
Self-Encrypting Deception:
weaknesses in the encryption of solid state drives (SSDs)

Carlo Meijer
Radboud University Nijmegen
Midnight Blue Labs



whoami

Carlo Meijer

• PhD Student at Radboud University Nijmegen
• Focused on analysis of crypto systems deployed in the

wild
• Known for

· New cryptanalytic attack on Mifare Classic (2015)
· Password generators in wireless routers (2015)
· Self-Encrypting Drives (2018)

• Independent security researcher at Midnight Blue Labs

c.meijer@cs.ru.nl

https://cs.ru.nl/∼cmeijer/
https://midnightbluelabs.com/



Acknowledgements

Philipp Gühring

For the bulk of the Samsung 840 EVO reverse engineering work

See http://www.futureware.at/~philipp/ssd/TheMissingManual.pdf
If you like reversing, check out his projects at

http://www.futureware.at/~philipp/ssd/



What is a Self-Encrypting

Drive?



What is a Self-Encrypting Drive?

Traditional encryption (in software)

Self-Encrypting Drive



What is a Self-Encrypting Drive?

Traditional encryption (in software) Self-Encrypting Drive



What is a Self-Encrypting Drive? (2)

https://www.storagereview.com/samsung_840_evo_msata_ssd_review

https://www.custompcreview.com/reviews/crucial-mx100-512gb-ssd-review/



What is a Self-Encrypting Drive? (2)

https://www.storagereview.com/samsung_840_evo_msata_ssd_review

https://www.custompcreview.com/reviews/crucial-mx100-512gb-ssd-review/



What is a Self-Encrypting Drive? (2)

https://www.storagereview.com/samsung_840_evo_msata_ssd_review

https://www.custompcreview.com/reviews/crucial-mx100-512gb-ssd-review/



What is a Self-Encrypting Drive? (2)

https://www.storagereview.com/samsung_840_evo_msata_ssd_review

https://www.custompcreview.com/reviews/crucial-mx100-512gb-ssd-review/



Democratically proven

https://www.crucial.com/usa/en/how-self-encrypting-ssds-protect-your-business-and-enhance-data-security-and-limit-liability

https://www.esecurityplanet.com/network-security/The-Pros-and-Cons-of-Opal-Compliant-Drives-3939016.htm

https://www.esecurityplanet.com/network-security/The-Pros-and-Cons-of-Opal-Compliant-Drives-3939016.htm

https://trustedcomputinggroup.org/resource/self-encrypting-drives-sed-overview/

BitLocker (built into Windows) opts for hardware encryption by default if

available, software as a fall-back



Democratically proven

https://www.crucial.com/usa/en/how-self-encrypting-ssds-protect-your-business-and-enhance-data-security-and-limit-liability

https://www.esecurityplanet.com/network-security/The-Pros-and-Cons-of-Opal-Compliant-Drives-3939016.htm

https://www.esecurityplanet.com/network-security/The-Pros-and-Cons-of-Opal-Compliant-Drives-3939016.htm

https://trustedcomputinggroup.org/resource/self-encrypting-drives-sed-overview/

BitLocker (built into Windows) opts for hardware encryption by default if

available, software as a fall-back



Democratically proven

https://www.crucial.com/usa/en/how-self-encrypting-ssds-protect-your-business-and-enhance-data-security-and-limit-liability

https://www.esecurityplanet.com/network-security/The-Pros-and-Cons-of-Opal-Compliant-Drives-3939016.htm

https://www.esecurityplanet.com/network-security/The-Pros-and-Cons-of-Opal-Compliant-Drives-3939016.htm

https://trustedcomputinggroup.org/resource/self-encrypting-drives-sed-overview/

BitLocker (built into Windows) opts for hardware encryption by default if

available, software as a fall-back



Democratically proven

https://www.crucial.com/usa/en/how-self-encrypting-ssds-protect-your-business-and-enhance-data-security-and-limit-liability

https://www.esecurityplanet.com/network-security/The-Pros-and-Cons-of-Opal-Compliant-Drives-3939016.htm

https://www.esecurityplanet.com/network-security/The-Pros-and-Cons-of-Opal-Compliant-Drives-3939016.htm

https://trustedcomputinggroup.org/resource/self-encrypting-drives-sed-overview/

BitLocker (built into Windows) opts for hardware encryption by default if

available, software as a fall-back



Democratically proven

https://www.crucial.com/usa/en/how-self-encrypting-ssds-protect-your-business-and-enhance-data-security-and-limit-liability

https://www.esecurityplanet.com/network-security/The-Pros-and-Cons-of-Opal-Compliant-Drives-3939016.htm

https://www.esecurityplanet.com/network-security/The-Pros-and-Cons-of-Opal-Compliant-Drives-3939016.htm

https://trustedcomputinggroup.org/resource/self-encrypting-drives-sed-overview/

BitLocker (built into Windows) opts for hardware encryption by default if

available, software as a fall-back



Security guarantees
of Self-Encrypting Drives



Security guarantees of Self-Encrypting Drives

Typical three attacker models for Full-Disk Encryption

(i) Machine on: Attacker has physical access to a powered-on machine

(ii) Machine off, no awareness: Attacker has physical access to a

powered-downmachine
The encounter is not noticed by the victim

(iii) Machine off, awareness: Attacker has physical access to a

powered-downmachine
Drive is lost or stolen, or machine considered “tainted”.



Security guarantees of Self-Encrypting Drives

Typical three attacker models for Full-Disk Encryption

(i) Machine on: Attacker has physical access to a powered-on machine

(ii) Machine off, no awareness: Attacker has physical access to a

powered-downmachine
The encounter is not noticed by the victim

(iii) Machine off, awareness: Attacker has physical access to a

powered-downmachine
Drive is lost or stolen, or machine considered “tainted”.



Security guarantees of Self-Encrypting Drives

Typical three attacker models for Full-Disk Encryption

(i) Machine on: Attacker has physical access to a powered-on machine

(ii) Machine off, no awareness: Attacker has physical access to a

powered-downmachine
The encounter is not noticed by the victim

(iii) Machine off, awareness: Attacker has physical access to a

powered-downmachine
Drive is lost or stolen, or machine considered “tainted”.



Security guarantees of Self-Encrypting Drives

Typical three attacker models for Full-Disk Encryption

(i) Machine on: Attacker has physical access to a powered-on machine

(ii) Machine off, no awareness: Attacker has physical access to a

powered-downmachine
The encounter is not noticed by the victim

(iii) Machine off, awareness: Attacker has physical access to a

powered-downmachine
Drive is lost or stolen, or machine considered “tainted”.



Security guarantees of Self-Encrypting Drives

Typical three attacker models for Full-Disk Encryption

(i) Machine on: Attacker has physical access to a powered-on machine

(ii) Machine off, no awareness: Attacker has physical access to a

powered-downmachine
The encounter is not noticed by the victim

(iii) Machine off, awareness: Attacker has physical access to a

powered-downmachine
Drive is lost or stolen, or machine considered “tainted”.



Machine on

Software encryption: secret key kept in RAM, which has weaknesses.

(i) Cold boot attack

Reboot, load custom OS, extract key from RAM

(ii) DMA attack

Extract key through DMA interface (PCI-e, Firewire, Thunderbolt, etc.)

Hardware encryption: immune in theory, however
• Key is kept in RAM for virtually all implementations

To support Suspend-to-RAM (S3)

• Key is kept in storage controller (Not secure hardware by any standard)

Many have debugging interfaces exposed on PCB

• Adversary has physical access: can hot-plug the device

Overall: Attack opportunities are more or less equivalent



Machine on

Software encryption: secret key kept in RAM, which has weaknesses.

(i) Cold boot attack

Reboot, load custom OS, extract key from RAM

(ii) DMA attack

Extract key through DMA interface (PCI-e, Firewire, Thunderbolt, etc.)

Hardware encryption: immune in theory, however
• Key is kept in RAM for virtually all implementations

To support Suspend-to-RAM (S3)

• Key is kept in storage controller (Not secure hardware by any standard)

Many have debugging interfaces exposed on PCB

• Adversary has physical access: can hot-plug the device

Overall: Attack opportunities are more or less equivalent



Machine on

Software encryption: secret key kept in RAM, which has weaknesses.

(i) Cold boot attack

Reboot, load custom OS, extract key from RAM

(ii) DMA attack

Extract key through DMA interface (PCI-e, Firewire, Thunderbolt, etc.)

Hardware encryption: immune in theory, however
• Key is kept in RAM for virtually all implementations

To support Suspend-to-RAM (S3)

• Key is kept in storage controller (Not secure hardware by any standard)

Many have debugging interfaces exposed on PCB

• Adversary has physical access: can hot-plug the device

Overall: Attack opportunities are more or less equivalent



Machine on

Software encryption: secret key kept in RAM, which has weaknesses.

(i) Cold boot attack

Reboot, load custom OS, extract key from RAM

(ii) DMA attack

Extract key through DMA interface (PCI-e, Firewire, Thunderbolt, etc.)

Hardware encryption: immune in theory, however

• Key is kept in RAM for virtually all implementations

To support Suspend-to-RAM (S3)

• Key is kept in storage controller (Not secure hardware by any standard)

Many have debugging interfaces exposed on PCB

• Adversary has physical access: can hot-plug the device

Overall: Attack opportunities are more or less equivalent



Machine on

Software encryption: secret key kept in RAM, which has weaknesses.

(i) Cold boot attack

Reboot, load custom OS, extract key from RAM

(ii) DMA attack

Extract key through DMA interface (PCI-e, Firewire, Thunderbolt, etc.)

Hardware encryption: immune in theory, however
• Key is kept in RAM for virtually all implementations

To support Suspend-to-RAM (S3)

• Key is kept in storage controller (Not secure hardware by any standard)

Many have debugging interfaces exposed on PCB

• Adversary has physical access: can hot-plug the device

Overall: Attack opportunities are more or less equivalent



Machine on

Software encryption: secret key kept in RAM, which has weaknesses.

(i) Cold boot attack

Reboot, load custom OS, extract key from RAM

(ii) DMA attack

Extract key through DMA interface (PCI-e, Firewire, Thunderbolt, etc.)

Hardware encryption: immune in theory, however
• Key is kept in RAM for virtually all implementations

To support Suspend-to-RAM (S3)

• Key is kept in storage controller (Not secure hardware by any standard)

Many have debugging interfaces exposed on PCB

• Adversary has physical access: can hot-plug the device

Overall: Attack opportunities are more or less equivalent



Machine on

Software encryption: secret key kept in RAM, which has weaknesses.

(i) Cold boot attack

Reboot, load custom OS, extract key from RAM

(ii) DMA attack

Extract key through DMA interface (PCI-e, Firewire, Thunderbolt, etc.)

Hardware encryption: immune in theory, however
• Key is kept in RAM for virtually all implementations

To support Suspend-to-RAM (S3)

• Key is kept in storage controller (Not secure hardware by any standard)

Many have debugging interfaces exposed on PCB

• Adversary has physical access: can hot-plug the device

Overall: Attack opportunities are more or less equivalent



Machine on

Software encryption: secret key kept in RAM, which has weaknesses.

(i) Cold boot attack

Reboot, load custom OS, extract key from RAM

(ii) DMA attack

Extract key through DMA interface (PCI-e, Firewire, Thunderbolt, etc.)

