvalues von A.

(A4) The eigenvectors must be orthonormalized.

(A5) The probability for of measuring a is given by (where v is the degeneracy index).

/dxz/)ay (x, t)
(A6) The equation of motion of ¥ is the Schrédinger equations

0 = Hap
(A7) Pauli principle (where the two signs are for bosons resp. fermions):

(1,2,..) = +(2,1,..))
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Theory

How not to Be Afraid of the Dirac (or Bra-Ket-) Notation

» the wave-function ¢(r) can be thought of as a the position-basis components of
an abstract wave—function vector [¢)) (read: ket psi)

> = [d3r+*(r)--- (read: bra psi) is the adjoint linear functional of [¢) so
that wlcp fd3rw* )o(r) is the L2 inner product”
> = [ d®ri(r)|r) just like @ = acex + aye, + a,e,

» now we can develop the coefficients in different bases
» especially common (since it makes the time evolution easy): the energy eigenstates

WJ> = Zn Cn \n), H|n> = E, |n>

» matrix elements of operators:

Oly) = Z| (n|O|m) (mly)) = |n) Onmtom

"mathematical pedants define states to be continuous linear functionals and thereby solve the
position eigenstate problem.
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Application

A Quantum Eraser at Home

screen
light source collimator double slit

Figure: Setup

disclaimer: this can be explained classically as well, but the photon-wise quantum
interpretation is totally valid (and the classical result can be explained in terms of it)
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Application

A Quantum Eraser at Home

polarization
filter
vertical

polarization
filter
horizontal

Figure: Setup

disclaimer: this can be explained classically as well, but the photon-wise quantum
interpretation is totally valid (and the classical result can be explained in terms of it)
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Application

A Quantum Eraser at Home

polarization

filter
vertical
polarization polarization
filter filter
horizontal diagonal

Figure: Setup

disclaimer: this can be explained classically as well, but the photon-wise quantum
interpretation is totally valid (and the classical result can be explained in terms of it)
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Application

A Quantum Eraser at Home

polarization

filter
vertical
filter polarization polarization
filter filter
horizontal diagonal

Figure: Setup

disclaimer: this can be explained classically as well, but the photon-wise quantum
interpretation is totally valid (and the classical result can be explained in terms of it)
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Application

Harmonic Oscillator

2
Pl a0 t /
H—2m+2mwx—hw< a+ ) \/7 [aa]_l

» if there is a state such that a|0) = 0 it will be an eigenstate of H with the energy
3 hw

» induction: assume a state |n) with afa|n) = n|n), then we have
ataal |0) = af(afa+ 1) |n) = (n+1)al [n) == (n+ )N |n + 1)

» normalization: (n|aa' |n) = |n+ 1) N*N |n+1), so N = /n’

» therefore, there is an eigenstate for each natural number n with afa|n) = n|n) and
energies £, = hw (n + %)
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Application

Harmonic Oscillator (cont.)

» the eigenvalue equation a|0) = 0 in the position representation 1(x) = (x|0) reads
OP(x) = —%X?/}(X)

» we guess a solution

2
¥(x) = N exp <_w;n};< >

» since the differential equation is linear and homogeneous, this must be the solution

» normalization |NV]? = b (from [ dx e~ = /7" and substitution)

TTwm

» all eigenfunctions of afa (and therefore H) can now be obtained by repeatedly
applying af
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Application

Tunnelling

» in quantum mechanics particles can move through
v barriers of higher energy than their own

» the wave function decays exponentially in barriers but
does not vanish immediately

» Myth: tunnelling makes a particle travel
vl instantaneously from a to b

x » Busted: states of particles are extended, only when

measuring its position does a particle get a definite
position (also: nothing disallows faster than light

Figure: Scattering movement in non-relativistic quantum mechanics, the
Eigenstate of a Tunnelling Schrédinger equation is not Lorentz invariant but
Problem Galilei invariant)
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Application

Entanglement

» consider a two-particle system, measurement of one of the particles projects the
total state to the respective subspace

» now we have a state with two particles

1
\"’WIW(!O) 10) + 1) 1))

» measure the first particle, depending on the result of this measurement, the second
particle will be in the same state

» this means that measurements of the two single particles in this state will be
perfectly correlated!

» Einstein called this “spooky action at distance”
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Application

Entanglement — Remarks

» there are no hidden variables — the result is not intrinsically determined before
measurement

» utterly weird but experimentally proven with so called Bell tests

» Myth: Entanglement allows to transfer information between two sites
instantaneously

» Busted: no communication theorem: you can't exchange information faster than
light via entangled particle pairs (but you can generate correlated noise)
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Application

Quantum Information

> a qubit is a quantum system with two states |0) and |1)
> quantum computers
» really bad for most computing tasks — binary-on-silicon folks don't fear for your job
» can compute some things faster than a classical computer (e.g. factoring primes and
similar problems — this would nuke our public-key crypto)
» use linear superposition to construct a weird kind of parallelism using superpositions
(we can compute something simultaneously for the 2V basis states)
» quantum cryptography
» solves the same problem as DH exchange
» we can generate a shared key and can check that there was no eavesdropper
» we can't detect a man in the middle without having a shared secret or PKI
(quantum particles don't know who's on the other side)
» essentially useless as there are classical quantum computer safe key-exchanges
» commercial implementations: susceptible to side channel attacks
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