
Eric Sesterhenn <eric.sesterhenn@x41-dsec.de>

2018

X41 D-SEC GmbH

https://www.x41-dsec.de/ 1 / 44

whoami

• Eric Sesterhenn

• Pentesting/Code Auditing at X41

• CCCMZ (CCCWI)

Hacktrain to 19c3

https://www.x41-dsec.de/ 2 / 44

More Information

• 19C3: Smartcards mit SOSSE sind lecker

• Camp 2003: hacking smart cards

• 23C3: A not so smart card - How bad security decisions can ruin a debit card
design

• 24C3: Smartcard protocol sniffing

• Camp 2011: Reviving smart card analysis

• 29C3: Milking the Digital Cash Cow - Extracting Secret Keys of Contactless
Smartcards

You can find these at https://media.ccc.de

35C3 3 / 44

https://media.ccc.de

Disclaimer

• The issues presented here have been
reported and fixed!

• These are open source projects - help them!

• I am (usually) not interested in testing /
debugging proprietary stuff in my spare time.

35C3 4 / 44

Targets

LINUX
LOGIN

35C3 5 / 44

Trust the Smartcard

• Smartcards control authentication!

• Authentication runs as root!

• Driver developers and users trust
the smartcard!

• Let’s abuse that

35C3 6 / 44

Smartcard Stack Summary

Application (pam)

PKCS11

PC/SC

APDU

Physical Card

35C3 7 / 44

What is a Smartcard?

• Physical, tamper-proof device

• Designed to keep information secret

• Contains memory and a processor

https://en.wikipedia.org/wiki/Smart_card#/media/File:SmartCardPinout.svg

35C3 8 / 44

https://en.wikipedia.org/wiki/Smart_card#/media/File:SmartCardPinout.svg

Application Protocol Data Unit

• APDUs form the protocol to talk to
smartcards

• ISO/IEC 7816-4 Identification cards
- Integrated circuit cards

• T=0 is character oriented / T=1 is
block-oriented

• Verify: 00 20 00 01 04 31323334

CLA INS P1 P2 LC Data
1 1 1 1 0-3 NC

35C3 9 / 44

APDU Responses

61XX Response bytes still available
63C0 Verify fail, no try left.
63C3 Verify fail, 3 tries left.
6982 Security condition not satisfied.
6A00 No information given (Bytes P1 and/or P2 are incorrect).
9000 Command successfully executed (OK).
9004 PIN not succesfully verified, 3 or more PIN tries left.

35C3 10 / 44

PC/SC API

• PC/SC API can be used on win and
*nix

• Other libraries have a similar
interface

LONG WINAPI SCardTransmit(
SCARDHANDLE hCard,
LPCSCARD_IO_REQUEST pioSendPci,
LPCBYTE pbSendBuffer,
DWORD cbSendLength,
PSCARD_IO_REQUEST pioRecvPci,
LPBYTE pbRecvBuffer,
LPDWORD pcbRecvLength

);

35C3 11 / 44

PKCS11

• PKCS11 is a platform independent
API for cryptographic token

• Supported by OpenSSL, browsers,...
(eg. via libp11)

• Windows uses smartcard Minidriver
now

• Driver for each card, uses ATR to
match

CK_RV C_FindObjectsInit(
CK_SESSION_HANDLE hSession,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount

);

35C3 12 / 44

Smartcard for Sign-On

PAM Smartcard CRLServer
Get Certificates

Certificate

Validate Certificate and User

RevocationCheck

CRL

GenerateNonce

SignRequest forNonce

Signature

Check Signature Against Certificate

35C3 13 / 44

DNIE

Documento Nacional de Identidad electrónico is the Spanish eID. It is in line with
the EU directive on electronic ID, and it is a “smart” identity card with a chip

containing certificates for authentication and digital signature

35C3 14 / 44

DNIE Hardening

"file" : {
"fortify_source" : "no",
"fortify-able" : "4",
"pie" : "dso",
"rpath" : "no",
"relro" : "partial",
"fortified" : "0",
"nx" : "yes",
"canary" : "no",
"filename" : "libpkcs11-dnie.so",