Hardware encryption: immune in theory, however
• Key is kept in RAM for virtually all implementations

To support Suspend-to-RAM (S3)

• Key is kept in storage controller (Not secure hardware by any standard)

Many have debugging interfaces exposed on PCB

• Adversary has physical access: can hot-plug the device

Overall: Attack opportunities are more or less equivalent



Machine on

Software encryption: secret key kept in RAM, which has weaknesses.

(i) Cold boot attack

Reboot, load custom OS, extract key from RAM

(ii) DMA attack

Extract key through DMA interface (PCI-e, Firewire, Thunderbolt, etc.)

Hardware encryption: immune in theory, however
• Key is kept in RAM for virtually all implementations

To support Suspend-to-RAM (S3)

• Key is kept in storage controller (Not secure hardware by any standard)

Many have debugging interfaces exposed on PCB

• Adversary has physical access: can hot-plug the device

Overall: Attack opportunities are more or less equivalent



Security guarantees of Self-Encrypting Drives

Typical three attacker models for Full-Disk Encryption

(i) Machine on: Attacker has physical access to a powered-on machine

(ii) Machine off, no awareness: Attacker has physical access to a

powered-downmachine
The encounter is not noticed by the victim

(iii) Machine off, awareness: Attacker has physical access to a

powered-downmachine
Drive is lost or stolen, or machine considered “tainted”.



Machine off, no awareness

Evil maid attack

(1) Install backdoor functionality

(2) Wait for victim to enter secret key in the machine

(3) Exfiltrate data

Examples:
• Hardware keylogger

Nomeaningful defenses.

• Backdoor in boot loader
Defenses:

· TPM – sealing functionality

· Secure boot

Overall: SEDs don’t offer added protection→ equivalent



Machine off, no awareness

Evil maid attack

(1) Install backdoor functionality

(2) Wait for victim to enter secret key in the machine

(3) Exfiltrate data

Examples:
• Hardware keylogger

Nomeaningful defenses.

• Backdoor in boot loader
Defenses:

· TPM – sealing functionality

· Secure boot

Overall: SEDs don’t offer added protection→ equivalent



Machine off, no awareness

Evil maid attack

(1) Install backdoor functionality

(2) Wait for victim to enter secret key in the machine

(3) Exfiltrate data

Examples:
• Hardware keylogger

Nomeaningful defenses.

• Backdoor in boot loader
Defenses:

· TPM – sealing functionality

· Secure boot

Overall: SEDs don’t offer added protection→ equivalent



Machine off, no awareness

Evil maid attack

(1) Install backdoor functionality

(2) Wait for victim to enter secret key in the machine

(3) Exfiltrate data

Examples:
• Hardware keylogger

Nomeaningful defenses.

• Backdoor in boot loader
Defenses:

· TPM – sealing functionality

· Secure boot

Overall: SEDs don’t offer added protection→ equivalent



Machine off, no awareness

Evil maid attack

(1) Install backdoor functionality

(2) Wait for victim to enter secret key in the machine

(3) Exfiltrate data

Examples:
• Hardware keylogger

Nomeaningful defenses.

• Backdoor in boot loader
Defenses:

· TPM – sealing functionality

· Secure boot

Overall: SEDs don’t offer added protection→ equivalent



Machine off, no awareness

Evil maid attack

(1) Install backdoor functionality

(2) Wait for victim to enter secret key in the machine

(3) Exfiltrate data

Examples:
• Hardware keylogger

Nomeaningful defenses.

• Backdoor in boot loader
Defenses:

· TPM – sealing functionality

· Secure boot

Overall: SEDs don’t offer added protection→ equivalent



Machine off, no awareness

Evil maid attack

(1) Install backdoor functionality

(2) Wait for victim to enter secret key in the machine

(3) Exfiltrate data

Examples:
• Hardware keylogger

Nomeaningful defenses.

• Backdoor in boot loader

Defenses:

· TPM – sealing functionality

· Secure boot

Overall: SEDs don’t offer added protection→ equivalent



Machine off, no awareness

Evil maid attack

(1) Install backdoor functionality

(2) Wait for victim to enter secret key in the machine

(3) Exfiltrate data

Examples:
• Hardware keylogger

Nomeaningful defenses.

• Backdoor in boot loader
Defenses:

· TPM – sealing functionality

· Secure boot

Overall: SEDs don’t offer added protection→ equivalent



Machine off, no awareness

Evil maid attack

(1) Install backdoor functionality

(2) Wait for victim to enter secret key in the machine

(3) Exfiltrate data

Examples:
• Hardware keylogger

Nomeaningful defenses.

• Backdoor in boot loader
Defenses:

· TPM – sealing functionality

· Secure boot

Overall: SEDs don’t offer added protection→ equivalent



Machine off, no awareness

Evil maid attack

(1) Install backdoor functionality

(2) Wait for victim to enter secret key in the machine

(3) Exfiltrate data

Examples:
• Hardware keylogger

Nomeaningful defenses.

• Backdoor in boot loader
Defenses:

· TPM – sealing functionality

· Secure boot

Overall: SEDs don’t offer added protection→ equivalent



Security guarantees of Self-Encrypting Drives

Typical three attacker models for Full-Disk Encryption

(i) Machine on: Attacker has physical access to a powered-on machine

(ii) Machine off, no awareness: Attacker has physical access to a

powered-downmachine
The encounter is not noticed by the victim

(iii) Machine off, awareness: Attacker has physical access to a

powered-downmachine
Drive is lost or stolen, or machine considered “tainted”.



Machine off, awareness

Software encryption provides full confidentiality of the data

(given that the implementation is sound)

Options:
• Use open source software audited by independent experts
• Use proprietary software with public implementation details audited by

independent experts
• Use a proprietary (black-box) implementation and hope for the best

With hardware encryption, no other option than the black-box
• Extremely hard to audit
• Additional pitfalls that apply particularly to hardware encryption (later)



Machine off, awareness

Software encryption provides full confidentiality of the data

(given that the implementation is sound)

Options:
• Use open source software audited by independent experts

• Use proprietary software with public implementation details audited by

independent experts
• Use a proprietary (black-box) implementation and hope for the best

With hardware encryption, no other option than the black-box
• Extremely hard to audit
• Additional pitfalls that apply particularly to hardware encryption (later)



Machine off, awareness

Software encryption provides full confidentiality of the data

(given that the implementation is sound)

Options:
• Use open source software audited by independent experts
• Use proprietary software with public implementation details audited by

independent experts

• Use a proprietary (black-box) implementation and hope for the best

With hardware encryption, no other option than the black-box
• Extremely hard to audit
• Additional pitfalls that apply particularly to hardware encryption (later)



Machine off, awareness

Software encryption provides full confidentiality of the data

(given that the implementation is sound)

Options:
• Use open source software audited by independent experts
• Use proprietary software with public implementation details audited by

independent experts
• Use a proprietary (black-box) implementation and hope for the best

With hardware encryption, no other option than the black-box
• Extremely hard to audit
• Additional pitfalls that apply particularly to hardware encryption (later)



Machine off, awareness

Software encryption provides full confidentiality of the data

(given that the implementation is sound)

Options:
• Use open source software audited by independent experts
• Use proprietary software with public implementation details audited by

independent experts
• Use a proprietary (black-box) implementation and hope for the best

With hardware encryption, no other option than the black-box

• Extremely hard to audit
• Additional pitfalls that apply particularly to hardware encryption (later)



Machine off, awareness

Software encryption provides full confidentiality of the data

(given that the implementation is sound)

Options:
• Use open source software audited by independent experts
• Use proprietary software with public implementation details audited by

independent experts
• Use a proprietary (black-box) implementation and hope for the best

With hardware encryption, no other option than the black-box
• Extremely hard to audit

• Additional pitfalls that apply particularly to hardware encryption (later)



Machine off, awareness

Software encryption provides full confidentiality of the data

(given that the implementation is sound)

Options:
• Use open source software audited by independent experts
• Use proprietary software with public implementation details audited by

independent experts
• Use a proprietary (black-box) implementation and hope for the best

With hardware encryption, no other option than the black-box
• Extremely hard to audit
• Additional pitfalls that apply particularly to hardware encryption (later)



Security guarantees of Self-Encrypting Drives

Typical three attacker models for Full-Disk Encryption

(i) Machine on: Attacker has physical access to a powered-on machine

(ii) Machine off, no awareness: Attacker has physical access to a

powered-downmachine
The encounter is not noticed by the victim

(iii) Machine off, awareness: Attacker has physical access to a

powered-downmachine
The encounter is noticed by the victim, and considers the machine “tainted”. Or the drive is lost
or stolen.

Thus, security guarantees are equivalent. At best.



Security guarantees of Self-Encrypting Drives

Typical three attacker models for Full-Disk Encryption

(i) Machine on: Attacker has physical access to a powered-on machine

(ii) Machine off, no awareness: Attacker has physical access to a

powered-downmachine
The encounter is not noticed by the victim

(iii) Machine off, awareness: Attacker has physical access to a

powered-downmachine
The encounter is noticed by the victim, and considers the machine “tainted”. Or the drive is lost
or stolen.

Thus, security guarantees are equivalent. At best.



Standards
for Self-Encrypting Drives



Standards for Self-Encrypting Drives

Two widely used standards exist

(i) ATA Security Feature Set
Originally designed for access control only

(ii) TCG Opal
Modern standard designed specifically for SEDs

https://medium.com/@andrewpgsweeny/

beyond-the-red-pill-and-the-blue-pill-9ef953d6e133



Standards for Self-Encrypting Drives

Two widely used standards exist

(i) ATA Security Feature Set
Originally designed for access control only

(ii) TCG Opal
Modern standard designed specifically for SEDs

https://medium.com/@andrewpgsweeny/

beyond-the-red-pill-and-the-blue-pill-9ef953d6e133



Suppose you would implement this yourself

It would probably look something like this

Stored data

User-supplied password Salt#1 Salt#2 Hash output

Keyed hash Hash result Compare Match/no match

Keyed hash DEK

So far, easy



Suppose you would implement this yourself

It would probably look something like this

Stored data

User-supplied password Salt#1 Salt#2 Hash output

Keyed hash Hash result Compare Match/no match

Keyed hash DEK

So far, easy



Suppose you would implement this yourself

It would probably look something like this

Stored data

User-supplied password Salt#1 Salt#2 Hash output

Keyed hash Hash result Compare Match/no match

Keyed hash DEK

So far, easy



Standards for Self-Encrypting Drives

Two widely used standards exist

(i) ATA Security Feature Set
Originally designed for access control only

(ii) TCG Opal
Modern standard designed specifically for SEDs

https://medium.com/@andrewpgsweeny/

beyond-the-red-pill-and-the-blue-pill-9ef953d6e133



ATA Security feature set

• Originated in the pre-SED era

Thus, “encryption” is not even mentioned in the spec

• Two password types: User, Master
• Both are user-settable, initial master password factory set
• MASTER PASSWORD CAPABILITY: High (0), Maximum (1)

· High: both User and Master password unlock drive
· Maximum: Only User unlocks drive, Master may erase

• Bottom line: Always change the Master password or set to Maximum



ATA Security feature set

• Originated in the pre-SED era

Thus, “encryption” is not even mentioned in the spec

• Two password types: User, Master

• Both are user-settable, initial master password factory set
• MASTER PASSWORD CAPABILITY: High (0), Maximum (1)

