
Modeling and Simulation of Physical Systems for Hobbyists

Manuel Aiple 35C3 — 29 December 2018
CC-BY 4.0 version f59c89b



Modeling and Simulation of Physical Systems for Hobbyists
Mathematicaldescriptionof a system

Runninga model Hardware With commonlyavailable tools



Motivation

Why use Simulation?



Motivation

Why use Simulation?

• Placeholder for hardware components• Virtual test bench



Modeling Picture: Newton portrait with apple tree by Mariana Ruiz Villarreal (LadyofHats) CC0-1.0 (Recomposed)

Simple Detailed VeryDetailed
Apple MovesDown Apple AcceleratesDown Apple AcceleratesDownUntil Saturation

t

x

t

x

t

x

As simple as possible, as detailed as necessary



Differentiation & Integration

Differentiation & Integration



Differentiation & Integration

Differentiation & IntegrationPosition
x(t)

Velocity
v (t)

Acceleration
a(t)



Differentiation & Integration

Differentiation & IntegrationPosition
x(t)

Velocity
v (t)

Acceleration
a(t)

Differentiate



Differentiation & Integration

Differentiation & IntegrationPosition
x(t)

Velocity
v (t)

Acceleration
a(t)

Differentiate Integrate



Differentiation & Integration

Differentiation & IntegrationPosition
x(t)

Velocity
v (t)

Acceleration
a(t)

Differentiate Integrate
v (t) = lim

h→0 x(t + h)− x(t)
h



Differentiation & Integration

Differentiation & IntegrationPosition
x(t)

Velocity
v (t)

Acceleration
a(t)

Differentiate Integrate
v (t) = lim

h→0 x(t + h)− x(t)
h

lim
h→0 x(t + h) = x(t) + lim

h→0 v (t) h



Differentiation & Integration

Differentiation & IntegrationPosition
x(t)

Velocity
v (t)

Acceleration
a(t)

Differentiate Integrate
v (t) = lim

h→0 x(t + h)− x(t)
h

lim
h→0 x(t + h) = x(t) + lim

h→0 v (t) h

Lookin
ginto

thepa
st Lookingintothefuture

Always integrate for simulation



Euler Method

Euler Method

lim
h→0 x(t + h) = x(t) + lim

h→0 v (t) h → Not usable for computation



Euler Method

Euler Method

lim
h→0 x(t + h) = x(t) + lim

h→0 v (t) h → Not usable for computation
Replace infinitesimal limh→0 h with finite Ts and only calculate for integer multiples k of Ts:

t = k Ts



Euler Method

Euler Method

lim
h→0 x(t + h) = x(t) + lim

h→0 v (t) h → Not usable for computation
Replace infinitesimal limh→0 h with finite Ts and only calculate for integer multiples k of Ts:

t = k Ts

x
(
t + Ts
Ts

) = x
(
t
Ts

)+ v
(
t
Ts

)
Ts



Euler Method

Euler Method

lim
h→0 x(t + h) = x(t) + lim

h→0 v (t) h → Not usable for computation
Replace infinitesimal limh→0 h with finite Ts and only calculate for integer multiples k of Ts:

t = k Ts

x
(
t + Ts
Ts

) = x
(
t
Ts

)+ v
(
t
Ts

)
Ts

x(k + 1) = x(k ) + v (k ) Ts



Euler Method

Euler Method

lim
h→0 x(t + h) = x(t) + lim

h→0 v (t) h → Not usable for computation
Replace infinitesimal limh→0 h with finite Ts and only calculate for integer multiples k of Ts:

t = k Ts

x
(
t + Ts
Ts

) = x
(
t
Ts

)+ v
(
t
Ts

)
Ts

x(k + 1) = x(k ) + v (k ) Ts
Keep Ts small



Building Blocks Mechanics

Building Blocks Mechanics



Building Blocks Mechanics

Building Blocks Mechanics

·M

v



Building Blocks Mechanics

Building Blocks Mechanics

·M

v

F
F = M dvdt

Second law of motion



Building Blocks Mechanics

Building Blocks Mechanics

·M

v

F
F = M dvdt

Second law of motion

I
ω



Building Blocks Mechanics

Building Blocks Mechanics

·M

v

F
F = M dvdt

Second law of motion

I
ω
T

T = I dωdt



Building Blocks Mechanics

Building Blocks Mechanics

·M

v

F
F = M dvdt

Second law of motion

I
ω
T

T = I dωdt

F = M g
Weight



Building Blocks Mechanics

Building Blocks Mechanics

·M

v

F
F = M dvdt

Second law of motion

I
ω
T

T = I dωdt

F = M g
Weight

F

x

κ

F = −κ (x − x0)
Spring force



Building Blocks Mechanics

Building Blocks Mechanics

·M

v

F
F = M dvdt

Second law of motion

I
ω
T

T = I dωdt

F = M g
Weight

F

x

κ

F = −κ (x − x0)
Spring force

F = −b v
Viscous damping



Building Blocks Electric

Building Blocks Electric



Building Blocks Electric

Building Blocks Electric
R

V = R i
Resistor



Building Blocks Electric

Building Blocks Electric
R

V = R i
Resistor

L

V = L didt Inductance



Building Blocks Electric

Building Blocks Electric
R

V = R i
Resistor

L

V = L didt Inductance

C

i = C dVdt Capacitor



Building Blocks Electromechanics

Building Blocks Electromechanics

MT

ω



Building Blocks Electromechanics

Building Blocks Electromechanics

MT

ω

T = Kt i
Motor



Building Blocks Electromechanics

Building Blocks Electromechanics

MT

ω

T = Kt i
Motor

V = Kv ω
Generator



Building Blocks Electromechanics

Building Blocks Electromechanics

MT

ω

T = Kt i
Motor

V = Kv ω
Generator

V = R i + L didt + Kv ω

I dωdt = Kt i − bω
Electric motor



Tips & Tricks

Tips & Tricks1. Sampling Period (Ts): min. 100x faster than system time constant2. Block Diagram: helps to keep overview3. Adapt the model to your needs: different questions might need different models4. Specialized Tools (SciPy, OpenModelica/OMEdit, Scilab/XCos):
• for complex models or as reference• better differential equation solving (BDF, Runge-Kutta, etc.)• efficient through variable time-step• nice data logging and visualization tools



Motor Model Block Diagram

1/I
B ∫ ∫−++

Kv

Text θ

dωdt ω

1/L
R

∫++
−

Kt

Vsup i

didt i



Background & Further Reading

Background & Further Reading (Wikipedia)• Scientific modeling• Ordinary differential equation• Numerical methods for ordinary differential equations
– Euler Method
– Runge-Kutta
– Backward differentiation formula (BDF)

• Discrete time and continuous time• State-space representation