}

35C3 15 / 44

Third Party Code

• CryptoPP - 5.2MB text size

• ASN1C - 1.4MB text size

• No copyright notice with package

35C3 16 / 44

Toying around - DoS

> 00 c0 00 00 00 Get Response
< 61 00 I have another 0 bytes

> 00 c0 00 00 00 Get Response
< 61 00 I have another 0 bytes

> 00 c0 00 00 00 Get Response
< 61 00 I have another 0 bytes

35C3 17 / 44

Toying around - Crash

> 00 c0 00 00 00 Get Response
< 61 FF I have another 255 bytes

> 00 c0 00 00 00 Get Response
< 61 FF I have another 255 bytes

> 00 c0 00 00 00 Get Response
< 61 FF I have another 255 bytes

#8 0xb6e697ff in operator new (sz=2097152000) at
../../../../src/libstdc++-v3/libsupc++/new_op.cc:54,→

35C3 18 / 44

Toying around - Crash

> 00 b0 92 00 04 Read Binary,
< 90 00 Everything is fine

0xb796c94a in CCommunicator::readEF_sequence(unsigned short, byteBuffer&,
unsigned short) () from /usr/lib/libpkcs11-dnie.so,→

35C3 19 / 44

Toying around

0xb7f9bc70 in CUtil::GetBit(BIT_STRING_s*, unsigned long) () from
/usr/lib/libpkcs11-dnie.so,→

OCTET_STRING_decode_ber: Assertion `ctx->left >= 0' failed.

Use of uninitialised value of size 4

0xb7f7bf5b in CP15TokenInfo::LoadTokenInfo(CK_TOKEN_INFO*) () from
/usr/lib/libpkcs11-dnie.so,→

35C3 20 / 44

Bugs

Project # Bugs

libykneomgr 1
OpenSC Over 9000 ;-)
pam_pkcs11 1
smartcardservices 2
Yubico-Piv 2

No, I did not fuzz the &$#?@! out of it...
but guess which one I fuzzed the most ;-)

Thanks to Frank Morgner for fixing!

35C3 21 / 44

Apple Smartcardservices

do {
cacreturn = cacToken.exchangeAPDU(command, sizeof(command), result,

resultLength);,→

if ((cacreturn & 0xFF00) != 0x6300)
CACError::check(cacreturn);

...
memcpy(certificate + certificateLength, result, resultLength - 2);
certificateLength += resultLength - 2;
// Number of bytes to fetch next time around is in the last byte
// returned.
command[4] = cacreturn & 0xFF;

} while ((cacreturn & 0xFF00) == 0x6300);

35C3 22 / 44

OpenSC - CryptoFlex

u8 buf[2048], *p = buf;
size_t bufsize, keysize;

sc_format_path("I1012", &path);
r = sc_select_file(card, &path, &file);
if (r)

return 2;
bufsize = file->size;
sc_file_free(file);
r = sc_read_binary(card, 0, buf, bufsize, 0);

35C3 23 / 44

Popping calcs...

35C3 24 / 44

YUBICO PIV

if(*out_len + recv_len - 2 > max_out) {
fprintf(stderr,

"Output buffer to small, wanted to write %lu, max was %lu.",
*out_len + recv_len - 2, max_out);

,→

,→

}
if(out_data) {

memcpy(out_data, data, recv_len - 2);
out_data += recv_len - 2;
*out_len += recv_len - 2;

}

35C3 25 / 44

Logging in...

35C3 26 / 44

Basic Smartcard Exploitation in 2018

• Basiccard gives you nice control,...
yes BASIC!