· High: both User and Master password unlock drive
· Maximum: Only User unlocks drive, Master may erase

• Bottom line: Always change the Master password or set to Maximum



ATA Security feature set

• Originated in the pre-SED era

Thus, “encryption” is not even mentioned in the spec

• Two password types: User, Master
• Both are user-settable, initial master password factory set

• MASTER PASSWORD CAPABILITY: High (0), Maximum (1)

· High: both User and Master password unlock drive
· Maximum: Only User unlocks drive, Master may erase

• Bottom line: Always change the Master password or set to Maximum



ATA Security feature set

• Originated in the pre-SED era

Thus, “encryption” is not even mentioned in the spec

• Two password types: User, Master
• Both are user-settable, initial master password factory set
• MASTER PASSWORD CAPABILITY: High (0), Maximum (1)

· High: both User and Master password unlock drive
· Maximum: Only User unlocks drive, Master may erase

• Bottom line: Always change the Master password or set to Maximum



ATA Security feature set

• Originated in the pre-SED era

Thus, “encryption” is not even mentioned in the spec

• Two password types: User, Master
• Both are user-settable, initial master password factory set
• MASTER PASSWORD CAPABILITY: High (0), Maximum (1)

· High: both User and Master password unlock drive

· Maximum: Only User unlocks drive, Master may erase
• Bottom line: Always change the Master password or set to Maximum



ATA Security feature set

• Originated in the pre-SED era

Thus, “encryption” is not even mentioned in the spec

• Two password types: User, Master
• Both are user-settable, initial master password factory set
• MASTER PASSWORD CAPABILITY: High (0), Maximum (1)

· High: both User and Master password unlock drive
· Maximum: Only User unlocks drive, Master may erase

• Bottom line: Always change the Master password or set to Maximum



ATA Security feature set

• Originated in the pre-SED era

Thus, “encryption” is not even mentioned in the spec

• Two password types: User, Master
• Both are user-settable, initial master password factory set
• MASTER PASSWORD CAPABILITY: High (0), Maximum (1)

· High: both User and Master password unlock drive
· Maximum: Only User unlocks drive, Master may erase

• Bottom line: Always change the Master password or set to Maximum



ATA security feature set

Stored data

User-supplied User password

Master password: Salt#1 Salt#2 Hash output KEK

User password: Salt#1 Salt#2 Hash output KEK

KEK

Keyed hash Hash result Compare Match/no match

Keyed hash Key Decrypt Shared key Decrypt DEK



ATA security feature set

Stored data

User-supplied User password

Master password: Salt#1 Salt#2 Hash output KEK

User password: Salt#1 Salt#2 Hash output KEK

KEK

Keyed hash Hash result Compare Match/no match

Keyed hash Key Decrypt Shared key Decrypt DEK



Standards for Self-Encrypting Drives

Two widely used standards exist

(i) ATA Security Feature Set
Originally designed for access control only

(ii) TCG Opal
Modern standard designed specifically for SEDs

https://medium.com/@andrewpgsweeny/

beyond-the-red-pill-and-the-blue-pill-9ef953d6e133



TCG Opal

• De facto standard for hardware full-disk encryption

• Multiple partitions (locking ranges)
• Multiple passwords (credentials)
• Single credential can unlock multiple ranges
• Single range can be unlocked by multiple credentials
• i.e. many-to-many
• “Scramble” (i.e. re-generate key) range independently of others
• Fully trusted by BitLocker

Range 1 Range 2 Range 3 Range 4Drive space

Passwords Password 1 Password 2 Password 3

X 7 X 7 7 X 7 X X 7 X X



TCG Opal

• De facto standard for hardware full-disk encryption
• Multiple partitions (locking ranges)

• Multiple passwords (credentials)
• Single credential can unlock multiple ranges
• Single range can be unlocked by multiple credentials
• i.e. many-to-many
• “Scramble” (i.e. re-generate key) range independently of others
• Fully trusted by BitLocker

Range 1 Range 2 Range 3 Range 4Drive space

Passwords Password 1 Password 2 Password 3

X 7 X 7 7 X 7 X X 7 X X



TCG Opal

• De facto standard for hardware full-disk encryption
• Multiple partitions (locking ranges)
• Multiple passwords (credentials)

• Single credential can unlock multiple ranges
• Single range can be unlocked by multiple credentials
• i.e. many-to-many
• “Scramble” (i.e. re-generate key) range independently of others
• Fully trusted by BitLocker

Range 1 Range 2 Range 3 Range 4Drive space

Passwords Password 1 Password 2 Password 3

X 7 X 7 7 X 7 X X 7 X X



TCG Opal

• De facto standard for hardware full-disk encryption
• Multiple partitions (locking ranges)
• Multiple passwords (credentials)
• Single credential can unlock multiple ranges

• Single range can be unlocked by multiple credentials
• i.e. many-to-many
• “Scramble” (i.e. re-generate key) range independently of others
• Fully trusted by BitLocker

Range 1 Range 2 Range 3 Range 4Drive space

Passwords Password 1 Password 2 Password 3

X 7 X 7 7 X 7 X X 7 X X



TCG Opal

• De facto standard for hardware full-disk encryption
• Multiple partitions (locking ranges)
• Multiple passwords (credentials)
• Single credential can unlock multiple ranges
• Single range can be unlocked by multiple credentials

• i.e. many-to-many
• “Scramble” (i.e. re-generate key) range independently of others
• Fully trusted by BitLocker

Range 1 Range 2 Range 3 Range 4Drive space

Passwords Password 1 Password 2 Password 3

X 7 X 7 7 X 7 X X 7 X X



TCG Opal

• De facto standard for hardware full-disk encryption
• Multiple partitions (locking ranges)
• Multiple passwords (credentials)
• Single credential can unlock multiple ranges
• Single range can be unlocked by multiple credentials
• i.e. many-to-many

• “Scramble” (i.e. re-generate key) range independently of others
• Fully trusted by BitLocker

Range 1 Range 2 Range 3 Range 4Drive space

Passwords Password 1 Password 2 Password 3

X 7 X 7 7 X 7 X X 7 X X



TCG Opal

• De facto standard for hardware full-disk encryption
• Multiple partitions (locking ranges)
• Multiple passwords (credentials)
• Single credential can unlock multiple ranges
• Single range can be unlocked by multiple credentials
• i.e. many-to-many
• “Scramble” (i.e. re-generate key) range independently of others

• Fully trusted by BitLocker

Range 1 Range 2 Range 3 Range 4Drive space

Passwords Password 1 Password 2 Password 3

X 7 X 7 7 X 7 X X 7 X X



TCG Opal

• De facto standard for hardware full-disk encryption
• Multiple partitions (locking ranges)
• Multiple passwords (credentials)
• Single credential can unlock multiple ranges
• Single range can be unlocked by multiple credentials
• i.e. many-to-many
• “Scramble” (i.e. re-generate key) range independently of others
• Fully trusted by BitLocker

Range 1 Range 2 Range 3 Range 4Drive space

Passwords Password 1 Password 2 Password 3

X 7 X 7 7 X 7 X X 7 X X



Pitfalls



Pitfall 1: Password and DEK not linked

Host PC Black box
NAND Flash

Password {data}DEK

• Password unlocks drive and DEK is used to encrypt data
• How they are linked is unknown
• They might not be linked at all



Pitfall 1: Password and DEK not linked

Host PC Black box
NAND Flash

Password {data}DEK

• Password unlocks drive and DEK is used to encrypt data

• How they are linked is unknown
• They might not be linked at all



Pitfall 1: Password and DEK not linked

Host PC Black box
NAND Flash

Password {data}DEK

• Password unlocks drive and DEK is used to encrypt data
• How they are linked is unknown

• They might not be linked at all



Pitfall 1: Password and DEK not linked

Host PC Black box
NAND Flash

Password {data}DEK

• Password unlocks drive and DEK is used to encrypt data
• How they are linked is unknown
• They might not be linked at all



Pitfall 2: Single DEK for entire drive

DEKStrong Password 1

Encrypted DEK 1

Decrypt

Strong Password 2

Encrypted DEK 2

Decrypt

Weak Password 3

Encrypted DEK 3

Decrypt

• Weakest password will grant access to all ranges

Even to ranges for which no permission is granted

• No cryptographic enforcement, but if-statements
• BitLocker leaves an Opal range unprotected (partition table)

→ Thus, in this case, DEK is retrievablewithout a key



Pitfall 2: Single DEK for entire drive

DEKStrong Password 1

Encrypted DEK 1

Decrypt

Strong Password 2

Encrypted DEK 2

Decrypt

Weak Password 3

Encrypted DEK 3

Decrypt

• Weakest password will grant access to all ranges

Even to ranges for which no permission is granted

• No cryptographic enforcement, but if-statements
• BitLocker leaves an Opal range unprotected (partition table)

→ Thus, in this case, DEK is retrievablewithout a key



Pitfall 2: Single DEK for entire drive

DEKStrong Password 1

Encrypted DEK 1

Decrypt

Strong Password 2

Encrypted DEK 2

Decrypt

Weak Password 3

Encrypted DEK 3

Decrypt

• Weakest password will grant access to all ranges

Even to ranges for which no permission is granted

• No cryptographic enforcement, but if-statements

• BitLocker leaves an Opal range unprotected (partition table)

→ Thus, in this case, DEK is retrievablewithout a key



Pitfall 2: Single DEK for entire drive

DEKStrong Password 1

Encrypted DEK 1

Decrypt

Strong Password 2

Encrypted DEK 2

Decrypt

Weak Password 3

Encrypted DEK 3

Decrypt

• Weakest password will grant access to all ranges

Even to ranges for which no permission is granted

• No cryptographic enforcement, but if-statements
• BitLocker leaves an Opal range unprotected (partition table)

→ Thus, in this case, DEK is retrievablewithout a key



Pitfall 2: Single DEK for entire drive

DEKStrong Password 1

Encrypted DEK 1

Decrypt

Strong Password 2

Encrypted DEK 2

Decrypt

Weak Password 3

Encrypted DEK 3

Decrypt

• Weakest password will grant access to all ranges

Even to ranges for which no permission is granted

• No cryptographic enforcement, but if-statements
• BitLocker leaves an Opal range unprotected (partition table)

→ Thus, in this case, DEK is retrievablewithout a key



Pitfall 3: Lack of random entropy

DEKmay appear random, but how was it generated?

• Embedded devices have a notoriously bad reputation



Pitfall 3: Lack of random entropy

DEKmay appear random, but how was it generated?

• Embedded devices have a notoriously bad reputation



Pitfall 4: Wear Leveling

Multiple writes to the same logical sector trigger writes to different physical

sectors

Plaintext DEK

NAND before

Plaintext DEK

Encrypted DEK

NAND after

User sets password

• Set password→ overwrite of unprotected DEK with encrypted variant
• Unprotected DEKmay still be present in physical flash



Pitfall 4: Wear Leveling

Multiple writes to the same logical sector trigger writes to different physical

sectors

Plaintext DEK

NAND before

Plaintext DEK

Encrypted DEK

NAND after

User sets password

• Set password→ overwrite of unprotected DEK with encrypted variant
• Unprotected DEKmay still be present in physical flash



Pitfall 4: Wear Leveling

Multiple writes to the same logical sector trigger writes to different physical

sectors

Plaintext DEK

NAND before

Plaintext DEK

Encrypted DEK

NAND after

User sets password

• Set password→ overwrite of unprotected DEK with encrypted variant

• Unprotected DEKmay still be present in physical flash



Pitfall 4: Wear Leveling

Multiple writes to the same logical sector trigger writes to different physical

sectors

Plaintext DEK

NAND before

Plaintext DEK

Encrypted DEK

NAND after

User sets password

• Set password→ overwrite of unprotected DEK with encrypted variant
• Unprotected DEKmay still be present in physical flash



Pitfall 5: Power-saving mode: DEVSLP

PC sends DEVSLP signal to drive when idle

Host PC

Storage

Controller
NAND Flash

DEVSLP RAM dump

• Drive goes into power-saving mode
• May power-down its RAM (unspecified in ATA standard)
• Therefore, dumps the RAM, incl. crypto keys, to NAND
• Erasing on resume is crucial



Pitfall 5: Power-saving mode: DEVSLP

PC sends DEVSLP signal to drive when idle

Host PC

Storage

Controller
NAND Flash

DEVSLP RAM dump

• Drive goes into power-saving mode
• May power-down its RAM (unspecified in ATA standard)
• Therefore, dumps the RAM, incl. crypto keys, to NAND
• Erasing on resume is crucial



Pitfall 5: Power-saving mode: DEVSLP

PC sends DEVSLP signal to drive when idle

Host PC

Storage

Controller
NAND Flash

DEVSLP RAM dump

• Drive goes into power-saving mode

• May power-down its RAM (unspecified in ATA standard)
• Therefore, dumps the RAM, incl. crypto keys, to NAND
• Erasing on resume is crucial



Pitfall 5: Power-saving mode: DEVSLP

PC sends DEVSLP signal to drive when idle

Host PC

Storage

Controller
NAND Flash

DEVSLP RAM dump

• Drive goes into power-saving mode
• May power-down its RAM (unspecified in ATA standard)

• Therefore, dumps the RAM, incl. crypto keys, to NAND
• Erasing on resume is crucial



Pitfall 5: Power-saving mode: DEVSLP

PC sends DEVSLP signal to drive when idle

Host PC

Storage

Controller
NAND Flash

DEVSLP RAM dump

• Drive goes into power-saving mode
• May power-down its RAM (unspecified in ATA standard)
• Therefore, dumps the RAM, incl. crypto keys, to NAND

• Erasing on resume is crucial



Pitfall 5: Power-saving mode: DEVSLP

PC sends DEVSLP signal to drive when idle

Host PC

Storage

Controller
NAND Flash

DEVSLP RAM dump

• Drive goes into power-saving mode
• May power-down its RAM (unspecified in ATA standard)
• Therefore, dumps the RAM, incl. crypto keys, to NAND
• Erasing on resume is crucial



Pitfall 6: General implementation issues

Everything that applies to software encryption still applies

• Mode of operation (ECB, CBC, CTR, XTS)

• Side channels
• Key derivation
• etc.



Pitfall 6: General implementation issues

Everything that applies to software encryption still applies

• Mode of operation (ECB, CBC, CTR, XTS)

• Side channels
• Key derivation
• etc.



Pitfall 6: General implementation issues

Everything that applies to software encryption still applies

• Mode of operation (ECB, CBC, CTR, XTS)

• Side channels

• Key derivation
• etc.



Pitfall 6: General implementation issues

Everything that applies to software encryption still applies

• Mode of operation (ECB, CBC, CTR, XTS)

• Side channels
• Key derivation

• etc.



Pitfall 6: General implementation issues

Everything that applies to software encryption still applies

• Mode of operation (ECB, CBC, CTR, XTS)

• Side channels
• Key derivation
• etc.



Methodology



Methodology

General approach

(i) Obtain a firmware image

(ii) Gain low level control over the device

(iii) Analyze the firmware



Methodology

General approach

(i) Obtain a firmware image

(ii) Gain low level control over the device

(iii) Analyze the firmware



Methodology

General approach

(i) Obtain a firmware image

(ii) Gain low level control over the device

(iii) Analyze the firmware



Methodology

General approach

(i) Obtain a firmware image

(ii) Gain low level control over the device

(iii) Analyze the firmware



Methodology

General approach

(i) Obtain a firmware image

(ii) Gain low level control over the device

(iii) Analyze the firmware



Obtain a firmware image

Obtain a firmware image

Decompilation of Samsung
Magician tool

(i) Download it (harder than it seems)

· There’s usually obfuscation applied
· Capture SSL traffic, reverse engineer, etc.
· Image may be encrypted,
decryption by the unit itself→ dead end

(ii) Pull the firmware from RAM through JTAG (next)



Obtain a firmware image

Obtain a firmware image

Decompilation of Samsung
Magician tool

(i) Download it (harder than it seems)

· There’s usually obfuscation applied

· Capture SSL traffic, reverse engineer, etc.
· Image may be encrypted,
decryption by the unit itself→ dead end

(ii) Pull the firmware from RAM through JTAG (next)



Obtain a firmware image

Obtain a firmware image

Decompilation of Samsung
Magician tool

(i) Download it (harder than it seems)

· There’s usually obfuscation applied
· Capture SSL traffic, reverse engineer, etc.

· Image may be encrypted,
decryption by the unit itself→ dead end

(ii) Pull the firmware from RAM through JTAG (next)



Obtain a firmware image

Obtain a firmware image

Decompilation of Samsung
Magician tool

(i) Download it (harder than it seems)

· There’s usually obfuscation applied
· Capture SSL traffic, reverse engineer, etc.
· Image may be encrypted,
decryption by the unit itself→ dead end

(ii) Pull the firmware from RAM through JTAG (next)



Obtain a firmware image

Obtain a firmware image

Decompilation of Samsung
Magician tool

(i) Download it (harder than it seems)

· There’s usually obfuscation applied
· Capture SSL traffic, reverse engineer, etc.
· Image may be encrypted,
decryption by the unit itself→ dead end

(ii) Pull the firmware from RAM through JTAG (next)



Methodology

General approach

(i) Obtain a firmware image

(ii) Gain low level control over the device

(iii) Analyze the firmware



Gaining low level control

More or less equal capabilities:

(i) JTAG (allows you to halt the CPU, get/set registers, read/write

in the address space, etc.)

· Somemodels have it in plain sight

· Others need some figuring out

(ii) Obtain unsigned code execution
· Find an undocumented command that

allows this

· Exploit a vulnerability

· Modify code stored onmemory chips

· Bypass cryptographic signatures with fault

injection

ARM14 JTAG

JTAG pins on the Crucial MX100.

JTAGulator



Gaining low level control

More or less equal capabilities:

(i) JTAG (allows you to halt the CPU, get/set registers, read/write

in the address space, etc.)

· Somemodels have it in plain sight

· Others need some figuring out

(ii) Obtain unsigned code execution
· Find an undocumented command that

allows this

· Exploit a vulnerability

· Modify code stored onmemory chips

· Bypass cryptographic signatures with fault

injection

ARM14 JTAG

JTAG pins on the Crucial MX100.

JTAGulator



Gaining low level control

More or less equal capabilities:

(i) JTAG (allows you to halt the CPU, get/set registers, read/write

in the address space, etc.)

· Somemodels have it in plain sight

· Others need some figuring out

(ii) Obtain unsigned code execution
· Find an undocumented command that

allows this

· Exploit a vulnerability

· Modify code stored onmemory chips

· Bypass cryptographic signatures with fault

injection

ARM14 JTAG

JTAG pins on the Crucial MX100.

JTAGulator



Gaining low level control

More or less equal capabilities:

(i) JTAG (allows you to halt the CPU, get/set registers, read/write

in the address space, etc.)

· Somemodels have it in plain sight

· Others need some figuring out

(ii) Obtain unsigned code execution

· Find an undocumented command that

allows this

· Exploit a vulnerability

· Modify code stored onmemory chips

· Bypass cryptographic signatures with fault

injection

ARM14 JTAG

JTAG pins on the Crucial MX100.

JTAGulator



Gaining low level control

More or less equal capabilities:

(i) JTAG (allows you to halt the CPU, get/set registers, read/write

in the address space, etc.)

· Somemodels have it in plain sight

· Others need some figuring out

(ii) Obtain unsigned code execution
· Find an undocumented command that

allows this

· Exploit a vulnerability

· Modify code stored onmemory chips

· Bypass cryptographic signatures with fault

injection

ARM14 JTAG

JTAG pins on the Crucial MX100.

JTAGulator



Gaining low level control

More or less equal capabilities:

(i) JTAG (allows you to halt the CPU, get/set registers, read/write

in the address space, etc.)

· Somemodels have it in plain sight

· Others need some figuring out

(ii) Obtain unsigned code execution
· Find an undocumented command that

allows this

· Exploit a vulnerability

· Modify code stored onmemory chips

· Bypass cryptographic signatures with fault

injection

ARM14 JTAG

JTAG pins on the Crucial MX100.

JTAGulator



Gaining low level control

More or less equal capabilities:

(i) JTAG (allows you to halt the CPU, get/set registers, read/write

in the address space, etc.)

· Somemodels have it in plain sight

· Others need some figuring out

(ii) Obtain unsigned code execution
· Find an undocumented command that

allows this

· Exploit a vulnerability

· Modify code stored onmemory chips

· Bypass cryptographic signatures with fault

injection

ARM14 JTAG

JTAG pins on the Crucial MX100.

JTAGulator



Gaining low level control

More or less equal capabilities:

(i) JTAG (allows you to halt the CPU, get/set registers, read/write

in the address space, etc.)

· Somemodels have it in plain sight

· Others need some figuring out

(ii) Obtain unsigned code execution
· Find an undocumented command that

allows this

· Exploit a vulnerability

· Modify code stored onmemory chips

· Bypass cryptographic signatures with fault

injection

ARM14 JTAG

JTAG pins on the Crucial MX100.