• Allows to specify custom ATR

• Controls full communication

• http://basiccard.com/

35C3 27 / 44

http://basiccard.com/

Card Definitions

Declare Command &HC0 &HA4 MySelectFile(S$)
Declare Command &HC0 &HB0 MyReadBinary(Lc=0, S$)

Declare ATR = Chr$(&H3B, &H95, &H15, &H40, &H20, &H68, &H01, &H02, &H00, & c
H00),→

35C3 28 / 44

Implementation

Command &HC0 &HA4 MySelectFile(S$)
...

If Lc = 2 Then
S$ = BinToHex$(S$)
If S$ = "3F00" Then

S$ = SelectFile1$
Else If S$ = "1012" Then

S$ = SelectFile2$
End If

End If
SW1SW2 = swCommandOK

End Command

35C3 29 / 44

Exploit Released

• Example exploit code available now!

• Just for flextool, kinda silly but shows how it works

• https://x41-dsec.de/Kevin.zip

35C3 30 / 44

Challenges in fuzzing a protocol

• Most modern fuzzers are file-oriented

• Radamsa: Generates a corpus of files

• Hongfuzz: passes a file (filename different each run)

• libfuzzer: passes a buffer and length

• AFL: passes a file

35C3 31 / 44

Challenges in fuzzing a protocol

• SCardTransmit() tells us how much
data it expects

• Read this from a file on each call
and error out if EOF

• No complicated poll handling like for
network sockets required

LONG WINAPI SCardTransmit(
SCARDHANDLE hCard,
LPCSCARD_IO_REQUEST pioSendPci,
LPCBYTE pbSendBuffer,
DWORD cbSendLength,
PSCARD_IO_REQUEST pioRecvPci,
LPBYTE pbRecvBuffer,
LPDWORD pcbRecvLength

);

35C3 32 / 44

How to fuzz - OpenSC

• reader-fuzzy.c

• Implements a (virtual) smartcard
reader interface

• Responds with malicious data read
from file (OPENSC_FUZZ_FILE)

• Have fun with AFL

American
Fuzz Lop

pkcs11-tool -t

libopensc

card-cac.c

reader-fuzzy.c

Fuzzing
File

Input

35C3 33 / 44

How to fuzz - Winscard and PC/SC

• Winscard(.dll) on Linux and Unix

• For proprietary code

• Preload the library

• Have fun with non-feedback fuzzers
(e.g. radamsa) or AFL in qemu
mode

35C3 34 / 44

How to fuzz - Winscard 2

• Tavis loadlibrary

• Extended to support Winscard
drivers

• Fuzz the windows drivers on linux
without all the overhead

35C3 35 / 44

Smartcard fuzzing

• Released at DEF CON 2018

• https://github.com/x41sec/x41-
smartcard-fuzzing

35C3 36 / 44

AFL fuzzing

35C3 37 / 44

Coverage

35C3 38 / 44

Coverage

35C3 39 / 44

pam_pkcs11: Replay an Authentication

PAM Smartcard CRLServer
Get Certificates

Certificate

Validate Certificate and User

RevocationCheck

CRL

RequestRandomNonce

Nonce

SignRequest forNonce

Signature

Check Signature Against Certificate

35C3 40 / 44

pam_pkcs11: Replay an Authentication

• User logs into attacker controlled computer

• Attacker asks for Nonce and for Signature

• Attacker creates malicious card and can replay the authentication

This is even worse if the key is also used to sign other data!

35C3 41 / 44

Roadblocks

• Channel back to card is quite limited

• Might need to use revocation list check for information leaks

• Interaction during exploitation not possible with basiccard, get SIMtrace for
that

• But: A single bitflip from false to true during login can be enough :)

35C3 42 / 44

Takeaways / Conclusions

• Think about trust models!

• Some security measures increase your attack surface big time!

• Fuzz Everything!

• Limit attack surface by disabling certain drivers.

• Do not write drivers in C ;-)

35C3 43 / 44

Thanks

• Q & A

• https://github.com/x41sec/x41-smartcard-
fuzzing

• eric.sesterhenn@x41-dsec.de

• Sorry no Twitter... stalk me on LinkedIn if
you must ;-)

https://www.x41-dsec.de/ 44 / 44