JTAGulator



Methodology

General approach

(i) Obtain a firmware image

(ii) Gain low level control over the device

(iii) Analyze the firmware



Analyze the firmware

Parsed header of MX300 FW image

(i) Figure out the section information

· From image header

(ii) Load the image into a disassembler

(We used IDA Pro for this purpose)

(iii) Figure out what the firmware does

· Try to find the ATA dispatch table
· Look through functions with
interesting opcodes

ATA Dispatch table in firmware

ATA specification



Analyze the firmware

Parsed header of MX300 FW image

(i) Figure out the section information
· From image header

(ii) Load the image into a disassembler

(We used IDA Pro for this purpose)

(iii) Figure out what the firmware does

· Try to find the ATA dispatch table
· Look through functions with
interesting opcodes

ATA Dispatch table in firmware

ATA specification



Analyze the firmware

Parsed header of MX300 FW image

(i) Figure out the section information
· From image header

(ii) Load the image into a disassembler

(We used IDA Pro for this purpose)

(iii) Figure out what the firmware does

· Try to find the ATA dispatch table
· Look through functions with
interesting opcodes

ATA Dispatch table in firmware

ATA specification



Analyze the firmware

Parsed header of MX300 FW image

(i) Figure out the section information
· From image header

(ii) Load the image into a disassembler

(We used IDA Pro for this purpose)

(iii) Figure out what the firmware does

· Try to find the ATA dispatch table
· Look through functions with
interesting opcodes

ATA Dispatch table in firmware

ATA specification



Analyze the firmware

Parsed header of MX300 FW image

(i) Figure out the section information
· From image header

(ii) Load the image into a disassembler

(We used IDA Pro for this purpose)

(iii) Figure out what the firmware does

· Try to find the ATA dispatch table

· Look through functions with
interesting opcodes

ATA Dispatch table in firmware

ATA specification



Analyze the firmware

Parsed header of MX300 FW image

(i) Figure out the section information
· From image header

(ii) Load the image into a disassembler

(We used IDA Pro for this purpose)

(iii) Figure out what the firmware does

· Try to find the ATA dispatch table
· Look through functions with
interesting opcodes

ATA Dispatch table in firmware

ATA specification



Case studies



Crucial MX100

• Marvell 88SS9189 controller

• Dual-core 88FR102 V5 (ARM)
• Hardware crypto co-processor

Firmware images
ARM14 JTAG

JTAG pinout on a Crucial MX100

• Bootable ISO image
• Cryptographically signed (RSA)
• Has a JTAG debugging interface



Crucial MX100

• Marvell 88SS9189 controller
• Dual-core 88FR102 V5 (ARM)

• Hardware crypto co-processor

Firmware images
ARM14 JTAG

JTAG pinout on a Crucial MX100

• Bootable ISO image
• Cryptographically signed (RSA)
• Has a JTAG debugging interface



Crucial MX100

• Marvell 88SS9189 controller
• Dual-core 88FR102 V5 (ARM)
• Hardware crypto co-processor

Firmware images
ARM14 JTAG

JTAG pinout on a Crucial MX100

• Bootable ISO image
• Cryptographically signed (RSA)
• Has a JTAG debugging interface



Crucial MX100

• Marvell 88SS9189 controller
• Dual-core 88FR102 V5 (ARM)
• Hardware crypto co-processor

Firmware images

ARM14 JTAG

JTAG pinout on a Crucial MX100

• Bootable ISO image
• Cryptographically signed (RSA)
• Has a JTAG debugging interface



Crucial MX100

• Marvell 88SS9189 controller
• Dual-core 88FR102 V5 (ARM)
• Hardware crypto co-processor

Firmware images

ARM14 JTAG

JTAG pinout on a Crucial MX100

• Bootable ISO image

• Cryptographically signed (RSA)
• Has a JTAG debugging interface



Crucial MX100

• Marvell 88SS9189 controller
• Dual-core 88FR102 V5 (ARM)
• Hardware crypto co-processor

Firmware images

ARM14 JTAG

JTAG pinout on a Crucial MX100

• Bootable ISO image
• Cryptographically signed (RSA)

• Has a JTAG debugging interface



Crucial MX100

• Marvell 88SS9189 controller
• Dual-core 88FR102 V5 (ARM)
• Hardware crypto co-processor

Firmware images
ARM14 JTAG

JTAG pinout on a Crucial MX100

• Bootable ISO image
• Cryptographically signed (RSA)
• Has a JTAG debugging interface



Crucial MX100 (2)

Findings

• Incoming ATA password is hashed, compared, discarded
• I.e. removing the comparison is enough to defeat ATA security
• TCG Opal: same story; complete compromise

Vendor commands
• Require unlock command first (FDh, 55h)

Set LBA to: 306775h and block count to 65h
• Read page in SPI flash (FAh, D2h)
• Erase page in SPI flash (FCh, E2h)
• Write to a page in SPI flash (FBh, D2h)
• Write to arbitrary address (FBh, 23h)

It’s great



Crucial MX100 (2)

Findings
• Incoming ATA password is hashed, compared, discarded

• I.e. removing the comparison is enough to defeat ATA security
• TCG Opal: same story; complete compromise

Vendor commands
• Require unlock command first (FDh, 55h)

Set LBA to: 306775h and block count to 65h
• Read page in SPI flash (FAh, D2h)
• Erase page in SPI flash (FCh, E2h)
• Write to a page in SPI flash (FBh, D2h)
• Write to arbitrary address (FBh, 23h)

It’s great



Crucial MX100 (2)

Findings
• Incoming ATA password is hashed, compared, discarded
• I.e. removing the comparison is enough to defeat ATA security

• TCG Opal: same story; complete compromise

Vendor commands
• Require unlock command first (FDh, 55h)

Set LBA to: 306775h and block count to 65h
• Read page in SPI flash (FAh, D2h)
• Erase page in SPI flash (FCh, E2h)
• Write to a page in SPI flash (FBh, D2h)
• Write to arbitrary address (FBh, 23h)

It’s great



Crucial MX100 (2)

Findings
• Incoming ATA password is hashed, compared, discarded
• I.e. removing the comparison is enough to defeat ATA security
• TCG Opal: same story; complete compromise

Vendor commands
• Require unlock command first (FDh, 55h)

Set LBA to: 306775h and block count to 65h
• Read page in SPI flash (FAh, D2h)
• Erase page in SPI flash (FCh, E2h)
• Write to a page in SPI flash (FBh, D2h)
• Write to arbitrary address (FBh, 23h)

It’s great



Crucial MX100 (2)

Findings
• Incoming ATA password is hashed, compared, discarded
• I.e. removing the comparison is enough to defeat ATA security
• TCG Opal: same story; complete compromise

Vendor commands
• Require unlock command first (FDh, 55h)

Set LBA to: 306775h and block count to 65h

• Read page in SPI flash (FAh, D2h)
• Erase page in SPI flash (FCh, E2h)
• Write to a page in SPI flash (FBh, D2h)
• Write to arbitrary address (FBh, 23h)

It’s great



Crucial MX100 (2)

Findings
• Incoming ATA password is hashed, compared, discarded
• I.e. removing the comparison is enough to defeat ATA security
• TCG Opal: same story; complete compromise

Vendor commands
• Require unlock command first (FDh, 55h)

Set LBA to: 306775h and block count to 65h
• Read page in SPI flash (FAh, D2h)

• Erase page in SPI flash (FCh, E2h)
• Write to a page in SPI flash (FBh, D2h)
• Write to arbitrary address (FBh, 23h)

It’s great



Crucial MX100 (2)

Findings
• Incoming ATA password is hashed, compared, discarded
• I.e. removing the comparison is enough to defeat ATA security
• TCG Opal: same story; complete compromise

Vendor commands
• Require unlock command first (FDh, 55h)

Set LBA to: 306775h and block count to 65h
• Read page in SPI flash (FAh, D2h)
• Erase page in SPI flash (FCh, E2h)

• Write to a page in SPI flash (FBh, D2h)
• Write to arbitrary address (FBh, 23h)

It’s great



Crucial MX100 (2)

Findings
• Incoming ATA password is hashed, compared, discarded
• I.e. removing the comparison is enough to defeat ATA security
• TCG Opal: same story; complete compromise

Vendor commands
• Require unlock command first (FDh, 55h)

Set LBA to: 306775h and block count to 65h
• Read page in SPI flash (FAh, D2h)
• Erase page in SPI flash (FCh, E2h)
• Write to a page in SPI flash (FBh, D2h)

• Write to arbitrary address (FBh, 23h)

It’s great



Crucial MX100 (2)

Findings
• Incoming ATA password is hashed, compared, discarded
• I.e. removing the comparison is enough to defeat ATA security
• TCG Opal: same story; complete compromise

Vendor commands
• Require unlock command first (FDh, 55h)

Set LBA to: 306775h and block count to 65h
• Read page in SPI flash (FAh, D2h)
• Erase page in SPI flash (FCh, E2h)
• Write to a page in SPI flash (FBh, D2h)
• Write to arbitrary address (FBh, 23h)

It’s great



Crucial MX100 (2)

Findings
• Incoming ATA password is hashed, compared, discarded
• I.e. removing the comparison is enough to defeat ATA security
• TCG Opal: same story; complete compromise

Vendor commands
• Require unlock command first (FDh, 55h)

Set LBA to: 306775h and block count to 65h
• Read page in SPI flash (FAh, D2h)
• Erase page in SPI flash (FCh, E2h)
• Write to a page in SPI flash (FBh, D2h)
• Write to arbitrary address (FBh, 23h)

It’s great



Crucial MX200

• Successor to MX100

• JTAG pins moved
• Same controller, similar firmware
• Same vulnerabilities



Crucial MX200

• Successor to MX100
• JTAG pins moved

• Same controller, similar firmware
• Same vulnerabilities



Crucial MX200

• Successor to MX100
• JTAG pins moved
• Same controller, similar firmware

• Same vulnerabilities



Crucial MX200

• Successor to MX100
• JTAG pins moved
• Same controller, similar firmware
• Same vulnerabilities



Crucial MX300

• Successor to MX200

• Move to TLCmemory, newer controller

Differences
• JTAG switched off
• Complete rewrite of security code
• Vendor commands still there but

unlock via cryptographic signatures
• Few buffer overflows, none exploitable

Code execution?



Crucial MX300

• Successor to MX200
• Move to TLCmemory, newer controller

Differences
• JTAG switched off
• Complete rewrite of security code
• Vendor commands still there but

unlock via cryptographic signatures
• Few buffer overflows, none exploitable

Code execution?



Crucial MX300

• Successor to MX200
• Move to TLCmemory, newer controller

Differences
• JTAG switched off

• Complete rewrite of security code
• Vendor commands still there but

unlock via cryptographic signatures
• Few buffer overflows, none exploitable

Code execution?



Crucial MX300

• Successor to MX200
• Move to TLCmemory, newer controller

Differences
• JTAG switched off
• Complete rewrite of security code

• Vendor commands still there but

unlock via cryptographic signatures
• Few buffer overflows, none exploitable

Code execution?



Crucial MX300

• Successor to MX200
• Move to TLCmemory, newer controller

Differences
• JTAG switched off
• Complete rewrite of security code
• Vendor commands still there but

unlock via cryptographic signatures

• Few buffer overflows, none exploitable

Code execution?



Crucial MX300

• Successor to MX200
• Move to TLCmemory, newer controller

Differences
• JTAG switched off
• Complete rewrite of security code
• Vendor commands still there but

unlock via cryptographic signatures
• Few buffer overflows, none exploitable

Code execution?



Crucial MX300

• Successor to MX200
• Move to TLCmemory, newer controller

Differences
• JTAG switched off
• Complete rewrite of security code
• Vendor commands still there but

unlock via cryptographic signatures
• Few buffer overflows, none exploitable

Code execution?



Crucial MX300 (2)

MX300 boot process

88SS1074 Boot ROM code SPI flash code

Load stage 2 from SPI flash Load firmware from NAND

Transfer control to firmware Boot failure

Success

Fail
Success

Fail

Crucial MX300 boot process.

(i) Boot code in ROM

(ii) Stage 2 in SPI flash

(iii) Firmware in NAND flash

→Modify Stage 2

SPI flash
SPI flash chip on the MX300 PCB.



Crucial MX300 (2)

MX300 boot process

88SS1074 Boot ROM code SPI flash code

Load stage 2 from SPI flash Load firmware from NAND

Transfer control to firmware Boot failure

Success

Fail
Success

Fail

Crucial MX300 boot process.

(i) Boot code in ROM

(ii) Stage 2 in SPI flash

(iii) Firmware in NAND flash

→Modify Stage 2

SPI flash
SPI flash chip on the MX300 PCB.



Crucial MX300 (2)

MX300 boot process

88SS1074 Boot ROM code SPI flash code

Load stage 2 from SPI flash Load firmware from NAND

Transfer control to firmware Boot failure

Success

Fail
Success

Fail

Crucial MX300 boot process.

(i) Boot code in ROM

(ii) Stage 2 in SPI flash

(iii) Firmware in NAND flash

→Modify Stage 2

SPI flash
SPI flash chip on the MX300 PCB.



Crucial MX300 (2)

MX300 boot process

88SS1074 Boot ROM code SPI flash code

Load stage 2 from SPI flash Load firmware from NAND

Transfer control to firmware Boot failure

Success

Fail
Success

Fail

Crucial MX300 boot process.

(i) Boot code in ROM

(ii) Stage 2 in SPI flash

(iii) Firmware in NAND flash

→Modify Stage 2

SPI flash
SPI flash chip on the MX300 PCB.



Crucial MX300 (2)

MX300 boot process

88SS1074 Boot ROM code SPI flash code

Load stage 2 from SPI flash Load firmware from NAND

Transfer control to firmware Boot failure

Success

Fail
Success

Fail

Crucial MX300 boot process.

(i) Boot code in ROM

(ii) Stage 2 in SPI flash

(iii) Firmware in NAND flash

→Modify Stage 2

SPI flash
SPI flash chip on the MX300 PCB.



Crucial MX300 (2)

Code execution walkthrough

(i) Connect reader to SPI flash chip

(ii) Make backup

(iii) Craft code that removes

signature checks from fw

(iv) Inject it between firmware retrieval

and transfering control to it

(v) Flash modified Stage 2

Drive now accepts fw updates with invalid signatures

(vi) Take a firmware image and add additional “features”,

such as arbitrary read/write/execute capabilities

(vii) Send the modified firmware as you would for any update

Now we have full control over the device



Crucial MX300 (2)

Code execution walkthrough

(i) Connect reader to SPI flash chip

(ii) Make backup

(iii) Craft code that removes

signature checks from fw

(iv) Inject it between firmware retrieval

and transfering control to it

(v) Flash modified Stage 2

Drive now accepts fw updates with invalid signatures

(vi) Take a firmware image and add additional “features”,

such as arbitrary read/write/execute capabilities

(vii) Send the modified firmware as you would for any update

Now we have full control over the device



Crucial MX300 (2)

Code execution walkthrough

(i) Connect reader to SPI flash chip

(ii) Make backup

(iii) Craft code that removes

signature checks from fw

(iv) Inject it between firmware retrieval

and transfering control to it

(v) Flash modified Stage 2

Drive now accepts fw updates with invalid signatures

(vi) Take a firmware image and add additional “features”,

such as arbitrary read/write/execute capabilities

(vii) Send the modified firmware as you would for any update

Now we have full control over the device



Crucial MX300 (2)

Code execution walkthrough

(i) Connect reader to SPI flash chip

(ii) Make backup

(iii) Craft code that removes

signature checks from fw

(iv) Inject it between firmware retrieval

and transfering control to it

(v) Flash modified Stage 2

Drive now accepts fw updates with invalid signatures

(vi) Take a firmware image and add additional “features”,

such as arbitrary read/write/execute capabilities

(vii) Send the modified firmware as you would for any update

Now we have full control over the device



Crucial MX300 (2)

Code execution walkthrough

(i) Connect reader to SPI flash chip

(ii) Make backup

(iii) Craft code that removes

signature checks from fw

(iv) Inject it between firmware retrieval

and transfering control to it

(v) Flash modified Stage 2

Drive now accepts fw updates with invalid signatures

(vi) Take a firmware image and add additional “features”,

such as arbitrary read/write/execute capabilities

(vii) Send the modified firmware as you would for any update

Now we have full control over the device



Crucial MX300 (2)

Code execution walkthrough

(i) Connect reader to SPI flash chip

(ii) Make backup

(iii) Craft code that removes

signature checks from fw

(iv) Inject it between firmware retrieval

and transfering control to it

(v) Flash modified Stage 2

Drive now accepts fw updates with invalid signatures

(vi) Take a firmware image and add additional “features”,

such as arbitrary read/write/execute capabilities

(vii) Send the modified firmware as you would for any update

Now we have full control over the device



Crucial MX300 (2)

Code execution walkthrough

(i) Connect reader to SPI flash chip

(ii) Make backup

(iii) Craft code that removes

signature checks from fw

(iv) Inject it between firmware retrieval

and transfering control to it

(v) Flash modified Stage 2

Drive now accepts fw updates with invalid signatures

(vi) Take a firmware image and add additional “features”,

such as arbitrary read/write/execute capabilities

(vii) Send the modified firmware as you would for any update

Now we have full control over the device



Crucial MX300 (3)

Key derivation scheme

• Binding between password

and DEK introduced

• As required by Opal: multiple

credentials and ranges
• All credentials yield the

so-called RDS-key
• RDS-key allows access to all

protected ranges
Prevented by firmware, though

not cryptographically enforced

Credential table

Range key (DEK) table

Stored Credential#0

Stored Credential#1

Stored Credential#2

Stored Credential#3

Stored Credential#4

...

Salt#2 Ciphertext#2

Decrypt

Incoming Password#2 PBKDF2 Key#2

Decrypt

RDS Key

Protected Range Key#0

Protected Range Key#1

Protected Range Key#2

Protected Range Key#3

Unprotected Range Key#4

...

Decrypt

Range Key#3

Device Key Decrypt Range Key#4

Scheme used to obtain a range key (DEK) from the user-supplied password. In this

example, credential #2 is used to unlock range #3.

Thus, everything is accessible with a single valid password. But it’s even

worse (next)



Crucial MX300 (3)

Key derivation scheme

• Binding between password

and DEK introduced
• As required by Opal: multiple

credentials and ranges

• All credentials yield the

so-called RDS-key
• RDS-key allows access to all

protected ranges
Prevented by firmware, though

not cryptographically enforced

Credential table

Range key (DEK) table

Stored Credential#0

Stored Credential#1

Stored Credential#2

Stored Credential#3

Stored Credential#4

...

Salt#2 Ciphertext#2

Decrypt

Incoming Password#2 PBKDF2 Key#2

Decrypt

RDS Key

Protected Range Key#0

Protected Range Key#1

Protected Range Key#2

Protected Range Key#3

Unprotected Range Key#4

...

Decrypt

Range Key#3

Device Key Decrypt Range Key#4

Scheme used to obtain a range key (DEK) from the user-supplied password. In this

example, credential #2 is used to unlock range #3.

Thus, everything is accessible with a single valid password. But it’s even

worse (next)



Crucial MX300 (3)

Key derivation scheme

• Binding between password

and DEK introduced
• As required by Opal: multiple

credentials and ranges
• All credentials yield the

so-called RDS-key

• RDS-key allows access to all

protected ranges
Prevented by firmware, though

not cryptographically enforced

Credential table

Range key (DEK) table

Stored Credential#0

Stored Credential#1

Stored Credential#2

Stored Credential#3

Stored Credential#4

...

Salt#2 Ciphertext#2

Decrypt

Incoming Password#2 PBKDF2 Key#2

Decrypt

RDS Key

Protected Range Key#0

Protected Range Key#1

Protected Range Key#2

Protected Range Key#3

Unprotected Range Key#4

...

Decrypt

Range Key#3

Device Key Decrypt Range Key#4

Scheme used to obtain a range key (DEK) from the user-supplied password. In this

example, credential #2 is used to unlock range #3.

Thus, everything is accessible with a single valid password. But it’s even

worse (next)



Crucial MX300 (3)

Key derivation scheme

• Binding between password

and DEK introduced
• As required by Opal: multiple

credentials and ranges
• All credentials yield the

so-called RDS-key
• RDS-key allows access to all

protected ranges
Prevented by firmware, though

not cryptographically enforced

Credential table

Range key (DEK) table

Stored Credential#0

Stored Credential#1

Stored Credential#2

Stored Credential#3

Stored Credential#4

...

Salt#2 Ciphertext#2

Decrypt

Incoming Password#2 PBKDF2 Key#2

Decrypt

RDS Key

Protected Range Key#0

Protected Range Key#1

Protected Range Key#2

Protected Range Key#3

Unprotected Range Key#4

...

Decrypt

Range Key#3

Device Key Decrypt Range Key#4

Scheme used to obtain a range key (DEK) from the user-supplied password. In this

example, credential #2 is used to unlock range #3.

Thus, everything is accessible with a single valid password. But it’s even

worse (next)



Crucial MX300 (3)

Key derivation scheme

• Binding between password

and DEK introduced
• As required by Opal: multiple

credentials and ranges
• All credentials yield the

so-called RDS-key
• RDS-key allows access to all

protected ranges
Prevented by firmware, though

not cryptographically enforced

Credential table

Range key (DEK) table

Stored Credential#0

Stored Credential#1

Stored Credential#2

Stored Credential#3

Stored Credential#4

...

Salt#2 Ciphertext#2

Decrypt

Incoming Password#2 PBKDF2 Key#2

Decrypt

RDS Key

Protected Range Key#0

Protected Range Key#1

Protected Range Key#2

Protected Range Key#3

Unprotected Range Key#4

...

Decrypt

Range Key#3

Device Key Decrypt Range Key#4

Scheme used to obtain a range key (DEK) from the user-supplied password. In this

example, credential #2 is used to unlock range #3.

Thus, everything is accessible with a single valid password. But it’s even

worse (next)



Crucial MX300 (4)

Consider the password protection function

• “Protect Pwd” does more than just password hashing

• Output contains encrypted RDS-key
• They shouldn’t be throwing its output around



Crucial MX300 (4)

Consider the password protection function

• “Protect Pwd” does more than just password hashing
• Output contains encrypted RDS-key

• They shouldn’t be throwing its output around



Crucial MX300 (4)

Consider the password protection function

• “Protect Pwd” does more than just password hashing
• Output contains encrypted RDS-key
• They shouldn’t be throwing its output around



Crucial MX300 (5)

Consider this trace captured during BitLocker provisioning

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
CopyCredential(dwSourceSlot=2, dwDestinationSlot=10)

ProtectPasswd(szPasswd=[0x00 × 32], bStoreRdsKey=true, dwSlotNo=11) . szPasswd is zero buffer

CopyCredential(dwSourceSlot=11, dwDestinationSlot=12)

CopyCredential(dwSourceSlot=11, dwDestinationSlot=13)

CopyCredential(dwSourceSlot=11, dwDestinationSlot=14)
.
.
.

CopyCredential(dwSourceSlot=11, dwDestinationSlot=29)

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=10)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
ProtectPasswd(szPasswd=«BitLocker SID password», bStoreRdsKey=true, dwSlotNo=2))

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=10)
ProtectPasswd(szPasswd=«BitLocker SID password», bStoreRdsKey=true, dwSlotNo=10)

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
GenerateRandomDekAndWrap(dwRangeNo=1, bIsProtectedRange=false)

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
StoreCryptoContextInSpiFlash()

UnwrapDek(dwRangeNo=1, bIsProtectedRange=false)

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
UnwrapDek(dwRangeNo=1, bIsProtectedRange=false)

WrapDek(dwRangeNo=1, bIsProtectedRange=true)

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
ProtectPasswd(szPasswd=«BitLocker user password», bStoreRdsKey=true, dwSlotNo=15)

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd=«BitLocker user password», bExtractRdsKey=true, dwSlotNo=15)

VerifyPasswd(szPasswd=«BitLocker user password», bExtractRdsKey=true, dwSlotNo=15)

• RDS key ends up in all

slots 11-29 (except 15)
• Decryption key is a zero

buffer



Crucial MX300 (5)

Consider this trace captured during BitLocker provisioning

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
CopyCredential(dwSourceSlot=2, dwDestinationSlot=10)

ProtectPasswd(szPasswd=[0x00 × 32], bStoreRdsKey=true, dwSlotNo=11) . szPasswd is zero buffer

CopyCredential(dwSourceSlot=11, dwDestinationSlot=12)

CopyCredential(dwSourceSlot=11, dwDestinationSlot=13)

CopyCredential(dwSourceSlot=11, dwDestinationSlot=14)
.
.
.

CopyCredential(dwSourceSlot=11, dwDestinationSlot=29)

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=10)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
ProtectPasswd(szPasswd=«BitLocker SID password», bStoreRdsKey=true, dwSlotNo=2))

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=10)
ProtectPasswd(szPasswd=«BitLocker SID password», bStoreRdsKey=true, dwSlotNo=10)

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
GenerateRandomDekAndWrap(dwRangeNo=1, bIsProtectedRange=false)

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
StoreCryptoContextInSpiFlash()

UnwrapDek(dwRangeNo=1, bIsProtectedRange=false)

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
UnwrapDek(dwRangeNo=1, bIsProtectedRange=false)

WrapDek(dwRangeNo=1, bIsProtectedRange=true)

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
ProtectPasswd(szPasswd=«BitLocker user password», bStoreRdsKey=true, dwSlotNo=15)

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd=«BitLocker user password», bExtractRdsKey=true, dwSlotNo=15)

VerifyPasswd(szPasswd=«BitLocker user password», bExtractRdsKey=true, dwSlotNo=15)

• RDS key ends up in all

slots 11-29 (except 15)

• Decryption key is a zero

buffer



Crucial MX300 (5)

Consider this trace captured during BitLocker provisioning

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
CopyCredential(dwSourceSlot=2, dwDestinationSlot=10)

ProtectPasswd(szPasswd=[0x00 × 32], bStoreRdsKey=true, dwSlotNo=11) . szPasswd is zero buffer

CopyCredential(dwSourceSlot=11, dwDestinationSlot=12)

CopyCredential(dwSourceSlot=11, dwDestinationSlot=13)

CopyCredential(dwSourceSlot=11, dwDestinationSlot=14)
.
.
.

CopyCredential(dwSourceSlot=11, dwDestinationSlot=29)

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=10)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
ProtectPasswd(szPasswd=«BitLocker SID password», bStoreRdsKey=true, dwSlotNo=2))

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=10)
ProtectPasswd(szPasswd=«BitLocker SID password», bStoreRdsKey=true, dwSlotNo=10)

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
GenerateRandomDekAndWrap(dwRangeNo=1, bIsProtectedRange=false)

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
StoreCryptoContextInSpiFlash()

UnwrapDek(dwRangeNo=1, bIsProtectedRange=false)

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
UnwrapDek(dwRangeNo=1, bIsProtectedRange=false)

WrapDek(dwRangeNo=1, bIsProtectedRange=true)

VerifyPasswd(szPasswd=[0x00 × 32], bExtractRdsKey=true, dwSlotNo=15)
ProtectPasswd(szPasswd=«BitLocker user password», bStoreRdsKey=true, dwSlotNo=15)

StoreCryptoContextInSpiFlash()

VerifyPasswd(szPasswd=«BitLocker user password», bExtractRdsKey=true, dwSlotNo=15)

VerifyPasswd(szPasswd=«BitLocker user password», bExtractRdsKey=true, dwSlotNo=15)

• RDS key ends up in all

slots 11-29 (except 15)
• Decryption key is a zero

buffer



Crucial MX300 (6)

Attack strategy

(i) Flash modified firmware image (before)

(ii) Craft code that recovers RDS key from credential slot 11 (using zero buffer)

(iii) Execute the code on the drive

RDS key is now recovered

(iv) Modify the password verification routine so that it accepts any password

(v) Unlock any desired range with an arbitrary password



Crucial MX300 (6)

Attack strategy

(i) Flash modified firmware image (before)

(ii) Craft code that recovers RDS key from credential slot 11 (using zero buffer)

(iii) Execute the code on the drive

RDS key is now recovered

(iv) Modify the password verification routine so that it accepts any password

(v) Unlock any desired range with an arbitrary password



Crucial MX300 (6)

Attack strategy

(i) Flash modified firmware image (before)

(ii) Craft code that recovers RDS key from credential slot 11 (using zero buffer)

(iii) Execute the code on the drive

RDS key is now recovered

(iv) Modify the password verification routine so that it accepts any password

(v) Unlock any desired range with an arbitrary password



Crucial MX300 (6)

Attack strategy

(i) Flash modified firmware image (before)

(ii) Craft code that recovers RDS key from credential slot 11 (using zero buffer)

(iii) Execute the code on the drive

RDS key is now recovered

(iv) Modify the password verification routine so that it accepts any password

(v) Unlock any desired range with an arbitrary password



Crucial MX300 (6)

Attack strategy

(i) Flash modified firmware image (before)

(ii) Craft code that recovers RDS key from credential slot 11 (using zero buffer)

(iii) Execute the code on the drive

RDS key is now recovered

(iv) Modify the password verification routine so that it accepts any password

(v) Unlock any desired range with an arbitrary password



Demo



Crucial MX300 (7)

https://www.crucial.com/wcsstore/CrucialSAS/pdf/product-flyer/ssd/productflyer-crucial-mx100-ssd-en.pdf



Crucial MX300 (8)

ATA Security
• The crucial MX300 has an empty (“”) factory-set master password

• Recall: change the Master password or set MASTER PASSWORD CAPABILITY

to Maximum (1)
• For the MX300, latter is insufficient
• Can use the arbitrary write to patch it back to High (0), unlock with

empty string



Crucial MX300 (8)

ATA Security
• The crucial MX300 has an empty (“”) factory-set master password
• Recall: change the Master password or set MASTER PASSWORD CAPABILITY

to Maximum (1)

• For the MX300, latter is insufficient
• Can use the arbitrary write to patch it back to High (0), unlock with

empty string



Crucial MX300 (8)

ATA Security
• The crucial MX300 has an empty (“”) factory-set master password
• Recall: change the Master password or set MASTER PASSWORD CAPABILITY

to Maximum (1)
• For the MX300, latter is insufficient

• Can use the arbitrary write to patch it back to High (0), unlock with

empty string



Crucial MX300 (8)

ATA Security
• The crucial MX300 has an empty (“”) factory-set master password
• Recall: change the Master password or set MASTER PASSWORD CAPABILITY

to Maximum (1)
• For the MX300, latter is insufficient
• Can use the arbitrary write to patch it back to High (0), unlock with

empty string



Samsung 840 EVO

• First Samsung drive to support TCG Opal

• Tri-core Cortex-R4, 400 Mhz
• Firmware images through Magician or

bootable ISO image
• Cryptographically signed (ECDSA)
• Has a JTAG debugging interface

GND
TDO
TDI
TCK
TMS
VTref



Samsung 840 EVO

• First Samsung drive to support TCG Opal
• Tri-core Cortex-R4, 400 Mhz

• Firmware images through Magician or

bootable ISO image
• Cryptographically signed (ECDSA)
• Has a JTAG debugging interface

GND
TDO
TDI
TCK
TMS
VTref



Samsung 840 EVO

• First Samsung drive to support TCG Opal
• Tri-core Cortex-R4, 400 Mhz
• Firmware images through Magician or

bootable ISO image

• Cryptographically signed (ECDSA)
• Has a JTAG debugging interface

GND
TDO
TDI
TCK
TMS
VTref



Samsung 840 EVO

• First Samsung drive to support TCG Opal
• Tri-core Cortex-R4, 400 Mhz
• Firmware images through Magician or

bootable ISO image
• Cryptographically signed (ECDSA)

• Has a JTAG debugging interface

GND
TDO
TDI
TCK
TMS
VTref



Samsung 840 EVO

• First Samsung drive to support TCG Opal
• Tri-core Cortex-R4, 400 Mhz
• Firmware images through Magician or

bootable ISO image
• Cryptographically signed (ECDSA)
• Has a JTAG debugging interface

GND
TDO
TDI
TCK
TMS
VTref



Samsung 840 EVO (2)

From Opal password to DEK

Password storage (14 entries)

Password↔ range

mapping table

(14 × 9 entries)
Encrypted DEKs

(9 entries)

Password Key 1 Key 2 DEK

Keyed hash Decrypt Decrypt

#0 Saltverif Saltderiv Hash

#1 Saltverif Saltderiv Hash

#2 Saltverif Saltderiv Hash

...
#13 Saltverif Saltderiv Hash

0

1

2

...
125

0

1

2

...
8

• Sound Opal implementation
• All properties cryptographically enforced



Samsung 840 EVO (2)

From Opal password to DEK

Password storage (14 entries)

Password↔ range

mapping table

(14 × 9 entries)
Encrypted DEKs

(9 entries)

Password Key 1 Key 2 DEK

Keyed hash Decrypt Decrypt

#0 Saltverif Saltderiv Hash

#1 Saltverif Saltderiv Hash

#2 Saltverif Saltderiv Hash

...
#13 Saltverif Saltderiv Hash

0

1

2

...
125

0

1

2

...
8

• Sound Opal implementation

• All properties cryptographically enforced



Samsung 840 EVO (2)

From Opal password to DEK

Password storage (14 entries)

Password↔ range

mapping table

(14 × 9 entries)
Encrypted DEKs

(9 entries)

Password Key 1 Key 2 DEK

Keyed hash Decrypt Decrypt

#0 Saltverif Saltderiv Hash

#1 Saltverif Saltderiv Hash

#2 Saltverif Saltderiv Hash

...
#13 Saltverif Saltderiv Hash

0

1

2

...
125

0

1

2

...
8

• Sound Opal implementation
• All properties cryptographically enforced



Samsung 840 EVO (3)

ATA Security feature set

• DEK depends on password only in Maximummode
• Otherwise, no dependency on password whatsoever

Removal of hash comparison allows access



Samsung 840 EVO (3)

ATA Security feature set
• DEK depends on password only in Maximummode

• Otherwise, no dependency on password whatsoever

Removal of hash comparison allows access



Samsung 840 EVO (3)

ATA Security feature set
• DEK depends on password only in Maximummode
• Otherwise, no dependency on password whatsoever

Removal of hash comparison allows access



Samsung 840 EVO (4)

Crypto data structure storage

Plaintext DEK

NAND before

Plaintext DEK

Encrypted DEK

NAND after

User sets password

• All crypto related data is stored in NAND, wear leveled
• Thus, can scan through NAND for unprotected keys
• If found, completely compromises encryption
• Affects both ATA security and TCG Opal



Samsung 840 EVO (4)

Crypto data structure storage

Plaintext DEK

NAND before

Plaintext DEK

Encrypted DEK

NAND after

User sets password

• All crypto related data is stored in NAND, wear leveled

• Thus, can scan through NAND for unprotected keys
• If found, completely compromises encryption
• Affects both ATA security and TCG Opal



Samsung 840 EVO (4)

Crypto data structure storage

Plaintext DEK

NAND before

Plaintext DEK

Encrypted DEK

NAND after

User sets password

• All crypto related data is stored in NAND, wear leveled
• Thus, can scan through NAND for unprotected keys

• If found, completely compromises encryption
• Affects both ATA security and TCG Opal



Samsung 840 EVO (4)

Crypto data structure storage

Plaintext DEK

NAND before

Plaintext DEK

Encrypted DEK

NAND after

User sets password

• All crypto related data is stored in NAND, wear leveled
• Thus, can scan through NAND for unprotected keys
• If found, completely compromises encryption

• Affects both ATA security and TCG Opal



Samsung 840 EVO (4)

Crypto data structure storage

Plaintext DEK

NAND before

Plaintext DEK

Encrypted DEK

NAND after

User sets password

• All crypto related data is stored in NAND, wear leveled
• Thus, can scan through NAND for unprotected keys
• If found, completely compromises encryption
• Affects both ATA security and TCG Opal



Samsung 850 EVO

• Successor to 840 EVO

• Samsung MGX controller
• Different firmware obfuscation

de-obfuscation still performed on the host pc

• Supports DEVSLP
• Very similar encryption implementation
• Thus, same vulnerability, except the

wear-leveling issue



Samsung 850 EVO

• Successor to 840 EVO
• Samsung MGX controller

• Different firmware obfuscation

de-obfuscation still performed on the host pc

• Supports DEVSLP
• Very similar encryption implementation
• Thus, same vulnerability, except the

wear-leveling issue



Samsung 850 EVO

• Successor to 840 EVO
• Samsung MGX controller
• Different firmware obfuscation

de-obfuscation still performed on the host pc

• Supports DEVSLP
• Very similar encryption implementation
• Thus, same vulnerability, except the

wear-leveling issue



Samsung 850 EVO

• Successor to 840 EVO
• Samsung MGX controller
• Different firmware obfuscation

de-obfuscation still performed on the host pc

• Supports DEVSLP

• Very similar encryption implementation
• Thus, same vulnerability, except the

wear-leveling issue



Samsung 850 EVO

• Successor to 840 EVO
• Samsung MGX controller
• Different firmware obfuscation

de-obfuscation still performed on the host pc

• Supports DEVSLP
• Very similar encryption implementation

• Thus, same vulnerability, except the

wear-leveling issue



Samsung 850 EVO

• Successor to 840 EVO
• Samsung MGX controller
• Different firmware obfuscation

de-obfuscation still performed on the host pc

• Supports DEVSLP
• Very similar encryption implementation
• Thus, same vulnerability, except the

wear-leveling issue



Samsung T3 Portable

• Essentially a 850 EVO with USB↔mSATA adapter
(with T3-specific firmware, not available for download)

• Proprietary security command set
• AES-256 encryption big part of its marketing

Proprietary security command set

• Configuration tool for Windows, MacOS and Android
• Built on the ATA security implementation

With MASTER PASSWORD CAPABILITY set to High

• Thus, password and DEK not linked, equivalent to no

encryption



Samsung T3 Portable

• Essentially a 850 EVO with USB↔mSATA adapter
(with T3-specific firmware, not available for download)

• Proprietary security command set

• AES-256 encryption big part of its marketing

Proprietary security command set

• Configuration tool for Windows, MacOS and Android
• Built on the ATA security implementation

With MASTER PASSWORD CAPABILITY set to High

• Thus, password and DEK not linked, equivalent to no

encryption



Samsung T3 Portable

• Essentially a 850 EVO with USB↔mSATA adapter
(with T3-specific firmware, not available for download)

• Proprietary security command set
• AES-256 encryption big part of its marketing

Proprietary security command set

• Configuration tool for Windows, MacOS and Android
• Built on the ATA security implementation

With MASTER PASSWORD CAPABILITY set to High

• Thus, password and DEK not linked, equivalent to no

encryption



Samsung T3 Portable

• Essentially a 850 EVO with USB↔mSATA adapter
(with T3-specific firmware, not available for download)

• Proprietary security command set
• AES-256 encryption big part of its marketing

Proprietary security command set

• Configuration tool for Windows, MacOS and Android
• Built on the ATA security implementation

With MASTER PASSWORD CAPABILITY set to High

• Thus, password and DEK not linked, equivalent to no

encryption



Samsung T3 Portable

• Essentially a 850 EVO with USB↔mSATA adapter
(with T3-specific firmware, not available for download)

• Proprietary security command set
• AES-256 encryption big part of its marketing

Proprietary security command set

• Configuration tool for Windows, MacOS and Android

• Built on the ATA security implementation

With MASTER PASSWORD CAPABILITY set to High

• Thus, password and DEK not linked, equivalent to no

encryption



Samsung T3 Portable

• Essentially a 850 EVO with USB↔mSATA adapter
(with T3-specific firmware, not available for download)

• Proprietary security command set
• AES-256 encryption big part of its marketing

Proprietary security command set

• Configuration tool for Windows, MacOS and Android
• Built on the ATA security implementation

With MASTER PASSWORD CAPABILITY set to High

• Thus, password and DEK not linked, equivalent to no

encryption



Samsung T3 Portable

• Essentially a 850 EVO with USB↔mSATA adapter
(with T3-specific firmware, not available for download)

• Proprietary security command set
• AES-256 encryption big part of its marketing

Proprietary security command set

• Configuration tool for Windows, MacOS and Android
• Built on the ATA security implementation

With MASTER PASSWORD CAPABILITY set to High

• Thus, password and DEK not linked, equivalent to no

encryption



Demo



Samsung T3 Portable (2)

https://www.samsung.com/semiconductor/minisite/ssd/product/portable/t3/



Samsung T5 Portable

Key differences with T3
• USB 3.1 Gen2 instead of Gen1

• JTAG switched off
• Equally vulnerable

Just harder to exploit



Samsung T5 Portable

Key differences with T3
• USB 3.1 Gen2 instead of Gen1
• JTAG switched off

• Equally vulnerable

Just harder to exploit



Samsung T5 Portable

Key differences with T3
• USB 3.1 Gen2 instead of Gen1
• JTAG switched off
• Equally vulnerable

Just harder to exploit



Conclusion



Conclusion

• Most SEDs have severe

weaknesses

• Best case scenario: security

guarantees are equivalent to

software FDE
• Worst case: confidentiality relies

on an if-statement
• TCG Opal is terrible

· Over-engineered

· Security goals not clear

· No reference implementation exists

· Implementation is not even part of

complience tests

· Structural changes needed

Drive 1 2 3 4 5 6 7 8 9 Impact

Crucial MX100

(all form factors)

7 7 7 7 Compromised

Crucial MX200

(all form factors)

7 7 7 7 Compromised

Crucial MX300

(all form factors)

X X X 7 X X X X 7 Compromised

Samsung 840

EVO (SATA)

7 X X X X X 7 X ∼ Depends

Samsung 850

EVO (SATA)

7 X X X X X X X ∼ Depends

Samsung T3

(USB)

7 7 Compromised

Samsung T5

(USB)

7 7 Compromised

1 Cryptographic binding in ATA Security (High mode)
2 Cryptographic binding in ATA Security (Max mode)
3 Cryptographic binding in TCG Opal
4 Cryptographic binding in proprietary standard
5 No single key for entire disk
6 Randomized DEK on sanitize
7 Sufficient random entropy
8 No wear leveling related issues
9 No DEVSLP related issues

Overview of case study findings.



Conclusion

• Most SEDs have severe

weaknesses
• Best case scenario: security

guarantees are equivalent to

software FDE

• Worst case: confidentiality relies

on an if-statement
• TCG Opal is terrible

· Over-engineered

· Security goals not clear

· No reference implementation exists

· Implementation is not even part of

complience tests

· Structural changes needed

Drive 1 2 3 4 5 6 7 8 9 Impact

Crucial MX100

(all form factors)

7 7 7 7 Compromised

Crucial MX200

(all form factors)

7 7 7 7 Compromised

Crucial MX300

(all form factors)

X X X 7 X X X X 7 Compromised

Samsung 840

EVO (SATA)

7 X X X X X 7 X ∼ Depends

Samsung 850

EVO (SATA)

7 X X X X X X X ∼ Depends

Samsung T3

(USB)

7 7 Compromised

Samsung T5

(USB)

7 7 Compromised

1 Cryptographic binding in ATA Security (High mode)
2 Cryptographic binding in ATA Security (Max mode)
3 Cryptographic binding in TCG Opal
4 Cryptographic binding in proprietary standard
5 No single key for entire disk
6 Randomized DEK on sanitize
7 Sufficient random entropy
8 No wear leveling related issues
9 No DEVSLP related issues

Overview of case study findings.



Conclusion

• Most SEDs have severe

weaknesses
• Best case scenario: security

guarantees are equivalent to

software FDE
• Worst case: confidentiality relies

on an if-statement

• TCG Opal is terrible
· Over-engineered

· Security goals not clear

· No reference implementation exists

· Implementation is not even part of

complience tests

· Structural changes needed

Drive 1 2 3 4 5 6 7 8 9 Impact

Crucial MX100

(all form factors)

7 7 7 7 Compromised

Crucial MX200

(all form factors)

7 7 7 7 Compromised

Crucial MX300

(all form factors)

X X X 7 X X X X 7 Compromised

Samsung 840

EVO (SATA)

7 X X X X X 7 X ∼ Depends

Samsung 850

EVO (SATA)

7 X X X X X X X ∼ Depends

Samsung T3

(USB)

7 7 Compromised

Samsung T5

(USB)

7 7 Compromised

1 Cryptographic binding in ATA Security (High mode)
2 Cryptographic binding in ATA Security (Max mode)
3 Cryptographic binding in TCG Opal
4 Cryptographic binding in proprietary standard
5 No single key for entire disk
6 Randomized DEK on sanitize
7 Sufficient random entropy
8 No wear leveling related issues
9 No DEVSLP related issues

Overview of case study findings.



Conclusion

• Most SEDs have severe

weaknesses
• Best case scenario: security

guarantees are equivalent to

software FDE
• Worst case: confidentiality relies

on an if-statement
• TCG Opal is terrible

· Over-engineered

· Security goals not clear

· No reference implementation exists

· Implementation is not even part of

complience tests

· Structural changes needed

Drive 1 2 3 4 5 6 7 8 9 Impact

Crucial MX100

(all form factors)

7 7 7 7 Compromised

Crucial MX200

(all form factors)

7 7 7 7 Compromised

Crucial MX300

(all form factors)

X X X 7 X X X X 7 Compromised

Samsung 840

EVO (SATA)

7 X X X X X 7 X ∼ Depends

Samsung 850

EVO (SATA)

7 X X X X X X X ∼ Depends

Samsung T3

(USB)

7 7 Compromised

Samsung T5

(USB)

7 7 Compromised

1 Cryptographic binding in ATA Security (High mode)
2 Cryptographic binding in ATA Security (Max mode)
3 Cryptographic binding in TCG Opal
4 Cryptographic binding in proprietary standard
5 No single key for entire disk
6 Randomized DEK on sanitize
7 Sufficient random entropy
8 No wear leveling related issues
9 No DEVSLP related issues

Overview of case study findings.



Questions
See the draft paper ’Self-Encrypting Deception’

Carlo Meijer

c.meijer@cs.ru.nl

https://cs.ru.nl/∼cmeijer/
https://midnightbluelabs.com/


